
Domain-Specific Language for
HW/SW Co-Design for FPGAs

Jason Agron

Dept. of Computer Science and Computer Engineering
University of Arkansas

504 J.B. Hunt Building, Fayetteville, AR
{jagron}@uark.edu

Abstract. This article describes FSMLanguage, a domain-specific language for
HW/SW co-design targeting platform FPGAs. Modern platform FPGAs provide
a wealth of configurable logic in addition to embedded processors, distributed
RAM blocks, and DSP slices in order to help facilitate building HW/SW co-
designed systems. A technical challenge in building such systems is that the prac-
tice of designing software and hardware requires different areas of expertise and
different description domains, i.e. languages and vocabulary. FSMLanguage at-
tempts to unify these domains by defining a way to describe HW/SW co-designed
systems in terms of sets of finite-state machines – a concept that is reasonably fa-
miliar to both software programmers and hardware designers. FSMLanguage is
a domain-specific language for describing the functionality of a finite-state ma-
chine in such a way that its implementation can be re-targeted to software or
hardware in an efficient manner. The efficiency is achieved by exploiting the re-
sources found within modern platform FPGAs – namely the distributed RAM
blocks, soft-core processors, and the ability to construct dedicated communica-
tion channels between FSMs in the reconfigurable fabric. The language and its
compiler promote uniformity in the description of a HW/SW co-designed system,
which allows a system designer to make partitioning and implementation strategy
decisions later in the design cycle.

1 Introduction

Modern platform FPGAs provide both a ”sea” of logic gates dedicated towards im-
plementation of custom hardware, as well as typical general purpose processors that
can be programmed using traditional software techniques [?]. Typically the hardware
portion of such a system is described in an hardware design language (HDL) and the
software portion is described in a traditional software language, often C or C++. The di-
chotomy of these two paradigms makes it difficult to program, reason about, and debug
systems built on platform FPGAs especially when the pieces of a system are expressed
in fundamentally different terms. Unifying these descriptions of software and hardware
gives promise to be able to more effectively build and reason about these hardware/-
software co-designed systems. Domain-specific languages can be used to construct a
uniform level on which to express such systems. FSMLanguage is a domain-specific
language for describing finite-state machines that can be efficiently compiled to either

software- or hardware-implementations. The language includes abstractions for mem-
ories and communication channels that allow a designer to programmatically describe
a system’s communication infrastructure while making efficient use of the resources on
the platform FPGA.

1.1 Motivation

In general, finite-state machines (FSMs) provide a concise vocabulary to describe a set
of behaviors using the notion of states, transitions, and actions [?,?,?]. The concept
of what an FSM is and does is familiar to both software programmers and hardware
designers, thus making it a realistic and well-suited abstraction for describing HW/SW
co-designed systems.

The main purpose of FSMLanguage is to provide a common form, or single source
language, to describe a HW/SW co-designed system. Programs written in FSMLan-
guage can be compiled to different implementation targets, currently VHDL and C,
and the different targets are able to communicate and synchronize with one another us-
ing abstractions built into the language itself. The available abstractions include shared
memories, local memories, and FIFO channels all of which are readily available on
modern FPGA architectures. A programmer is able to make use of these structures in
FSMLanguage without having to understand the low-level protocols and timing require-
ments normally associated with HW/SW co-design. This has two important, positive
effects: (1) it unifies system descriptions - allowing them to be looked at as a cohesive
whole, and (2) it eliminates the need for a programmer or designer to manually integrate
system components [?].

Currently, many other projects use C-like languages for HW/SW co-design [?,?,?,?].
However, these languages differ widely in how they support generation of hardware
implementations. Some languages are merely HDLs that offer a C-like syntax, while
others provide true support for mapping software constructs to hardware implementa-
tions. In general, all of these languages target HW/SW co-design, but each focuses on
different sub-domains within the area.

The ”look” of C combined with variance in the amount and function of existing C
operators has a tendency to make these languages confusing for both software and hard-
ware programmers. The main problem is that these languages advertise themselves as
being a traditional software-like language, however the actual semantics, best practices,
and restrictions are in truth very different [?,?].

The C language, while widely considered a high-level general-purpose language,
is inherently a domain-specific language for sequential processors; and transforming it
into a hardware/software co-design language has proven to be a great challenge [?].
Another approach would be to find a middle-ground between software and hardware
development practices. FSM-based design is common in both software and hardware
design, which makes it a suitable candidate for HW/SW co-design environments. This
is the primary motivation for creating an FSM-based hardware/software co-design en-
vironment.

1.2 Goal

When compared to general-purpose languages, domain-specific languages (DSLs) are
often more narrowly focused and provide a way to concisely describe a limited prob-
lem type [?]. The use of a smaller, concise language can lead to a much more clear
description of a program or system; leading to a more re-targetable representation, as
more high-level information about the ”intent” of the program exists. This has 2 major
positive effects: (1) it makes it easier for a compiler writer to create multiple, compati-
ble implementations of programs written in a DSL, (2) while also making it easier for
a programmer to describe their problem within the context of the DSL [?].

