
Enforcing Subscription-based

Authorization Policies in Cloud Scenarios

Sabrina De Capitani di Vimercati1, Sara Foresti1,
Sushil Jajodia2, and Giovanni Livraga1

1 Università degli Studi di Milano, 26013 Crema, Italy
firstname.lastname@unimi.it

2 George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

Abstract. The rapid advances in the Information and Communication
Technologies have brought to the development of on-demand high qual-
ity applications and services allowing users to easily access resources
anywhere anytime. Users can pay for a service and access the resources
made available during their subscriptions until the subscribed periods
expire. Users are then forced to download such resources if they want to
access them also after the subscribed periods. To avoid this burden to
the users, we propose the adoption of a subscription-based access control
policy that combines a flexible key derivation structure with selective en-
cryption. The publication of new resources as well as the management of
subscriptions are accommodated by adapting the key derivation struc-
ture in a transparent way for the users.

Keywords: access control, subscription-based policies, data outsourcing

1 Introduction

The advances in the Information and Communication Technologies (ICTs) have
driven the users into the Globalization era, where the techniques for processing,
storing, and accessing information have radically changed. New emerging com-
puting paradigms (e.g., data outsourcing and cloud computing) offer enormous
advantages to both users and organizations. Users can now subscribe to a variety
of services, and access them anywhere anytime: at home from their laptop, on
the train from their tablet, or while waiting in a queue from their smartphone.
Organizations are more and more resorting to external elastic storage and com-
putational services for creating and running business over the Internet in new
ways. Organizations can then provide large-scale cloud data services widely ac-
cessible to a variety of users, possibly restricting access to resources on the basis
of users’ subscriptions. These services can be offered at affordable prices, thanks
to the use of external cloud storage servers for the management of data. As a
side effect of this trend, security requirements are becoming more complex since
cloud storage servers are typically trusted neither to access the resources content
nor to restrict access to the services according to users’ subscriptions.

Emerging approaches in the data outsourcing scenario regulate access to re-
sources through selective encryption, meaning that they translate the privilege
to access a resource into the knowledge of the key used to encrypt the resource
itself (e.g., [10]). These approaches, however, while representing important steps
towards the support of flexible access control solutions in data outsourcing, are
still in their infancy. In fact, they cannot easily support a scenario where both the
set of users who can access a resource and the set of resources change frequently
over time, due to new subscriptions and the publication of new resources. Also
access control solutions developed for publish/subscribe systems (e.g., [11, 20]),
which may seem to have some similarities with the publication scenario we con-
sider, are not suitable since they have been developed for a different problem.
We take into account scenarios where users pay for a service and then can freely
access the resources made available during their subscriptions. In this context, to
access resources also after the expiration of their subscriptions, users can down-
load the resources for which they are authorized to their local machine. Our
proposal aims at avoiding this burden to the users allowing them to maintain
the right to access such resources without the worry that they will lose this right
after the expiration of their subscriptions. For instance, users who have pur-
chased an annual subscription for 2012 for a magazine should be able to access
all and only the issues of the magazine published in 2012, and should be able to
access them even after December 31, 2012. We therefore propose an approach
that takes advantage of selective encryption to guarantee that users who sub-
scribe for a service can access all and only the resources published during their
subscriptions, while allowing the resources to self-enforce the subscription-based
restrictions. Before being stored on the cloud storage server, the resources are
encrypted, and a key derivation structure is built to guarantee that they can
be decrypted only by authorized users. The key derivation structure is updated
whenever new resources are published, new subscriptions are received, or users
withdraw from their subscriptions.

The remainder of this paper is organized as follows. Section 2 describes the
considered scenario and the protection requirements that the access control sys-
tem should satisfy. Section 3 formalizes the concept of subscription-based policy.
Section 4 presents our techniques for enforcing a subscription-based policy. Sec-
tion 5 illustrates how the system publishes resources and manages subscriptions.
Section 6 discusses related work. Finally, Section 7 reports our conclusions.

2 Scenario, Protection Requirements, and Motivation

We consider a scenario where a resource provider uses an external cloud storage
server for storing its resources, thus taking advantage of the cost savings that
the cloud storage server can provide. The resource provider periodically pub-
lishes new resources that should be able to self-enforce restrictions on who can
access them and should not be accessible to the cloud storage server. Users can
subscribe to the services offered by the resource provider for different periods
of time, and can withdraw from a subscription at any time. We assume that

users are trusted, that is, they do not redistribute resources they can access to
unauthorized users.

In the considered scenario, accesses to resources should be regulated by a
subscription-based access control policy according to which users are authorized
to access all and only the resources that have been published by the resource
provider during their subscribed periods. A peculiarity of our scenario is that
user authorizations remain valid also after the expiration of their subscriptions.
The subscription-based access control policy takes then into consideration both
the subscriptions of the users and the time when resources have been published.
Existing solutions result limited for our scenario. We can classify such existing
solutions in two main categories.

