
© Springer-Verlag Berlin Heidelberg 2012

k-Anonymity-based Horizontal Fragmentation to

Preserve Privacy in Data Outsourcing

Abbas Taheri Soodejani, Mohammad Ali Hadavi, and Rasool Jalili

Data and Network Security Laboratory,

 Department of Computer Engineering, Sharif University of Technology

{a.taheri@cert., mhadavi@ce., jalili@}sharif.edu

Abstract. This paper proposes a horizontal fragmentation method to preserve

privacy in data outsourcing. The basic idea is to identify sensitive tuples,

anonymize them based on a privacy model and store them at the external server.

The remaining non-sensitive tuples are also stored at the server side. While our

method departs from using encryption, it outsources all the data to the server;

the two important goals that existing methods are unable to achieve simultane-

ously. The main application of the method is for scenarios where encrypting or

not outsourcing sensitive data may not guarantee the privacy.

Keywords: Data outsourcing, privacy, horizontal fragmentation, k-anonymity

1 Introduction

In fragmentation-based approach, some data columns are separated from each other to

hide their sensitive associations, called vertical fragmentation; and also some sensitive

tuples are separated from non-sensitive tuples, called horizontal fragmentation.

From the owner involvement in data storage view, fragmentation-based methods

fall into two categories: (1) Partial-outsourcing methods [1-3], which store a portion

of data at the owner side, (2) Full-outsourcing methods [4-6], which completely

outsource the data to the external server. Partial-outsourcing methods get involved the

owner in data storage and consequently data management, which is largely in contra-

diction with the goal of outsourcing, i.e., outsourcing data management. On the other

hand, full-outsourcing methods outsource all data exploiting data encryption. Conse-

quently, they suffer from the same disadvantages as the encryption-based approach.

Our method is based on horizontal fragmentation. The main idea is to identify and

k-anonymize the sensitive tuples. Anonymized tuples are stored as a fragment and

non-sensitive tuples are stored as a logically separate fragment, both at the server side.

This paper proposes a full-outsourcing method that unlike the existing full-

outsourcing methods does not use encryption but anonymization to provide privacy.

The method is appropriate for scenarios that even encrypting or even not outsourcing

the sensitive data cannot guarantee the privacy. In addition, our method inherits some

mailto:taheri@cert.,%20mhadavi@ce.,%20jalili@%7dsharif.edu

benefits of the horizontal fragmentation in [2] such as is consistency with database

normalization techniques, content-aware fragmentation, introducing a logical formal-

ism for our fragmentation and controlling inference using data dependencies.

 The rest of this paper is organized as follows. Section 2 introduces the basic con-

cepts and definitions. Section 3 presents an algorithm for our fragmentation method.

Finally, section 4 concludes the paper.

2 Basic concepts

Our view of relational databases is the formalism of first-order predicate logic with

equality. We describe how to formalize some relational concepts with this formalism.

Relational instance: we view an instance I of a relational database schema  as a set

of expressions of the form R(a1, a2, ... , an), where R is an n-ary relation name in 

and the ai‟s are constants. Such expressions are called ground tuples.
Illness Treatment Info

Name Disease

Name Medicine

Name DoB ZIP

Andy Hypertension Andy Med A Andy 1981/01/03 94142

Alice Obesity Alice Med B Alice 1953/10/07 86342

Bob Aids David Med C Bob 1952/02/12 79232

David Heart disease Bob Med D David 1999/01/20 20688

Linda Cholera Bob Med E Linda 1989/01/03 94139

Sara Flu Tom Med X Sara 2000/01/20 40496

Tom Viral disease Tom Med Y Tom 1970/11/01 23567

Fig. 1. An instance (I) of a database schema

EXAMPLE 1. Consider the database instance I in Figure 1 (our running example

throughout the paper). The schema is  = {Illness, Treatment, Info}, consisting of

three relations. The instance I of  is a set of ground tuples Illness(Andy, Hyperten-

sion), Treatment(Andy, Med A), Info(Andy, 1981/01/03 , 94142), and the rest. ⧠

Database dependency: Database dependencies are domain-specific declarations

reflecting the intended meaning of the stored data in a database. Along with the defi-

nition of a schema , a set of data dependencies  is defined that consists of tuple-

generating dependencies (TGDs) and equality-generating dependencies (EGDs).