FSMLanguage was developed to provide a common form for describing compo-
nents in HW/SW co-designed systems. Thus it provides a way for software program-
mers and hardware designers to program in the same language, while allowing imple-
mentations of such programs to target either side of the hardware/software boundary.
This eliminates the need for programmers and system designers to create custom mid-
dleware to link hardware and software, which is a time-consuming and error-prone task
[?]. Additionally, FSMLanguage does not have to be solely used as a tool for pro-
grammers. It can be used as a compiler target, or intermediate format, itself. Allowing
higher-level imperative and functional languages to become re-targetable to both hard-
ware and software-based implementations.

2 Background

An FSM-based description was chosen as it is quite easy for software programmers and
hardware designers to comprehend. Additionally it provides a way to write programs
that have both sequential (series of states) and parallel (within one state) sections of
code. FSMs are also easily visualizable [?] in terms of control-flow graphs (CFGs) and
fit very easily into static analysis frameworks (control flow, reachability, liveness, etc.).
Many other specification tools have used an FSM-based approach, as it is a natural way
of describing systems [?].

DOT2VHDL [?] is a tool that translates graphical representations of FSMs in DOT
to VHDL via the KISS2 intermediate format. The DOT descriptions supported by this
tool do not support higher-level arithmetic (only pure Boolean assignment) which com-
pared to a modern HLL or HDL, is extremely limiting. FPGA-vendors have developed
their own graphical FSM entry tools, such as Xilinx’s StateCAD or Altera’s Max+II
Graphical Editor, however these tools only target hardware implementations of spec-
ified FSMs (in the form of VHDL, Verilog, and ABEL). Additionally, none of these
tools provide programmer abstractions for using the available embedded IP cores and
memory blocks present in modern FPGAs.

StateWorks [?] uses the concept of VFSMs [?,?], or Virtual Finite State-Machines,
to model software systems. The StateWorks development environment provides pro-
grammers with a way to specify a system composed of sets of VFSMs. The environ-
ment also includes a run-time system for executing system models, however StateWorks
does not provide a way to generate executable code for use outside of the development
environment. Deployment of a StateWorks model requires the use of the StateWorks

run-time system along with additional programmer-specified libraries for I/O and user-
interface routines.

AsmL, or the Abstract State-Machine Language, was developed by Microsoft Re-
search [?] for use in system and components modeling as well as executable speci-
fications. The asmL toolset is mainly focused on robust modeling, visualization, and
analysis tools, but an increasing number of features geared towards executable specifi-
cations are appearing [?]. While asmL programs can now be executed via interpretation
in Haskell [?], no public tools exist that produce re-targetable implementations of asmL
programs.

These tools are all useful for modeling portions of systems, but modeling does not
lead directly to system implementations. On the other hand, FSMLanguage is capable
of system modeling as well as targeting embedded platforms, namely modern FPGA
offerings from Xilinx. This allows programmers and system designers to use FSMLan-
guage as an implementation tool that has the potential to replace traditional tools that
are less flexible. The focus of the aforementioned toolsets encompasses a large area,
however this area does not focus on re-targetable compilation, nor does it include the
breadth of operators and abstractions that are currently available in platform FPGAs.

3 Design

3.1 Simplification Through Mechanization

Hardware Description Languages, or HDLs, are one of the most prevalent languages
used to describe FSMs destined for hardware implementation. Languages such as VHDL,
Verilog, and ABEL are capable of behaviorally describing both the interface and func-
tion of a FSM. HDL descriptions of FSMs are executable in that they can be run in
a simulation environment, or synthesized into an executable component for use in an
FPGA or ASIC implementation. HDLs, in general, are designed to allow program-
mers to describe arbitrary types of hardware components. Therefore most HDLs con-
tain many more features than those required to describe FSMs. Although FSMs are
straight-forward to describe in most HDLs, the complexity and verbosity of HDLs can
make them cumbersome to use. For instance, adding a single new state variable to an
FSM in VHDL requires the following modifications (assumes a 2-process FSM [?]):

– Definition of a new signal (or set of signals – current and next.)
– Modifying the sensitivity list of the synchronous transition process (STP).
– Modifying the sensitivity list of the asynchronous logic process (ALP).
– Adding a default value assignment to the ALP.
– Adding reset behavior and transition behavior for the signal in the STP.

Unfortunately, any errors or omissions made when performing these modifications do
not necessarily result in compilation/synthesis errors. However, mistakes can result
in incorrect simulation results, improper reset behavior, and improper logic inference
(latches vs. registers). Even worse, HDL tool vendors have different requirements for
describing FSMs [?,?]. The verbosity of HDLs paired with the chances to make un-
noticed coding mistakes makes FSM description a prime candidate for a domain-specific

language (DSL). The DSL can improve programmer efficiency by reducing code size,
clutter, and verbosity. Additionally the language can support ”correct-by-construction”
FSM design, thereby making it impossible to make many of the mistakes that can be
made when coding FSMs in HDLs.