– Account-based . Traditional access control solutions (e.g., [17]), including
those emerging in the data outsourcing scenario (e.g., [10]), are based on
the assumption that when users leave the system their authorizations ter-
minate and they cannot access the resources anymore. Furthermore, access
control solutions for data outsourcing cannot easily support a dynamic sce-
nario where resources are continuously created, and new users can join the
system and old users can leave the system at any time.

– Time-based . Temporal-based access control solutions (e.g., [4]) enforce time
restrictions in a way that is different from what we need. In fact, these
solutions consider a scenario where resources are stored and managed by
the party who creates them, and assume that authorizations apply only to
specific time intervals and/or that authorizations can be applied following a
periodic pattern (e.g., a user can access a file only during the working days
from 8:00 a.m. to 5:00 p.m.).

We then put forward the idea of using the same principles at the basis of
the access control solutions developed for the data outsourcing scenario (which
encrypt resources for protecting their confidentiality from the storage server and
adopt key derivation techniques for efficiently combining authorization-based
access control and cryptographic protection) to enforce a subscription-based ac-
cess control policy without delegating it to the cloud storage server. Our solution
should guarantee the correct enforcement of the subscription-based access con-
trol policy (i.e., users should be able to access the resources made available dur-
ing their subscribed periods also after the expiration of their subscriptions) and
the forward and backward protection requirements. Forward protection means
that users cannot access resources published before the beginning of their sub-
scriptions (e.g, users who subscribe to a magazine for 2012 cannot access the
issues of the magazine published before January 1, 2012). Backward protection
means that users cannot access resources published after the expiration of their
subscriptions (e.g., users who subscribe to a magazine for 2012 cannot access
the issues of the magazine published during 2013). Like for the data outsourc-
ing scenario, with our solution the published resources are encrypted so that
they self-enforce the subscription-based access restrictions. In addition to the
correct enforcement of the subscription-based policy and the satisfaction of the

forward and backward protection requirements mentioned above, our solution
should avoid re-encryption of resources and re-distribution of keys whenever
users subscribe to services or withdraw from their subscriptions.

3 Subscription-based Policy

A resource provider offers a set P of services to which users can subscribe.
Each service p∈P consists in a period of publication of resources, and each user
subscribing to service p can access all the resources published for p during her
subscription. We denote with U and R the set of users subscribed to service p

and the set of published resources for p, respectively. For simplicity, but without
loss of generality, we focus on the management of accesses to a single service.
We also note that, although in this paper we consider time-based subscriptions,
our approach can be easily adapted to other scenarios where subscriptions to a
service can be defined on the basis of different criteria (e.g., topic of interest,
geographical region).

Given a time domain (T S,≤), with T S a set of time instants and ≤ a total
order relationship on T S [5], the resource provider assigns to each resource r∈R
a timestamp r.t in T S that represents the time when the resource has been
published. The resource provider may combine contiguous time instants into time
windows, defined on arbitrary granularities, forming a time hierarchy. Intuitively,
these time windows represent the periods of time for which the resource provider
allows users to subscribe to the service offered. Formally, a time hierarchy HT

is a pair (T,�), where T is a set of time windows, and � is a partial order
relationship over T. A time window Ti in T is a pair [tsi ,t

e
i] of time instants and

represents the set of time instants t∈T S such that tsi≤t≤tei . Given two time
windows Ti and Tj in T, Ti dominates Tj , denoted Ti�Tj, if t

s
i≤tsj and tej≤tei

(i.e., the time instants in Tj represent a subset of the time instants in Ti). The
leaves of the time hierarchy correspond to time instants in T S, which can be seen
as time windows with ts=te. The time hierarchy can be graphically represented
as a directed acyclic graph with vertices representing time windows in T and
edges representing direct dominance relationships. For simplicity, but without
loss of generality, in this paper we assume HT to be a tree. As an example,
consider resource provider Condé Nast, monthly publishing magazine Glamour
and offering the possibility to buy subscriptions for a month (single issue), a
trimester, a semester, or a year. Figure 1 illustrates the time hierarchy defined
by the resource provider. For the sake of readability, in the figure we denote
leaves with the time instant they represent. Each user u∈U can subscribe to the
service offered by the resource provider for an arbitrary set, denoted u.S, of time
windows in HT (i.e., u.S⊆T).

The timestamps assigned to resources along with the user subscriptions es-
tablish the set of resources that each user can access: user u∈U can access re-
source r∈R if she subscribed for a time window including r.t. Formally, the
subscription-based policy regulating access to the resources is defined as follows.

Fig. 1: An example of time hierarchy

Definition 1 (Subscription-based policy). Let HT (T,�) be a time hierarchy
defined on time domain (T S,≤), U be a set of users with u.S⊆T for all u∈U ,
and R be a set of resources with r.t∈T S for all r∈R. The subscription-based
policy A on U and R grants u∈U access to r∈R iff ∃[ts,te] ∈u.S s.t. ts≤r.t≤te.