Definition 1 (Tuple-generating dependency). A tuple-generating dependency (TGD)

is a closed formula of the form ∀𝒙 (ϕ(𝒙) ⟶ ∃𝒚 ψ(𝒙, 𝒚)), where 𝒙 and 𝒚 are vectors

of variables; ϕ(𝒙) is a (possibly empty) conjunction of atomic formulas, all with vari-

ables among the variables in 𝒙; ψ(𝒙, 𝒚) is a conjunction of atomic formulas, all with

variables among the variables in 𝒙 and 𝒚.

Definition 2 (Equality-generating dependency). An equality-generating dependency

(EGD) is a closed formula of the form ∀𝒙 (ϕ(𝒙) ⟶ ψ(𝒙)), where 𝒙 is a vector of

variables; ϕ(𝒙) is a conjunction of atomic formulas, all with variables among the

variables in 𝒙; ψ(𝒙) is a conjunction of formulas of the form 𝑥 = 𝑥´, where 𝑥 and
𝑥´are distinct variables in 𝒙.

For a dependency, we call ϕ the body and ψ the head of dependency, respectively.

EXAMPLE 2. In our example, set of dependencies  can contain the following for-

mulas: d1: ∀n, d (Illness(n, d) ⟶ ∃b, z Info(n, b, z))

d2: ∀n, m (Treatment(n, m) ⟶ ∃d Illness(n, d))

d3: ∀n (Treatment(n, Med D) ∧ Treatment(n, Med E) ⟶ Illness(n, Aids))

d4: ∀n, d, z, d´, z´ (Info(n, d, z) ∧ Info(n, d´, z´) ⟶ (d = d´ ∧ z = z´))

The TGD d1 states that if a person is ill, his/her personal information must be

available; that is, for each tuple for a person, say „n‟, in the relation Illness, there must

be a tuple for him/her in the relation Info. The TGD d2 states that if a person takes a

medicine, there must be a disease s/he contracted. The TGD d3 states that if someone

takes two medicines „Med D‟ and „Med E‟, s/he is certainly contracted disease „Aids‟.

The EGD d4, states that personal information of each person is unique. ⧠

For a database schema , a set of dependencies , and an instance I of , there

must not exist a dependency d ∊  that is violated by I. The meaning of dependency

violation is captured by Definition 3.

Definition 3 (Dependency violation). Let I be a database instance. The dependency

d is said to be violated by I if:

 There exists a vector of constants 𝒂 such that the instantiation of the body

ϕ(𝒙)[𝒂/𝒙] of variables 𝒙 with constants 𝒂 holds in I: I ⊨ ϕ(𝒙)[𝒂/𝒙]

 but the instantiated head ∃𝒚 ψ(𝒙, 𝒚) of variables 𝒙 with constants 𝒂 is false in I:

I ⊭ ψ(𝒙, 𝒚)[𝒂/𝒙] if d is a TGD (similarly, ψ(𝒙) is false in I: I ⊭ ψ(𝒙)[𝒂/𝒙] if d is

an EGD).

In other words, a dependency d is said to be violated if there exists a set of ground

tuples in I from which the body of d can be instantiated but no tuples exist in I that the

head of d can be fully instantiated from.

If the instance I violates some dependencies in , a procedure called Chase [7, 8]

is run on I. Running the chase on I, fixes the violated dependencies. In other words,

the result of the chase is an instance, called chased instance, that satisfies all depend-

encies in . We refer the reader to [2, 9] for more details about the chase procedure.

2.1 Syntax of privacy constraints

Data owner‟s privacy requirements are modeled through privacy constraints:

Definition 4 (Privacy constraint). Given a database schema = {R1, R2, ... , Rm}, a

privacy constraint c is a closed formula of the form ∃𝒙 α(𝒙), where 𝒙 is a vector of

variables; α(𝒙) is a conjunction of positive atomic formulas, all with variables among

the variables in 𝒙 and constants from the domains of attributes.

In the above definition, α(𝒙) is a conjunction of partial instantiation of Ri‟s in .