3.2 The FSM Domain-Specific Language

FSMLanguage is a domain-specific language (DSL) for describing finite-state machines
(FSMs). The language, and its associated compiler, targets the configurable logic, em-
bedded memories, and soft-core processors that can be found in modern platform FP-
GAs [?]. FSMLanguage eliminates the need for a programmer to manually control sen-
sitivity lists, state enumerations, FSM reset behavior, and FSM default output behavior.
The language also guarantees that all FSM state variables are correctly inferred as flip-
flops which greatly improves the resource utilization and timing characteristics of an
FSM. The resulting FSM description is much smaller, and less cluttered, than equiva-
lent code written in an HDL. Additionally, the FSMLanguage compiler is re-targetable –
currently capable of producing FSM implementations for software (in C) and hardware
(in VHDL). The hardware and software implementations generated by the FSMLan-
guage compiler are compatible with one another in that the language’s built-in abstrac-
tions for communication are able to operate across the hardware/software boundary.

The program constructs that allow this form of transparent communication include
primitives for declaring and accessing channels and memories. Channels are bi-directional
communication channels that can be used to connect FSMs together in a CSP-style
framework [?]. Memories are dual-ported array-like structures that can be internal or
external to an FSM. An internal memory can only be used by a single FSM, as the
FSM has control over both of the memory’s ports, while an external memory can be
shared among FSMs (each FSM has access to a single memory port). The memory
primitives are mapped directly onto the embedded Block RAM (BRAM) components
found within platform FPGAs, whereas the channel primitives are implemented using
independent FIFO-based Fast-Simplex Links (FSLs) [?]. FSLs and BRAMs are often
used within an HDL environment, however in this case, a programmer is responsible
for correctly implementing the access protocol required by such components. FSMLan-
guage provides a clear and easy-to-use syntax for accessing these components, so the
programmer need not worry about the access protocols of such components. For in-
stance when interacting with RAMs, one must account for the memory access latency
(which may be technology specific) after performing a read operation in order to get a
valid result. Also, when reading from a FIFO one must ensure that data exists before
continuing on with the rest of the program. These problems can be avoided through
mechanization, as FSMLanguage contains special syntactic constructs that can be elab-
orated by the compiler into the correct access protocols.

3.3 Example - Memory Access

FSMLanguage programs specify memory reads/writes using an array-like syntax famil-
iar to both software and hardware designers. This syntax makes the intent of a memory
read/write more clear by making the operation wholly visible in a single line of code

within the FSM, as opposed to several lines and states within a traditional VHDL-based
FSM as shown in Figure 1. The FSMLanguage syntax is not only more simple, but it
also prevents the programmer from making timing and synchronization mistakes. These
mistakes are common in VHDL as the programmer is responsible for defining idle states
for handling BRAM latencies. It is important to note that the VHDL snippet shown does
not include the extra code needed to enumerate extra idle states, nor the default signal
assignments involved with de-asserting BRAM control signals.

state1 -> state2 where
{

a’ <= my_mem[x];
}

(a) FSMLanguage Memory Read Syntax

when state1 =>
my_mem_addr <= x;
my_mem_read_enable <= ’1’;
next_state <= state1_int;

when state1_int =>
next_state <= state1_final;

when state1_final =>
a <= my_mem_data_out;
next_state <= state2;

(b) VHDL Memory Read Syntax

Fig. 1. Memory Read Syntax Comparison

3.4 FSMLanguage Programs

The structure and syntax of an FSMLanguage program is shown in Figure 2. FSMLan-
guage programs consist of the following 10 sections:

– State Names - internal names for FSM state variables
– Generics - compile time variables
– Ports - inputs/outputs from/to the outside world
– Connections - permanent connections of output ports to FSM signals
– Memories - internal/external memory blocks
– Channels - FIFO ports to the outside world
– Signals - internal FSM state
– Initial - initial state definition for the FSM
– Transitions - logic/behavior of an FSM
– VHDL - optional section for linking in libraries of native VHDL constructs

The body, or logic, of an FSM is fully described within the Transitions section,
while the remainder of the sections are used for declarations for the FSM program itself,
such as for memories, ports, and local FSM signals. The statements contained inside of
a transition must be assignment statements, in which the left-hand side (LHS) is either
a signal, a memory, or a channel, and the right-hand side (RHS) is an expression. Ex-
pressions can be composed of data accesses: signals, input ports, memories, channels;

-- **** Internal state signal names ****
CS: <current_state_signal_name>;
NS: <next_state_signal_name>;

-- **** Generics (compile-time vars) ****
GENERICS:
(<genName>, <type>, <static_value>;)*