Example 1. Suppose that three issues of magazine Glamour have been pub-
lished with timestamp Jan’12, Feb’12, and Mar’12, respectively (i.e., R={Glam-
01,Glam-02,Glam-03}). Assume now that two users U={Alice, Barbara} sub-
scribe to the magazine for the first trimester of 2012 ([Jan’12,Mar’12]), and for
the first issue of the year ([Jan’12,Jan’12]), respectively. The subscription-based
policy grants Alice access to all the issues of the magazine in R, while it grants
Barbara access only to the first issue Glam-01.

4 Graph Modeling of the Subscription-based Policy

We propose to enforce the subscription-based policy by combining selective en-
cryption [10] with a key derivation technique that uses a key derivation structure
based on public tokens [1]. Given two keys ki and kj in a set K of keys, token
di,j=kj⊕h(ki,lj), with lj a public label associated with kj , ⊕ the bitwise xor op-
erator, and h a deterministic cryptographic function, permits to derive kj from
the knowledge of ki and label lj . The derivation relationship between keys can
be either direct , via a single token, or indirect , via a chain of tokens. Our idea
consists in defining a key derivation structure so that each resource is encrypted
only once with a single key, and each user receives only one key from which
she can derive all and only the keys used for encrypting the resources that she
can access according to the subscription-based policy. To fix ideas and make the
discussion clear, we consider the system at a specific point in time when some
resources have been published and some users have subscribed to the service
offered by the resource provider. We first discuss how resources are encrypted
and then describe how to model users’ subscriptions.

The techniques developed for enforcing an access control policy in the data
outsourcing scenario build a key derivation structure on the basis of the sets of

users that can access resources. In our scenario, such sets of users vary frequently
over time, and therefore it is not convenient to exploit them for building the key
derivation structure. We then use the time hierarchy HT defined by the resource
provider as a key derivation structure where each time window is associated with
a key, and each edge corresponds to a token. The timestamp associated with a
published resource, therefore, identifies the time window in the time hierarchy
representing the key used to encrypt the resource itself. The keys associated
with time windows including more than a time instant (i.e., internal vertices)
are not used for encrypting resources, but only for derivation purposes. Clearly,
not all the time windows in the time hierarchy are necessary for enforcing the
subscription-based policy, but only those corresponding to the timestamps of
published resources along with all the time windows dominating them. For in-
stance, with respect to Example 1, the time windows that must be represented in
the key derivation structure are Jan’12, Feb’12, and Mar’12, which are the times-
tamps of the three published resources, and all the time windows dominating
them in the time hierarchy in Figure 1, that is, [Jan’12,Mar’12], [Jan’12,Jun’12],
and [Jan’12,Dec’12]. In this way, from the knowledge, for example, of the key
associated with [Jan’12,Mar’12] we can derive the keys used for encrypting all
the resources published during the first trimester of 2012.

For each user in the system, the resource provider generates a new key and
communicates it to the user. With this unique key, the user should be able to
access all and only the resources for which she is authorized according to her
subscriptions. The idea is to “hook the user” through a token on each time
window T for which she subscribed. In this way, the user can adopt her key to
directly derive the key associated with time window T. From this key she can
directly or indirectly derive the keys used to encrypt all and only the resources
whose timestamp is included in T. For instance, according to the subscriptions
in Example 1, Alice can access all the resources published in the first trimester
of 2012. The resource provider then creates a token from Alice’s key to the
key associated with [Jan’12,Mar’12]. By construction, all resources published
in Jan’12, Feb’12, and Mar’12 will be encrypted with a key derivable from the
key associated with [Jan’12,Mar’12], which Alice can derive. Note that it may
happen that a user subscribes for a time window for which no resource has been
published (e.g., a user subscribes to a magazine for April’12 and the issue of April
has not been published yet). The key derivation structure must then include also
the time windows representing users’ subscriptions, along with their ancestors
in HT . The resulting key derivation structure, which we call user and resource
graph, can be formally defined as follows.

Definition 2 (User and resource graph). Let HT (T,�) be a time hierarchy
on time domain (T S,≤), U be a set of users with u.S⊆T for all u∈U , and R be
a set of resources with r.t∈T S for all r∈R. A user and resource graph over U ,
R, and HT is a graph G(V,E), with:

– V = Tr ∪ Ts ∪ Tp ∪ U , with Tr=
⋃

r∈R[r.t, r.t], Ts=
⋃

u∈Uu.S, and
Tp= {T ∈ T | ∃T′ ∈ Ts ∪ Tr such that T�T′}

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v10 v3 v3.k⊕h(v10.k,v3.l)
v11 v4 v4.k⊕h(v11.k,v4.l)

(a) (c)

Fig. 2: An example of user and resource graph (a), published resources (b), and
token catalog (c)

– E = {(u,T) | u∈U ∧ T∈V\U ∧ T∈u.S} ∪
{(Ti,Tj) | Ti,Tj∈V\U ∧ Ti�Tj ∧ (∄Tz∈V\U , Ti�Tz�Tj ∧ Tz 6=Ti 6=Tj)}

The vertices in the user and resource graph represent the keys of the system,
while the edges represent the tokens in the token catalog D stored at the external
cloud storage server together with the encrypted resources.