Definition 4 states that if there exist tuples in the database instance that yield an in-

stantiation of the formula α(𝒙), then there is a privacy violation, we say a sensitive

knowledge is disclosed. The set of tuples that violate a privacy constraint is called the

violation set denoted by V. Note that we restrict the syntax of privacy constraints to

formulas without negation and with only conjunction as logical connective.

EXAMPLE 3. For the database schema  in our example, the set of privacy con-

straints, denoted by , may contain the following formulas:

c1: ∃n Illness(n, Aids)

c2: ∃d Illness(Sara, d)

c3: ∃n, nʹ (Illness(n, Cholera) ˄ Treatment(nʹ, Med X) ˄ Treatment (nʹ, Med Y))

where c1 states that if there exists a tuple with value „Aids‟ for attribute Disease, a

privacy violation occur. In this case, the name of the person who contracted Aids is

the sensitive knowledge. Similar interpretation holds for c2. The constraint c3 states

that if there exist three tuples, one from relation Illness with name „n‟ and disease

„Cholera‟ and the other two from relation Treatment with the same name „n´‟ but one

with medicine „Med X‟ and the other with medicine „Med Y‟, then these tuples to-

gether violate the privacy. Here, the sensitive knowledge is a sensitive association

between n and n´, e.g., n´ will be contracted Cholera (say, because Cholera is an infec-

tious disease and all persons in the database live in the same place). ⧠

2.2 k-Anonymity

In some scenarios, encrypting or not outsourcing sensitive data may not guarantee the

privacy. For example, consider a healthcare database of patients‟ records. Let the

records of the patients that contracted Aids be sensitive. To provide privacy, one may

encrypt or not outsource the records of the patients with disease Aids. Alice has dis-

ease Aids, hence she has a record in the database. The attacker Bob knows that Alice

has a disease but not exactly which kind of disease. He also knows that records with

disease Aids are sensitive. He examines the data and observes that there is no record

for Alice in the database. Therefore, he can infer that Alice has disease Aids. There

are other scenarios that encrypting or suppressing data do not guarantee the privacy.

In these scenarios, we exploit the k-anonymity concept to provide privacy.

Our method, inspired from the k-anonymity concept [10], aims to provide privacy

of degree k. To this aim, some fake tuples is produced in a way that for each sensitive

knowledge at least k - 1 sensitive but fake knowledge can be inferred from database

instance. Thus, the probability of a sensitive knowledge being real is equal to or less

than 1/k.

Let c be a violated constraint and V be its violation set. To provide privacy with

degree k for c, we produce k - 1 (possibly overlapping) violation sets, all violating the

same constraint c. Thus, for c, we have k violation sets and the sensitive knowledge

of c is anonymized with k - 1 fake knowledge.

For the sake of simplicity, for each violated constraint we assume that the number

of sensitive tuples in its violation set is one (generalizing the concepts to violation sets

with more than one tuple is straightforward). Also, we assume that the sensitive

knowledge is the value of an attribute S, called sensitive attribute. With this assump-

tion, the k-anonymity concept in our method is captured by the following principle:

Definition 5 (k-anonymity principle). For a violation set of a constraint c with sen-

sitive attribute S, there must be at least k - 1 fake violation sets all instantiated from c,

and the set of k violation sets contains at least k distinct values for attribute S.

EXAMPLE 4. Two tuples Illness(Bob, Aids) and Illness(Sara, Flu) violate the con-

straints c1 and c2, respectively, from Example 3. Let the attribute Name for c1 and

Disease for c2 be the sensitive attributes. We produce tuples Illness(Jim, Aids) and

Illness(Sara, Influenza) to 2-anonymize these two violation sets, respectively. ⧠

2.3 Syntax of anonymization rules

As mentioned in the previous section, the sensitive knowledge inferable from those

tuples violating a privacy constraint should be anonymized. For each privacy con-

straint we define an anonymization rule that states which attribute or combination of

attributes (that are sensitive) in which tuples should be anonymized.

Definition 6 (Anonymization rule). An anonymization rule for a privacy constraint c

of the form ∃𝒙 α(𝒙), is a formula of the form ∃𝒙 α(𝒙)

→ ∃𝒚 β(𝒚), where 𝒙 and α(𝒙)

are those defined in Definition 4; 𝒚 is a (possibly empty) vector of variables; β(𝒚) is a

conjunction of positive formulas all with free variables, bounded variables, and con-

stants; and k is the k-anonymity parameter.