-- **** Input/Output ports ****
PORTS:
(<portName>, <in|out>, <type>;)*

CONNECTIONS:
(<outputPortName> <= <rhs>;)*

-- **** Definitions of memories ****
MEMS:
(<mName>,
<dataWidth>, <addrWidth> [,EXTERNAL];)*

-- **** Definitions of FIFO channels ****
CHANNELS:
(<channelName>, <dataWidth>;)*

-- **** Internal FSM signals ****
SIGS:
(<sigName>, <type>;)*

-- **** Internal State Definition ****
INITIAL: <stateName>;

-- *** Definition of logic/transitions ****
TRANS:
(<curr_st> [|<bool_guard>] -> <next_st>
[where
{

(<lhs> <= <rhs>;)*}
])*

-- **** Native VHDL Defs. ****
VHDL: <un-parsed VHDL code>

Fig. 2. FSMLanguage Program Structure and Syntax

arithmetic operators: addition, subtraction, multiplication, division-by-a-constant, bit-
concatenation (&), and bit-slicing; boolean operators: and, or, not, xor; as well as func-
tion calls. Function calls enable FSMLanguage programs to access external libraries of
code, whether in C or VHDL. This allows programmers to extend the abilities of the
language, by encapsulating new operations within VHDL and C functions.

FSMLanguage uses a Mealy machine model in which FSM outputs depend on both
the current FSM state as well as the FSM inputs. State transitions are defined as atomic
guarded transitions; where the entire body of a transition is executed atomically when
the guard statement found to be true. The syntax for defining a state transition can be
seen in Figure 3. Multiple guarded transitions can be defined for a single start state
so that a single given state can have multiple behaviors based off of inputs or internal
FSM state. The transitions are prioritized by the compiler according to their order of ap-
pearance in an FSMLanguage program, allowing a programmer to tune the precedence
of the transitions. Guard expressions must be boolean, and are not allowed to contain
memory/channel accesses, however, the result of such an access can be used within a
guard expression.

<cur_st> [|<bool_guard>] -> <next_st>
[where
{

(<lhs> <= <rhs>;)*
}]

Fig. 3. FSMLanguage Guarded Transition Syntax

The Generics section allows a programmer to define a set of generics, or compile-
time variables, that can be used as static constants throughout an FSMLanguage pro-
gram. These generics are identical to the generics found in VHDL, which can be used
to change the width and size of internal variables and ports at compile time.

The Ports and Connections sections allow a programmer to define dedicated input
and output ports to the outside world. This section is commonly used to provide a way
to connect external inputs and outputs, such as control signals, to an FSM. Ports provide
external I/O connections to the outside world, while connections provide the ability to
tie internal FSM signals to output ports. The connections are very similar to concurrent
assignment in VHDL in that they allow an output port to be constantly driven by the
internals of the FSM. Output ports are not able to be driven directly from within the
body of the FSM. Instead, output ports are driven indireclty by a signal that is tied to a
given port via a connection.

x’ <= m[a] + 1; // Memory read
m[a] <= x + 2; // Memory write

Fig. 4. FSMLanguage Memory Reads and Writes

x’ <= #c; // Channel Read
#c <= x + 2; // Channel write

Fig. 5. FSMLanguage Channel Reads and Writes

The Memories and Channels sections allow a programmer to declare individual
memories and channels to be used within the body of their FSM. Memories can be
declared with a special EXTERNAL keyword to indicate that the memory is shared with
another object, therefore only one of the ports of a dual-ported Block RAM will be used
by this FSM. The syntax for accessing a location in a memory is identical to the syntax
for accessing arrays in C by pairing a memory name with a square-bracketed index.
Memory reads and writes are differentiated by the location of the access itself. If the
access is on the left-hand side of an assignment statement, then it is a write, while a
read would have a memory access on the right-hand side of an assignment statement
as shown in Figure 4. Channels also support read/write operations by using a special
syntax. Channel accesses are similar to memory accesses, in that the type of access is
determined by the location of the access in an assignment statement as shown in Figure
5. Channels allow FSMs to communicate with one another via message-passing, and
the channel-specific syntax in FSMLanguage is used to highlight states in which inter-
FSM communication occurs. The channel abstraction allows FSMs to be composed in
a CSP-style framework [?].

The Signals section of an FSMLanguage program is used to define the internal state
variables of the finite-state machine. Definitions for a signal include the signal’s name
and data type as shown in Figure 2. A programmer defines the initial state of the FSM
in this Initial section. The state name defined as initial is used to provide well-defined
FSM behavior during reset and start up.

The VHDL section is primarily targeted to users wanting to develop hardware-only
implementations of FSMLanguage programs. This section is dedicated for hand-written
VHDL functions, procedures, and signal definitions. This allows programmers to take
advantage of some of the more advanced features of VHDL in a library-like fashion.
FSMLanguage supports a function call syntax that allows the body of an FSMLanguage
program to call VHDL library functions (such as conv std logic vector) defined in the
VHDL section, VHDL standard libraries, or even in a user-defined library.