Example 2. Consider the time hierarchy in Figure 1 and the subscription-based
policy in Example 1. Figure 2(a) shows the corresponding user and resource
graph, where dotted triangles represent subtrees of the time hierarchy that are
not associated with a vertex in the graph. For the sake of clarity, the figure also
reports the published resources, represented as ovals connected with the vertices
in the graph representing their timestamp and whose keys are used to encrypt
them. Figure 2(b) shows the encrypted resources stored at the external cloud
storage server, with Id the resource identifier and Enc Resource the encrypted
resource (E(r, k) denotes the encryption of r with k), and Figure 2(c) illustrates
the token catalog resulting from the user and resource graph in Figure 2(a).

The user and resource graph in Definition 2 guarantees the correct enforce-
ment of the subscription-based policy since each user can decrypt all and only
the resources with a timestamp included in at least one of the time windows
in the user’s subscriptions. This is formalized by the following theorem, whose
proof is omitted from the paper for space constraints.

Theorem 1 (Correct enforcement of subscription-based policy). Let
HT (T,�) be a time hierarchy on time domain (T S,≤), U be a set of users with

PUBLISH RESOURCE(r)
1: R := R ∪ {r}
2: v := Get Vertex([r.t,r.t]) /* retrieve the vertex representing the timestamp of the resource */
3: Encrypt(r,v.k)
4: publish the encrypted resource

GET VERTEX(T)
5: if T∈V then /* T already belongs to G */
6: let v∈V be the vertex with v=T

7: return(v)
8: generate vertex v := T

9: generate encryption key v.k
10: generate public label v.l
11: V := V ∪ {v} /* insert the vertex into the user and resource graph */
12: let Ti∈T: Ti�T ∧ ∄Tj : Ti�Tj�T, Tj 6=Ti 6=T /* determine the direct ancestor of T in HT */
13: if Ti 6=null then
14: vi := Get Vertex(Ti) /* retrieve the vertex in G that represents Ti */
15: E := E ∪ {(vi,v)} /* insert the edge connecting Ti to T in G */
16: D := D ∪ {v.k⊕h(vi.k,v.l)} /* publish the corresponding token */
17: return(v)

Fig. 3: Pseudocodes of procedurePublish Resource and functionGet Vertex

u.S⊆T for all u∈U , and R be a set of resources with r.t∈T S for all r∈R. The
user and resource graph G(V,E) correctly enforces a subscription-based policy A
on U and R when ∀u∈U , ∀r∈R:

∃[ts,te] ∈u.S s.t. ts≤r.t≤te ⇐⇒ 〈u,[r.t,r.t]〉 is a path in G.

5 Management of Resources and Subscriptions

Whenever there is a change in the subscription-based policy (e.g., a new resource
is published, a user subscribes to a service for a specific time window, or a user
decides to withdraw from a subscription), the user and resource graph has to be
updated accordingly. In the following, we discuss how changes to the policy can
be managed in a transparent way for the users.

5.1 Resource Publishing

At initialization time, the user and resource graph is empty (no key is necessary
for resource encryption) and it is dynamically built as resources are published.
Figure 3 illustrates the pseudocode of procedure Publish Resource that the
resource provider calls whenever it needs to publish a resource. The procedure
takes a resource r as input and publishes its encrypted representation. The pro-
cedure first calls function Get Vertex on time window T=[r.t,r.t] (line 2). This
function checks whether the vertex representing [r.t,r.t] is in the user and re-
source graph, since its key has to be used for encrypting r. If such a vertex
exists, the function returns it (lines 5-7). Otherwise, the function first creates a
vertex v representing T, along with the corresponding encryption key v.k and
public label v.l, and inserts v into the set V of vertices of the user and resource

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k) ∗
5 E(Glam-05,v9.k) ∗

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l) ∗
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l) ∗
v7 v9 v9.k⊕h(v7.k,v9.l) ∗
v10 v3 v3.k⊕h(v10.k,v3.l)
v11 v4 v4.k⊕h(v11.k,v4.l)

(a) (c)

Fig. 4: User and resource graph (a), published resources (b), and token catalog
after Glam-04 and Glam-05 are published (c)

graph (lines 8-11). To guarantee that the time window Ti directly dominating
T in the time hierarchy is represented in the user and resource graph, function
Get Vertex recursively calls itself on Ti, obtaining the vertex vi representing Ti

in the graph (lines 12-14). The function inserts into G edge (vi,v) and publishes
the corresponding token (lines 15-16). We note that the recursive nature of func-
tion Get Vertex guarantees that all the ancestors of T in HT are represented
by a vertex in the user and resource graph, and that each vertex is connected
to all its direct descendants represented in the graph. The function then returns
vertex v representing [r.t,r.t] (line 17). Finally, procedure Publish Resource
encrypts r with v.k and publishes the resulting encrypted resource (lines 3-4).