In Definition 6, α(𝒙) and β(𝒚) are called the body and head of the rule, respective-

ly. According to the head we determine which tuples and, more specifically, which

attributes should be anonymized. The above formula states that if there exist tuples

that instantiate the body α(𝒙), consequently violating a constraint, then there must

exist k - 1 fake instantiations for the head β(𝒚). In fact, for a violated constraint, we

apply an anonymization rule to achieve the k-anonymity principle in Definition 5. In

β(𝒚), constants are values of the attributes, such as name, that their values can identify

a sensitive knowledge; free variables represent a set of attributes, such as disease, that

their values are sensitive; and bounded variables represent the attributes that have no

role in the identification and have no association with the sensitive knowledge.

EXAMPLE 5. The set of anonymization rules, denoted by , corresponding to the

privacy constraints in Example 3 contains the following rules:

r1: ∃n Illness(n, Aids)

→ IllnessFS(n, Aids)

r2: ∃d Illness(Sara, d)

→ IllnessFS(Sara, d)

r3: ∃n, nʹ (Illness(n, Cholera) ˄ Treatment(nʹ, Med X) ˄ Treatment(nʹ, Med Y))

→

 (TreatmentFS(nʹ, Med X) ˄ TreatmentFS(nʹ, Med Y))

Relation names above with subscripted FS indicate relations in the fragment FS.

The rule r1 states that to anonymize a tuple that instantiates Illness(n, Aids), violating

c1, k - 1 fake tuples should be produced that are instantiations of IllnessFS(n, Aids). In

the set of k - 1 fake tuples, the attribute Disease should take the value „Aids‟ and the

attribute Name should be anonymized by taking k - 1 distinct values. Similar interpre-

tation holds for r2. The rule r3 states that if there exist tuples that instantiate c3, the

sensitive knowledge can be anonymized by generating 2(k - 1) fake tuples; k - 1 tuples

that instantiate TreatmentFS(nʹ, Med X), and k - 1 tuples that instantiate

TreatmentFS(nʹ, Med Y). For the attribute Name in the latter k - 1 tuples, we use the

same values used in the former k - 1 tuples. ⧠

3 Fragmentation

In this section, we first define the requirements of a correct horizontal fragmentation.

Then, we introduce an algorithm to produce a correct fragmentation.

3.1 Fragmentation correctness

A fragmentation is correct if it satisfies three requirements: completeness, non-

redundancy, and privacy. The completeness requirement states that we must be able

to reconstruct the original database instance from its corresponding fragments. The

non-redundancy requirement states that the fragments should not have common tuples

and/or attributes (depending on the fragmentation method). The privacy requirement

states that the fragmentation must satisfy the privacy constraints so that no sensitive

knowledge can be inferred from the fragments. The completeness and privacy are two

mandatory requirements that any fragmentation method must satisfy them, while the

non-redundancy requirement can be considered optional as it is not applicable to all

methods. We define fragmentation correctness in our method as follows:

Definition 7 (Fragmentation correctness). Let  be a database schema with a set of

dependencies . Let  be a set of privacy constraints and k be the k-anonymity pa-

rameter. Also let  = {FNS, FS} be a fragmentation for instance I of , where FS and

FNS are sensitive and non-sensitive fragments, respectively.  is a correct fragmenta-

tion with respect to  iff both the following conditions hold:

1. I ∩ (FNS ∪ FS) = I (Completeness requirement),

2. ∀ci ∊ : (FNS ∪ FS) ∪  ⊭ ci, otherwise P(ci) ≤ 1/k (Privacy requirement).

According to Definition 7, a fragmentation is complete if taking the union of the

fragments and removing the fake tuples, yields the original instance I. Also, it pre-

serves privacy if applying the dependencies, as deduction rules, to the tuples in FNS

and FS, as ground tuples, does not imply a privacy constraint. Otherwise, the probabil-

ity of the knowledge inferable from the constraint should be equal to or less than 1/k.

3.2 k-Anonymity-based horizontal fragmentation algorithm

Based on Definition 7, we present an algorithm that produces a correct fragmentation.