A concise state machine definition is formed by combining all of the individual
FSMLanguage sections. The FSMLanguage compiler can use this description as input
to generate hardware and software implementations of the program, suited for execution
on Platform FPGAs.

4 Implementation

The FSMLanguage compiler is implemented in Haskell using the Parsec monadic parser
library [?,?]. Haskell lends itself very well to language and compiler development as
Haskell data structures are able to easily and directly represent BNF-style grammars.
The compiler is composed of a parser, a VHDL back-end, a C back-end, and a CFG
back-end for producing DOT visualizations of FSMs [?]. Currently. the entire FSMLan-
guage compiler implementation has been performed in less than 5,000 lines of Haskell
code.

4.1 VHDL Compiler Back-End

The VHDL back-end for FSMLanguage builds a synchronous FSM in VHDL using
a basic 2-process model. The generated code handles reset logic as well as transition
logic for the programmer. Additionally, the structure of the generated code ensures
that all FSM signals are inferred as registers and not latches which greatly improves
the timing of an FSM during synthesis. The memory constructs of FSMLanguage are
directly elaborated into the correct read and write access protocols to the Block RAMs
(BRAMs) internal to Xilinx Platform FPGAs. The channel constructs of FSMLanguage
are transformed into FIFO interfaces that are compatible with the Fast-Simplex Link
(FSL) standard from Xilinx [?].

The memory constructs of FSMLanguage are directly elaborated into read/write ac-
cesses to the Block RAMs (BRAMs) internal to Xilinx Platform FPGAs. The generated
VHDL abides by the BRAM access protocol and is capable of using both ports of dual-
ported BRAMs simultaneously allowing parallel reads/writes from the same memory.
Additionally, every memory in an FSMLanguage program can be accessed in parallel as
these memories are implemented with physically different BRAMs within the FPGA.

The BRAMs embedded in Xilinx FPGAs have 2 clock-cycle read latency, and 1 clock-
cycle write latency, which allows a programmer to access data with very low overhead,
and no jitter.

The channel constructs of FSMLanguage are transformed into FIFO interfaces that
are compatible with the Fast-Simplex Link (FSL) standard from Xilinx [?]. These in-
terfaces provide FIFO status signals which aid in the construction of both blocking
and non-blocking channel accesses. By default, the FSMLanguage compiler produces
blocking reads and writes, however the language does allow a programmer to query a
channel interface to see if the channel has data (data exists) or if the channel is full.
The ability to query a channel allows a programmer to construct non-blocking read and
write operations in an application-specific way.

All VHDL produced by the compiler uses inference templates for instantiated ob-
jects such as FSMs, BRAMs, and FSLs. The templates are architecture-independent,
behavioral VHDL code that can be altered individually. This allows the compiler to be
tuned for different FPGA architectures, chip families, synthesis tools, as well as chang-
ing the layout of generated code.

4.2 C Compiler Back-End

The C back-end for FSMLanguage builds a ”giant” switch [?] style of FSM. This
allows for the C-implementation to accurately reflect the characteristics of an FSM.
Namely, that all actions, or assignment statements, within a given state transition ap-
pear to happen atomically as they do in the VHDL models of FSMLanguage-based
FSMs. Additionally, the ”giant” switch allows for an accurate estimation of execution
time (measured in clock cycles) of an FSM when implemented in VHDL. While the
VHDL models of an FSM are deterministic, the execution of a C model may not be due
to a myriad of factors in software-based systems. The code is ascribed with a built-in
counter to estimate execution times that can be compared to results from hardware sim-
ulation models. The ability to estimate execution times allows programmers who have
no knowledge of hardware simulation tools to get an idea of how efficient their program
implementation will be when implemented in hardware.

The C back-end is intended to be used with Xilinx’s MicroBlaze soft-core pro-
cessor [?]. This processor contains built-in FSL ports that are accessible via put/get
instructions in the MicroBlaze ISA [?]. Compilation directly translates FSMLanguage
channel constructs into C-macros that make use of the MicroBlaze’s FSL ports. This
architecture allows software-based FSMs to interact directly with other FSMs that use
the channel abstraction available in FSMLanguage; thus enabling transparent commu-
nication across the hardware/software boundary.

The type system of FSMLanguage is currently based directly on an HDL-like type
system: composed solely of individual bits (std logic) and arrays of bits (std logic vectors).
The flexibility of this type system along with the ability to express arbitrary bit-arithmetic,
bit-slicing, and bit-concatenation can result in extremely complex, inefficient, and hard-
to-read C code. This complexity is the direct result of trying to map a flexible, arbitrary
bit-width set of operations, into a less flexible, fixed bit-width language. The resulting
code must make use of objects (structs) and high-level functions instead of native data
types and operations, thus introducing a significant performance overhead.