Example 3. Consider the user and resource graph, published resources, and to-
ken catalog in Figure 2 and assume that Condé Nast publishes the fourth issue of
Glamour in April’12. The resource provider calls procedure Publish Resource
on resourceGlam-04 that in turn calls function Get Vertex on [Apr’12,Apr’12].
The function inserts vertex v8 representing [Apr’12,Apr’12] and its direct an-
cestor v7 representing [Apr’12,Jun’12]. Procedure Publish Resource then en-
cryptsGlam-04 with the key of vertex v8. Assume now that Condé Nast publishes
the fifth issue of Glamour in May’12, calling procedure Publish Resource
on resource Glam-05. Function Get Vertex inserts vertex v9 representing
[May’12,May’12] and directly connects it to [Apr’12,Jun’12], since it is already
included in the graph. Resource Glam-05 is encrypted with the key of vertex v9.
Figure 4 illustrates the resulting user and resource graph, published resources,
and token catalog, where new resources and tokens are denoted with a ∗.

SUBSCRIBE(u,T)
1: if u 6∈ U then /* u is a new user in the system */
2: U := U ∪ {u}
3: generate vertex vu := u

4: generate encryption key vu .k
5: generate public label vu .l
6: V := V ∪{vu}
7: else let vu∈V be the vertex with vu = u

8: u.S := u.S ∪ {T}
9: vT := Get Vertex(T)
10: E := E ∪ {(vu ,vT)}
11: D := D ∪ {vT .k⊕h(vu .k,vT .l)}
12: let Ti∈T: Ti�T ∧ (∄Tj : Ti�Tj�T, Tj 6=Ti 6=T) /* determine the direct ancestor of T in HT */
13: T′ := {Tj∈u.S | Ti�Tj ∧ (∄Tz∈T: Ti�Tz�Tj , Ti 6=Tz 6=Tj)}
14: if

⋃
Tj∈T ′Tj=Ti then

15: u.S:= u.S \ T′

16: E := E \ {(vi,vj) | vi=u ∧ vj=Tj , Tj∈T′}
17: D := D \ {vj .k⊕h(vi.k,vj .l) | vi=u ∧ vj=Tj , Tj∈T′}
18: Subscribe(u,Ti)

Fig. 5: Pseudocode of procedure Subscribe

5.2 New Subscription

Both new and existing users can subscribe to a service for a time window at
any point in time (i.e., before the beginning, during, or even after the expiration
of the window). Figure 5 illustrates procedure Subscribe that manages new
subscriptions. The procedure takes a user u and a time window T as input and
works as follows. If u is a new user, the procedure creates a vertex vu repre-
senting u, her encryption key vu .k, and public label vu .l (lines 1-6). Otherwise,
the procedure identifies the vertex vu representing the user in G (line 7). The
procedure then inserts T into u.S, calls function Get Vertex on T so that the
vertex vT representing T and its ancestors are possibly added to the graph, and
inserts edge (vu ,vT) in the user and resource graph, publishing the corresponding
token (lines 8-11). Through this token, the user can directly derive from her key
the key of the time window to which she is subscribing.

To keep the number of tokens under control, the procedure verifies whether
the set u.S of subscriptions includes all the time windows directly dominated by
Ti that in turn directly dominates T in HT (e.g., a user may be subscribed for
three issues of a magazine that correspond to a trimester). In this case, instead
of maintaining a token from u to all the direct descendants of Ti, it is possible to
replace them with a single token from vertex u to Ti. To this purpose, procedure
Subscribe identifies the direct ancestor Ti of the time window T to which u

is subscribing and checks if u.S includes all the descendants Tj , . . . , Tl of Ti

(lines 12-14). In this case, it removes Tj, . . . , Tl from u.S, the edges connecting
vu to the vertices representing them, and the corresponding tokens (lines 15-
17). The procedure then recursively calls itself to subscribe u to Ti to possibly
propagate up in the graph this factorization (line 18).

Example 4. Consider the user and resource graph, published resources, and to-
ken catalog in Figure 4, and assume that Alice renews her subscription to Glam-

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l)
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l)
v7 v9 v9.k⊕h(v7.k,v9.l)
v10 v3 v3.k⊕h(v10.k,v3.l)
v10 v2 v2.k⊕h(v10.k,v2.l) ∗
v11 v4 v4.k⊕h(v11.k,v4.l)

(a) (c)

Fig. 6: User and resource graph (a), published resources (b), and token catalog
after Alice subscribes for [Apr’12,Jun’12] (c)

our for trimester [Apr’12,Jun’12]. Since both Alice and [Apr’12,Jun’12] are al-
ready in the graph (vertices v10 and v7, respectively), procedure Subscribe
only inserts edge (v10,v7) and publishes the corresponding token. Renewing
her subscription, Alice is now subscribed for the first semester of year 2012.
Procedure Subscribe factorizes the two subscriptions for [Jan’12,Mar’12] and
[Apr’12,Jun’12] in a unique subscription for [Jan’12,Jun’12]. Figure 6 illustrates
the resulting user and resource graph, published resources, and token catalog
(removed tokens are crossed out). Assume now that Carol joins the system and
subscribes for [Apr’12,Jun’12]. Procedure Subscribe first inserts vertex v12 rep-
resenting Carol in the graph, and communicates her the corresponding key. It
then inserts edge (v12,v7) in the graph. Figure 7 illustrates the resulting user
and resource graph, published resources, and token catalog.