The general scheme of our method is showed in Figure 2. First, we identify those

tuples in I that instantiate some privacy constraints (step 1). These tuples are called

explicitly sensitive tuples and move them to FS (step 2). We also identify the tuples in

I that do not explicitly violate any constraint but implicitly violate some constraints,

i.e., by applying dependencies. These tuples are called implicitly sensitive tuples and

move them to FS (step 2). By this step, all explicitly and implicitly sensitive tuples are

moved to FS but there may be some tuples that can be used to gain extra information

about the sensitive tuples. Consider the tuples that their existence depends only on the

existence of other tuples, i.e., produced by only applying dependencies to other tuples.

These tuples are called dangling tuples and move them to FS (step 2). After step 2, all

remaining tuples in I are non-sensitive (because all sensitive tuples have been moved

to FS) and move them to FNS (step 3). For the explicitly sensitive tuples in step 1, we

produce some fake tuples (k - 1 violation sets) to k-anonymize their respective sensi-

tive knowledge and place them in FS (step 4). In addition to the fake violation sets,

some other fake tuples is produced and placed in FS (step 4), c.f. Section 3.3. Subse-

quently, we chase FS to satisfy all dependencies (step 5, not shown in Figure 2).

Fig. 2. General scheme of the proposed method

For each sensitive tuple in step 2 a metadata, e.g., a tuple id, is produced and

placed in FS along with that tuple (step 2´). These metadata are also stored at the own-

er side and used to recognize the real tuples in the future accesses to FS.

3.3 Cascading tuples

Consider tuples t1, t2, … , tn, where tuple tn is generated by applying dependency dn-1

to tuple tn-1 and tn-1 itself is generated by applying dependency dn-2 to tuple tn-2, … ,

finally tuple t2 is generated by applying dependency d1 to tuple t1. We call this phe-

nomenon cascading tuples. Let tuple tn be explicitly sensitive. Therefore, tuples

t1, t2, … , tn-1 are implicitly sensitive. According to the previous section, tn is anony-

mized with some fake tuples and moved to FS. Tuples t1, t2, … , tn-1 are also moved to

FS. The attacker observes that t1, t2, … , tn-1 are not explicitly sensitive but they are in

FS and if dependencies d1, d2, … , dn-1 be applied consecutively to these tuples, then tn

will be generated. Thus, s/he infers that t1, t2, … , tn-1 are implicitly sensitive tuples

and consequently real tuples. Based on this observation, s/he infers that tn is also a

real tuple with probability 1 that is greater than value 1/k in Definition 7, violating the

privacy requirement. To thwart this inference, we propose the following solution:

For a set ∑ of TGDs we construct a directed graph, called dependency graph, de-

noted by DG, as follows:

 For each TGD ∀𝒙 (ϕ(𝒙) ⟶ ∃𝒚 ψ(𝒙, 𝒚)): for the set of atoms a1, a1, … , an in ϕ,

add a new node to DG, if it does not already exist.

 For each TGD ∀𝒙 (ϕ(𝒙) ⟶ ∃𝒚 ψ(𝒙, 𝒚)): add an edge from the node correspond-

ing to ϕ to the node that contain atom b of ψ.

Sensitive tuples

identification

k-Anonymization

(3)Non-sensitive tuples

(1) Explicitly sensitive tuples

(4) Fake tuples

Owner Side Server Side

FNS

FS

Database instance (I)

(2) Sensitive tuples

Metadata

)2') Metadata

Let tn be anonymized with k - 1 fake tuples f1, f2, … , fk-1. For each fi

(i=1, …, k - 1) we find a node in DG from which fi can be instantiated. Then, proceed

downwards to a leaf node and instantiate with fake values (values from domains of

attributes) all the nodes on the path to that leaf. In this way, the probability of the

tuples f1, f2, … , fk-1, and tn and their respective implicitly sensitive tuples being real, is

equal to or less than 1/k. Therefore, for each explicitly sensitive real tuple we produce

some fake tuples in the above way to prevent from inferences about the real tuples.