A less flexible, software-oriented type system would allow for simpler representa-
tions of expressions in both C and VHDL, but at the cost of reduced specialization.
Future versions of FSMLanguage may use a more software-like type system in order
to allow for more efficient software code generation. Currently the C back-end uses
native C data types, and does not support arbitrary bit-width operations. A prototype
back-end that does support arbitrary bit-width operations through the use of structured
data types is currently being developed, and will most likely be transformed into a C++
back-end to make use of operator overloading. Figure 6 demonstrates how arbitrary bit-
width operations are handled in both FSMLanguage, VHDL, and C. Note that in the C
version, a total of 8 function calls are required in order to pack (box) and unpack (un-
box) the objects used to represent arbitrary bit-width values. This style of C code, even
with function inlining, is not as efficient as using native C data types. This overhead
can be avoided by using the native C compiler and encapsulating all arbitrary bit-width
operations inside of hand-written functions that can be linked against at compile-time.

my_mem[a(16 to 31)] <= my_mem[a(15 to 30)] + 10;

(a) FSMLanguage Representation

when state0 =>
my_mem_addr0 <= a(16 to 31);
my_mem_rENA0 <= ’1’;
next_state <= state1;

when state1 =>
next_state <= state2;

when state2 =>
my_mem_addr0 <= a(15 to 30);
my_mem_dIN0 <= my_mem_dOUT0 + 10;
my_mem_wENA0 <= ’1’;
my_mem_rENA0 <= ’1’;
next_state <= state3;

(b) VHDL Representation

bit_vec_t addr0 = get_slice(
a,
bit_vec_CREATE(16, 32),
bit_vec_CREATE(31, 32));

bit_vec_t addr1 = get_slice(
a,
bit_vec_CREATE(15, 32),
bit_vec_CREATE(30, 32));

my_mem[addr0.val] = bit_vec_ADD(
my_mem[addr1.val],
bit_vec_CREATE(10, 32));

(c) C Representation

Fig. 6. Examples of Arbitrary Bit-Width Representation

5 Experimental Results

The following sections describe some of the experimental results of using FSMLan-
guage to develop software- and hardware-implementations of finite-state machines. The
FSM implementations were all synthesized and tested on a Xilinx ML507 Development
Board containing a Virtex-5 FXT-70 FPGA. Each test is evaluated in terms of perfor-
mance, circuit size (chip area), and code size. While performance and circuit size are
the dominant factors in HW/SW co-design, programmer and designer productivity is
also important. Productivity can be related to code size in an abstract way; and in these
tests, is measured in terms of lines-of-code (LoC). The LoC metric is included in this
paper to illustrate how a single language can replace the use of multiple, distinct lan-
guages while simultaneously reducing the total amount of code required to describe a
system.

5.1 Producer/Consumer Example

A simple producer/consumer example, previously illustrated in KIWI [?] and similar
to a test in PRET [?], has been constructed to illustrate the use of the communica-
tion abstractions available in FSMLanguage. The implementation of each FSM can be
targeted to software or hardware while still remaining compatible with other types of
FSMs, regardless of their implementation type.

The producer, in this example, generates a stream of integers, starting at zero, that
are monotonically increasing until a pre-defined limit is reached, at which time the
producer stops executing. The producer’s data stream is sent over an FSMLanguage
channel so that it can be accessed by the consumer. The job of the consumer is to
consistently take data from the producer, multiply this data by 2, and produce an output
value on another outgoing channel. If the consumer receives an input from the producer,
then it will generate a new output. The consumer will then ”block” until another input
from the producer is received.

The FSMLanguage programs for the producer and consumer can be seen in Figure
7 and Figure 8 respectively. The channel interface used between the two FSMLanguage
programs is an abstraction that is compatible with both the MicroBlaze soft-core pro-
cessor as well as with custom logic, thus allowing each of the FSM programs to be
executed either in hardware or software. The producer/consumer example was tested
for correctness in several different configurations listed in Table 1. All configurations
correctly execute on a Xilinx ML507 development board. It is important to note that the
software-based implementations of the producer and consumer also require extra Block
RAM for storing instructions and data that the hardware-based implementations do not
require at all.