5.3 Withdrawal from a Subscription

As our system provides high flexibility in defining the time windows available
for subscription, withdrawal from a subscription represents an exception in the
working of the system and must be managed as a special case. In fact, no action
is needed when a subscription naturally expires. When a user withdraws from a
subscription for time window [ts,te], starting from time instant t, the resource
provider must guarantee that: i) she cannot access the resources with timestamp
in (t,te] (backward protection), and ii) she continues to access the resources with
timestamp in [ts,t]. For instance, consider Example 4. In May’12 Alice could
decide to withdraw from her subscription for the first semester of year 2012. In
this case, she should not be able to decrypt the issue of June of the magazine,
while she will continue to access the issues of January, February, March, April,
and May. Clearly, a user can withdraw from her subscription at time t only

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l)
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l)
v7 v9 v9.k⊕h(v7.k,v9.l)
v10 v2 v2.k⊕h(v10.k,v2.l)
v11 v4 v4.k⊕h(v11.k,v4.l)
v12 v7 v7.k⊕h(v12.k,v7.l) ∗

(a) (c)

Fig. 7: User and resource graph (a), published resources (b), and token catalog
after Carol subscribes for [Apr’12,Jun’12] (c)

if no resource with timestamp in (t,te] has been published yet, since otherwise
she could have accessed it before withdrawal. To guarantee that withdrawals
are transparent for all the users and cause a limited overhead to the resource
provider, our approach avoids re-keying and re-encryption operations.

Figure 8 illustrates procedure Withdraw Subscription, which takes a user
u and a time instant t as input, and updates the user and resource graph. The
procedure first identifies the vertex vu representing the user in G and the time
window [ts,te] in u.S that includes t (lines 1-2). If such a time window does not
exist or if at least a resource with timestamp in (t,te] has been published, the
procedure terminates notifying the problem to the resource provider (line 3).
Otherwise, procedure Withdraw Subscription removes the subscription by
first substituting [ts,te] with [ts,t] in u.S (line 4). Since user u already knows the
keys of the vertices along the path from vertex [ts,te] to t if they are represented
in the user and resource graph, the resource provider must guarantee that all
the resources with a timestamp following t will be encrypted with a key that
is not derivable from the keys along this path. To this purpose, the procedure
updates the time window [tsi ,t

e
i] that each of these vertices represents by setting

tei to t, creates a new set of vertices representing the time windows that has been
changed, and connects them in a path of the user and resource graph. Also, the
procedure inserts an edge between each new vertex [tsi ,t

e
i] to vertex [tsi ,t] since

[tsi ,t
e
i] clearly dominates [tsi ,t]. Finally, for each user u such that [tsi ,t

e
i]∈u.S, the

procedure substitutes the token (and corresponding edge) between u and [tsi ,t]
(i.e., the vertex that represented [tsi ,t

e
i] before the change performed by procedure

Withdraw Subscription) with the token (and corresponding edge) between u

and the new vertex representing [tsi ,t
e
i], to preserve her ability to derive all the

keys of the time windows dominated by [tsi ,t
e
i].

WITHDRAW SUBSCRIPTION(u,t)
1: let vu∈V be the vertex with vu = u

2: let T=[ts,te]∈u.S s.t. ts≤t≤te

3: if T=null ∨ (∃r∈R s.t. t<r.t≤te) then exit
4: u.S := u.S\{T} ∪ {[ts,t]} /* update the time window in user subscriptions */
5: let vT∈V be the vertex with vT = T

6: while te 6=t ∧ ts 6=te ∧ T∈V do /* visit the path from T to [t,t] */
7: Tnew := [ts,te]
8: vT := [ts,t] /* update the label of the vertex */
9: vnew := Get Vertex(Tnew) /* create a vertex representing Tnew */
10: E := E ∪ {(vnew,vT)} /* [ts,te] dominates [ts,t] */
11: D := D ∪ {vT .k⊕h(vnew.k,vT .l)}
12: for each (vu,vT) s.t. vu∈U\{u} do /* update users’ subscriptions */
13: E := E ∪ {(vu,vnew)} \ {(vu,vT)}
14: D := D ∪ {vnew.k⊕h(vu.k,vnew.l)} \ {vT .k⊕h(vu.k,vT .l)}
15: let T=[ts,te]∈T s.t. Tnew�T ∧ ts≤t≤te ∧ ∄Tj : Tnew�Tj�T, Tj 6=Tnew 6=T

16: let vT∈V be the vertex with vT = T

Fig. 8: Pseudocode of procedure Withdraw Subscription

Note that the keys along the path from T to t, whose time windows have been
updated by procedure Withdraw Subscription, are not affected. Therefore,
users who have already computed these keys can still use their local copy. The
number of additional vertices and edges in the user and resource graph is limited
and is at most h-1 and 2(h-1), respectively, where h is the height of the time
hierarchy. The number of updated edges is |U|-1 in the worst case.