3.4 k-Anonymity-based horizontal fragmentation algorithm

The proposed algorithm consists of the following steps:

Step 1. Initially, fragments FS and FNS are empty. A temporary set fake_tuples is con-

sidered that will contain the fake tuples used to anonymize the sensitive tuples.

Step 2. The purpose of this step is to identify the explicitly sensitive tuples and move

them to FS. For each constraint α(𝒙)[𝒂/𝒙] in , we identify vectors of constants 𝒂 such

that the instantiation α(𝒙)[𝒂/𝒙] of variables 𝒙 with constants 𝒂 holds in the input in-

stance I, i.e., I ⊨ ϕ(𝒙)[𝒂/𝒙]. This implies that I explicitly violates the constraint (as a

result, a sensitive knowledge can be inferred from I). To prevent this explicit infer-

ence, we remove from I and move to FS the tuples participating in the instantiation of

 (𝒙)[𝒂 𝒙⁄], i.e., the violation set of the constraint. Also, we anonymize these tuples

with some fake tuples. The fake tuples are moved to fake_tuples.

Step 3. The purpose of this step is to identify the implicitly sensitive and dangling

tuples and move them to FS. By removing the explicitly sensitive tuples from I, some

dependencies may be violated by I, helping the attacker to gain extra information

about the sensitive tuples. To prevent this, for each TGD ∀𝒙 (ϕ(𝒙) ⟶ ∃𝒚 ψ(𝒙, 𝒚)) we

identify those tuples of constants 𝒂 such that the instantiations (𝒙)[𝒂 𝒙⁄] and

ψ(𝒙, 𝒚)[𝒂/𝒙, /𝒚] of variables 𝒙, 𝒚 with constants 𝒂 hold in the union of the input

instance and sensitive fragment. If both of the body and head are only in I or only in

FS, no inference can be done. Otherwise, the following inferences may be possible:

Inference type 1: The TGD body is in I and the TGD head is in FS:

I ⊨ ϕ(𝒙)[𝒂/𝒙], I ⊭ ψ(𝒙, 𝒚)[𝒂/𝒙, /𝒚], FS ⊨ ψ(𝒙, 𝒚)[𝒂/𝒙, /𝒚]

In this case, an attacker can apply the TGD, produce its head, and implicitly infer

about some sensitive tuples, i.e., the head of TGD, in FS. To prevent this implicit in-

ference, all parts of the TGD body must be moved to FS.

Inference type 2: The TGD body is in FS and the head is in I:

FS ⊨ ϕ(𝒙)[𝒂/𝒙] , FS ⊭ ψ(𝒙, 𝒚)[𝒂/𝒙, /𝒚], I ⊨ ψ(𝒙, 𝒚)[𝒂/𝒙, /𝒚]

In this case, an attacker observes that there exist some tuples that are generated by the

TGD in I but the tuples in the TGD body are missing in I (dangling tuples), because

they are moved to FS. To prevent this inference, all parts of the TGD head must be

moved to FS.

Inference type 3: Some parts of the body are in I and some parts of the head are in

FS: I ∪ FS ⊨ ϕ(𝒙)[𝒂/𝒙], I ∪ FS ⊨ ψ(𝒙, 𝒚)[𝒂/𝒙, /𝒚]

This case is a general type of the two previous types. In this case, all parts of the body

and all parts of the head that are in I must be moved to FS.

If any tuple is moved to FS in this step, we will repeat this step until there exists no

tuple that can be used for one or more of the above three types of inferences.

Step 4. By this step, there is no tuple in I that can be used for inference. Now, we

move the remaining tuples, i.e., non-sensitive tuples, to FNS.

Step 5. We add the fake tuples produced in Step 1, i.e., tuples in fake_tuples, to FS.

The newly added tuples may cause FS violating some dependencies. In this case, we

chase FS with the dependencies and produce a chased fragment satisfying all depend-

encies. In the newly generated tuples, we replace the “labeled nulls” (see [9]) with

some fake values (values from domains of attributes). This prevents the attacker from

knowing that they are produced from some fake tuples.