This benchmark highlights the ability to encapsulate hardware/software interfaces
within FSMLanguage. None of configurations require the programmer to make changes
to the application code. This allows a programmer to very easily perform design space
exploration without requiring reimplementation of the application. FSMLanguage also
eliminates the need for a programmer to write driver routines to interact with architecture-
specific features such as dedicated memories or communication channels. Instead, a
programmer describes such interaction with a special syntax that is then elaborated by

-- *******************************
-- Producer Example
-- *******************************
-- Generates a set of outputs
-- through a channel
-- *******************************

CS: current_state;
NS: next_state;

GENERICS:
DWIDTH, integer, 32; -- Data width

PORTS:

CONNECTIONS:

MEMS:

CHANNELS:
chan1, DWIDTH;

SIGS:
counter, std_logic_vector(0 to DWIDTH-1);

INITIAL: reset;

TRANS:

reset -> initialize

-- Initialize counter to 0
initialize -> genOutput where
{

-- Initialize counter
counter’ <= ALL_ZEROS;

}

-- Generate 10 outputs
genOutput | (counter < 10) -> genOutput where
{

-- Increment the counter
counter’ <= counter + 1;
-- Output the current value
#chan1 <= counter;

}
genOutput -> halt

-- Halt (remain in halt state forever)
halt -> halt

VHDL:

Fig. 7. Producer FSMLanguage Program

-- *******************************
-- Consumer Example
-- *******************************
-- Infinitely consumes inputs
-- and generates outputs
-- *******************************
CS: current_state;
NS: next_state;

GENERICS:
DWIDTH, integer, 32; -- Data Width

PORTS:

CONNECTIONS:

MEMS:

CHANNELS:
chan1, DWIDTH;
chan2, DWIDTH;

SIGS:
counter, std_logic_vector(0 to DWIDTH-1);

INITIAL: reset;

TRANS:

reset -> grabInput

-- Grab a value from the input channel
grabInput -> genOutput where
{

counter’ <= #chan1;
}
-- Generate a new value on the ouptut channel
-- and repeat (loop back)
genOutput -> grabInput where
{

#chan2 <= counter + counter;
}

VHDL:

Fig. 8. Consumer FSMLanguage Program

the FSMLanguage compiler; thus eliminating this error-prone task from the design and
implementation cycle [?].

The producer/consumer example was also evaluated using a lines-of-code metric
(LoC) as shown in Table 2. The inversion in both the VHDL and C LoC metric for the
producer and consumer relates to the fact that the consumer uses an additional channel
interface. The extra channel interface, which requires only 1 LoC in FSMLanguage,
requires a multitude of changes to a VHDL program (10 lines of code). These changes
affect a VHDL program’s port and signal declarations, sensitivity lists, and synchronous
state transition process. These changes are similar to the changes required in a C pro-
gram generated by the FSMLanguage compiler except for those involved in sensitivity
lists.

Table 1. Producer/Consumer Testing Configurations

Producer Consumer System Size Correct?
SW SW 2,608 LUTs Yes
SW HW 1,460 LUTs Yes
HW SW 1,508 LUTs Yes
HW HW 360 LUTs Yes

Table 2. Lines of Code (LoC) for Producer/Consumer

Language
FSMLang. VHDL C

Producer 53 273 156
Expansion Factor 5.1x 2.9x

Consumer 43 277 159
Expansion Factor 6.4x 3.6x

5.2 Sorting Benchmark

A benchmark is constructed using a combination of bubblesort and mergesort to sort
a large array of integers using the hthreads platform, an operating system designed for
hybrid CPU/FPGA environments [?,?]. The purpose of this benchmark is to show how
FSMLanguage can be used to develop custom hardware components to replace software
components that are performance critical. In this benchmark the generation of data as
well as the merging of sorted data is always performed in software, while the sorting
of each ”section” of data can be performed in either software or hardware, and with
varying numbers of threads.

The sorting application generates a set of random data to be sorted, in this case 1
MB of 32-bit integer data to be sorted in a divide-and-conquer manner. After generating

the data, the main thread then spawns a number of sorting threads, either in software
or hardware, and feeds data to each thread in an on-demand manner through software-
based mailboxes in chunks of 2,048 words of data. Each hardware-based sorting thread
has a thin software-based wrapper that performs the mailbox operations and marshals
data into and out of the FSMLanguage-based sorting core, as programs written in FSM-
Language are not currently able to use the hthreads OS API calls at this time. The data
marshaling done by the wrapper thread involves copying the data to be sorted to a
memory-mapped dual-ported BRAM that is connected directly to the FSMLanguage-
based bubblesort core, as well as monitoring the go/done control signals emanating
from the hardware core. The main thread continues to feed data to the sort threads until
all data chunks have been sorted. Next, merging is done on all of the chunks of data
and a correctness check is done to make sure that the data has been correctly sorted and
merged.

The performance results of the sorting threads in both software and hardware are
shown in Table 3. In all tests the instruction and data caches of the CPU, a PowerPC440,
were enabled and the compiler optimization level was set to -O2. The body of the FSM-
Language implementation of bubblesort can be see in Figure 9.