Example 5. Consider the user and resource graph, published resources, and to-
ken catalog in Figure 7, and assume that Alice withdraws from her subscription
in May’12. Procedure Withdraw Subscription updates her subscription for
[Jan’12,Jun’12] to [Jan’12,May’12], and visits the path from vertex v2 (repre-
senting [Jan’12,Jun’12]) to the vertex representing [May’12,May’12]. First, it
visits vertex v2, updates its time window to [Jan’12,May’12], creates a new ver-
tex v′2 for time window [Jan’12,Jun’12], and inserts edge (v′2,v2) in the user and
resource graph. The procedure executes the same operations when visiting v7.
Since Carol should still be able to access all the issues of Glamour published in
[Apr’12,Jun’12], the procedure substitutes edge (v12,v7) with edge (v12,v

′
7). From

her key Alice can derive, after this update, the keys used to encrypt the issues
published in [Jan’12,May’12], while Carol can still derive keys used to encrypt
issues published in [Apr’12,Jun’12]. Figure 9 illustrates the user and resource
graph, published resources, and token catalog after Alice’s withdrawal.

5.4 Correctness

The procedures described in this section correctly enforce changes to the
subscription-based policy. This is formally stated by the following theorem,
whose proof is omitted from the paper for space constraints.

Theorem 2 (Correct enforcement of policy updates). Let HT (T,�) be a
time hierarchy on time domain (T S,≤), U be a set of users with u.S⊆T for all

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v1 v′

2
v′
2
.k⊕h(v1.k,v

′
2
.l)

v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l)
v′
2

v2 v2.k⊕h(v′
2
.k,v2l) ∗

v′
2

v′
7

v′
7
.k⊕h(v′

2
.k,v′

7
.l) ∗

v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l)
v7 v9 v9.k⊕h(v7.k,v9.l)
v′
7

v7 v7.k⊕h(v′
7
.k,v7.l) ∗

v10 v2 v2.k⊕h(v10.k,v2.l)
v11 v4 v4.k⊕h(v11.k,v4.l)
v12 v7 v7.k⊕h(v12.k,v7.l)
v12 v′

7
v′
7
.k⊕h(v12.k,v

′
7
.l) ∗

(a) (c)

Fig. 9: User and resource graph (a), published resources (b), and token catalog
after Alice withdraws from her subscription in May’12 (c)

u∈U , R be a set of resources with r.t∈T S for all r∈R, and G(V,E) be the user
and resource graph over U , R, and HT .

1. Procedure Publish Resource(r) generates a user and resource graph that
correctly enforces the subscription-based policy on U and R∪{r}.

2. Procedure Subscribe(u,T) generates a user and resource graph that correctly
enforces the subscription-based policy on U∪{u} and R, with u.S∪{T}.

3. Procedure Withdraw Subscription(u,t) generates a user and resource
graph that correctly enforces the subscription-based policy on U and R, with
u.S\{[ts,te]}∪{[ts,t]}.

6 Related Work

Previous work close to ours is in the area of data outsourcing [18], where many
approaches focused on efficient query evaluation at the external server (e.g., [8,
12, 21]), and on guaranteeing data integrity and authenticity (e.g., [15]). Recent
works have also addressed access control enforcement (e.g., [10, 14, 23]), but these
approaches are not suited for the scenario considered in this paper, as they
assume the sets of users, resources, and authorizations not to change frequently.

The problem of enforcing access control policies with time-based restrictions
has been widely studied (e.g., [4, 19]). However, these works restrict access to
resources depending on the time when the access is requested. Recently, time-
based access control restrictions have been enforced also in the data outsourcing

scenario, by integrating them in the key derivation process (e.g., [2, 3, 7]). The
solutions in [2, 3] allow users to derive encryption keys only within the time win-
dows for which they are authorized. The approach in [7] proposes instead a more
general model for enforcing any interval-based restriction (e.g., time and space).
These solutions mainly focus on the security of key derivation and on minimiz-
ing the number of edges in the key derivation graph. Our proposal is instead
aimed at correctly enforcing a subscription-based policy and at guaranteeing
transparency for users in subscription management and resource publishing.

Our work may bring some resemblance with access control in pub-
lish/subscribe systems, characterized by a set of users who publish events, a
set of users who subscribe to the system declaring their interests, and a service
responsible to deliver published events to the users whose interests match with
the event attributes [11, 20]. However, in publish/subscribe systems the access
control policy depends on some properties related to the events. Also, pub-
lish/subscribe systems typically rely on a trusted party that can access events
and enforce access restrictions.