Step 6. Finally, fragmentation  consisting of FS and FNS is returned as the result of

the fragmentation algorithm.
Illness_FNS Treatment_FNS Info_FNS

Name Disease

Name Medicine

Name DoB ZIP

Andy Hypertension Andy Med A Andy 1981/01/03 94142

Alice Obesity Alice Med B Alice 1953/10/07 86342

David Heart disease David Med C David 1999/01/20 20688

Linda Cholera Linda 1989/01/03 94139

Illness_FS Treatment_FS Info_FS

Name Disease

Name Medicine

Name DoB ZIP

Bob Aids Bob Med D Bob 1952/02/12 79232

Jim Aids Bob Med E Sara 2000/01/20 40496

Sara Influenza Tom Med X Tom 1970/11/01 23567

Sara Flu Tom Med Y Jim 1959/02/15 78452

Tom Viral disease Mary Med X Mary 1972/04/03 63234

Mary Viral disease Mary Med Y

Fig. 3. A fragmentation for instance I in Figure 1

EXAMPLE 6. Consider the instance I, the set of dependencies , the set of privacy

constraints , and the set of anonymization rules , from Examples 1-5, respectively.

We fragmented I using our algorithm. The result is shown in Figure 3. Attribute val-

ues in bold represent the tuples produced for cascading tuples. Attribute values in

italic represent the labeled nulls replaced with fake values; the chase applied the de-

pendency d3 to the fake tuple Illness(Jim, Aids) and generated Info(Jim, labeled_null1,

labeled_null2) and replaced them with values 1959/02/15 and 78452, respectively. ⧠

4 Conclusion

We presented a horizontal fragmentation that outsources all data but do not use en-

cryption to provide privacy. Also, an algorithm presented that produces a correct

fragmentation. The main application of the method is for scenarios where even en-

crypting or suppressing the sensitive data cannot guarantee the privacy.

Several issues remain: our method, to achieve k-anonymity, produces k - 1 fake vi-

olation sets for each violated constraint. This may result in high storage and band-

width overheads for large volumes of sensitive data and large values of k. The adop-

tion of other ways, such as a probabilistic approach, to provide privacy with degree k

but with less than k - 1 fake violation sets, can be investigated as a future work. In this

paper, we employed a version of the chase, called standard chase, which put some

restrictions on the dependencies and constrains, such as being positive and conjunc-

tive. Investigating the applicability of other versions of the chase in the method can be

studied further. The anonymity principle of our method has some similarities to the

l-diversity privacy model [11]. Investigating other privacy models, such as t-closeness

[12], to provide a stronger privacy model for the proposed method can be valuable.

References

1. Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:

Enforcing Confidentiality Constraints on Sensitive Databases with Lightweight Trusted

Clients. Proceedings of the 23rd Annual IFIP WG 11.3 Working Conference on Data and

Applications Security XXIII, pp. 225-239. Springer-Verlag, Montreal, P.Q., Canada

(2009)

2. Wiese, L.: Horizontal fragmentation for data outsourcing with formula-based

confidentiality constraints. Proceedings of the 5th international conference on Advances in

information and computer security, pp. 101-116. Springer-Verlag, Kobe, Japan (2010)

3. Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Keep

a few: outsourcing data while maintaining confidentiality. Proceedings of the 14th

European conference on Research in computer security, pp. 440-455. Springer-Verlag,

Saint-Malo, France (2009)

4. Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:

Combining fragmentation and encryption to protect privacy in data storage. ACM

Transactions on Information and System Security, 13, 1-33 (2010)

5. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-molina, H., Kenthapadi, K., Motwani, R.,

Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for

secure database services. Second Biennial Conference on Innovative Data Systems

Research pp. 186–199 (2005)

6. Foresti, S.: Preserving privacy in data outsourcing. Springer-Verlag New York Inc. (2011)

7. Beeri, C., Vardi, M.Y.: A Proof Procedure for Data Dependencies. J. ACM 31, 718-741

(1984)

8. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM

Trans. Database Syst. 4, 455-469 (1979)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query

answering. Theoretical Computer Science 336, 89-124 (2005)

10. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing

information (abstract). Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pp. 188. ACM, Seattle, Washington, United

States (1998)

11. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy

beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 3 (2007)

12. Ninghui, L., Tiancheng, L., Venkatasubramanian, S.: t-Closeness: Privacy Beyond k-

Anonymity and l-Diversity. In: 23rd International Conference on Data Engineering, pp.

106-115. (2007)