Another related but different line of work addresses the problem of enforcing
time-based restrictions to users when accessing broadcasting services (e.g., [6,
22]). These approaches are not applicable in our scenario where we assume to
publish persistent resources as opposed to data streams.

7 Conclusions

We proposed an approach for effectively restricting access to published resources
based on the subscriptions of the users to a service. Our solution is based on
selective encryption so that the encrypted resources self-enforce the subscription-
based restrictions. A key derivation structure is also used for easily enforcing
changes in the subscription-based policy due to the addition of new users and
resources, and to the withdrawal of users from their subscriptions.

Acknowledgements. We would like to thank Pierangela Samarati for dis-
cussions, suggestions, and comments. This work was partially supported by
the Italian Ministry of Research within the PRIN 2008 project “PEPPER”
(2008SY2PH4). The work of Sushil Jajodia was partially supported by the Na-
tional Science Foundation under grants CCF-1037987 and CT-20013A.

References

1. M. Atallah, M. Blanton, N. Fazio, and K. Frikken. Dynamic and efficient key
management for access hierarchies. ACM TISSEC, 12(3):18:1–18:43, January 2009.

2. M. Atallah, M. Blanton, and K. Frikken. Incorporating temporal capabilities in
existing key management schemes. In Proc. of ESORICS 2007, Dresden, Germany,
September 2007.

3. G. Ateniese, A. De Santis, A.L. Ferrara, and B. Masucci. Provably-secure time-
bound hierarchical key assignment schemes. Journal of Cryptology, 25(2):243–270,
April 2012.

4. E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model sup-
porting periodicity constraints and temporal reasoning. ACM TODS, 23(3):231–
285, September 1998.

5. C. Bettini, C. Dyreson, W. Evans, R. Snodgrass, and X. Wang. A glossary of time
granularity concepts. In O. Etzion, S. Jajodia, and S. Sripada, editors, Temporal
Databases: Research and Practice, volume 1399 of LNCS. Springer-Verlag, 1998.

6. M. Blanton and K. Frikken. Efficient multi-dimensional key management in broad-
cast services. In Proc. of ESORICS 2010. Athens, Grece, September 2010.

7. J. Crampton. Practical and efficient cryptographic enforcement of interval-based
access control policies. ACM TISSEC, 14(1):14:1–14:30, June 2011.

8. E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Balancing confidentiality and efficiency in untrusted relational DBMSs. In
Proc. of CCS 2003, Washington, DC, USA, October 2003.

9. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
A data outsourcing architecture combining cryptography and access control. In
Proc. of CSAW 2007, Fairfax, VA, USA, November 2007.

10. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Encryption policies for regulating access to outsourced data. ACM TODS,
35(2):12:1–12:46, April 2010.

11. P.T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of
publish/subscribe. ACM CSUR, 35(2):114–131, June 2003.

12. H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over encrypted data
in the database-service-provider model. In Proc. of the SIGMOD 2002, Madison,
WI, USA, June 2002.

13. R. Jhawar, V. Piuri, and M. D. Santambrogio. A comprehensive conceptual system-
level approach to fault tolerance in cloud computing. In Proc. of IEEE SysCon
2012, Vancouver, BC, Canada, March 2012.

14. G. Miklau and D. Suciu. Controlling access to published data using cryptography.
In Proc. of VLDB 2003, Berlin, Germany, September 2003.

15. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced databases. ACM TOS, 2(2):107–138, May 2006.

16. S. Preda, N. Cuppens-Boulahia, F. Cuppens, and L. Toutain. Architecture-aware
adaptive deployment of contextual security policies. In Proc. of ARES 2012,
Krakow, Poland, 2010.

17. P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, volume 2171 of LNCS. Springer-Verlag, 2001.

18. P. Samarati and S. De Capitani di Vimercati. Data protection in outsourcing
scenarios: Issues and directions. In Proc. of ASIACCS 2010, China, April 2010.

19. M. Toahchoodee and I. Ray. On the formalization and analysis of a spatio-temporal
role-based access control model. JCS, 19(3):399–452, May 2011.

20. C. Wang, A. Carzaniga, D. Evans, and A. Wolf. Security issues and requirements
for internet-scale publish-subscribe systems. In Proc. of HICSS 2002, Big Island,
HI, USA, January 2002.

21. H. Wang and L.V.S. Lakshmanan. Efficient secure query evaluation over encrypted
XML databases. In Proc. of VLDB 2006, Seoul, Korea, September 2006.

22. C.K. Wong, M. Gouda, and S.S. Lam. Secure group communications using key
graphs. IEEE/ACM TON, 8(1):16–30, February 2000.

23. S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-grained
data access control in cloud computing. In Proc. of INFOCOM 2010, San Diego,
CA, USA, March 2010.