Table 3. Sorting Results (1 MB of Data)

Number of Threads
1 2 3 4

SW Exec. Time 18.4 s 18.4 s 18.4 s 18.4 s
HW Exec. Time 9.50 s 4.70 s 3.10 s 2.30 s

Speedup 1.93 3.91 5.93 8.00

Table 4. Lines of Code (LoC) for BubbleSort (C** is a handwritten BubbleSort function in C)

Language
FSMLang. VHDL C C**

Sort 96 365 203 23
Expansion Factor 3.8x 2.1x 0.23x

The speedup achieved by using multiple hardware threads comes from the fact
that the hardware threads can truly execute in parallel, while in a single-CPU system,
software threads merely execute pseudo-concurrently in time. Therefore no additional
speedup is achieved when using multiple software threads, as they were all being time-
multiplexed on a single CPU. The speedup achieved by using a single hardware thread
can be understood by comparing the steps taken during bubblesort on the PowerPC440
to the steps taken by the hardware core generated from FSMLanguage.

The control-flow graphs (CFGs) for each application have been generated from their
respective executable formats: PowerPC440 assembly language and VHDL. The CFGs

TRANS:
reset -> idle
idle | (go = ’0’) -> idle where
{

stopped’ <= ’1’;
}
idle | (go = ’1’) -> begin_sort where
{
stopped’ <= ’0’;
n’ <= sort_length;
n_new’ <= sort_length;
swapped’ <= ’1’;

}

begin_sort | (swapped = ’0’) -> halt
begin_sort | (swapped = ’1’) -> for_loop where
{
-- Initialize variables before FOR loop begins
swapped’ <= ’0’;
i’ <= ALL_ZEROS;

-- Prefetch the "1st" data1 before the for loop begins
data1’ <= array[ALL_ZEROS];

}

for_loop | (i >= n) -> begin_sort where
{
n’ <= n_new;

}
for_loop | (i < n) -> cond_check where
{
-- Fetch data2, while data1 has already
-- been calculated during the last iteration
data2’ <= array[i+1];

}

cond_check | (data1 <= data2) -> for_loop where
{
-- Move value in data2 to data1 for
-- next pass (now only need to fetch the new data2)
data1’ <= data2;
i’ <= i + 1;

}
cond_check | (data1 > data2) -> cond_body where
{
-- 1/2 update (only one write per state)
array[i] <= data2;

}

cond_body -> for_loop where
{
-- the other 1/2 of the update (only one write per state)
-- Note, this is the "next" data1 value so keep it around
array[i+1] <= data1;
n_new’ <= i;
swapped’ <= ’1’;
i’ <= i + 1;

}

halt -> idle where
{
stopped’ <= ’1’;

}

Fig. 9. BubbleSort FSMLanguage Program

Fig. 10. BubbleSort CFG - VHDL from FSMLanguage

Fig. 11. BubbleSort CFG - PPC440 Assembler

shown only represent the ”kernel” of the bubblesort algorithm, which is the inner for-
loop which iterates over the array while swapping items. Figure 11 represents the CFG
of the PowerPC440 assembly implementing the bubblesort routine. When executing
on the PowerPC440, this for loop contains 11 instructions when a swap occurs, and 7
instructions when no swap occurs. Given that the PowerPC440 has a 7-stage pipeline
this means that a best-case estimate of the execution time of this loop is 14 cycles
assuming no pipeline stalls, no cache misses, and no branch mispredictions.

The CFG of the VHDL generated from the FSMLanguage implementation of bub-
blesort can be seen in Figure 10. The for loop kernel in this CFG contains 5 state tran-
sitions when a swap occurs, and 4 cycles for when no swap occurs. Given that the
circuit generated from FSMLanguage is completely deterministic, this means that the
worst-case execution time of this kernel is 5 clock cycles, a 2.8x improvement over the
PowerPC. The speedup of 1.93 achieved when using a single hardware thread does not
meet the ideal figure due to overhead incurred by copying data into and out of the local
BRAM attached to each hardware thread.

Additional speedup can be achieved by increasing the number of hardware threads
used for sorting, as each of the hardware threads can run concurrently. Each hardware
thread operates out of their own local BRAM, which prevents unwanted system bus
contention, and leads to an almost linear speedup. The logic overhead incurred from
using the hardware-based sorting core is also very minimal as each sorting core only
requires 453 slice registers and 582 slice LUTs (look-up tables) on the Virtex-5 FXT
chip. This space usage represents only 1% of the capacity available on the FPGA. Ad-
ditionally, each sorting core requires 8 Block RAMs, which represents only 5% of the
Block RAM resources of the Virtex-5 FXT 70 chip. This resource usage is quite small
when considering that a MicroBlaze soft-core processor, in synthesized form, requires
more than twice as much logic resources to implement on the same FPGA architecture
(approx. 1300 slices including memory buses and controllers).

A lines-of-code (LoC) comparison of the sorting benchmark can be seen in Table
4. While the FSMLanguage bubblesort program is approximately four times longer
than an equivalent handwritten function in C, it is still 3.8 times the size of a VHDL
implementation of the algorithm. The C code generated by the FSMLanguage compiler
uses a ”giant switch” style of FSM coding that is not as compact as handwritten C code.

5.3 Interpretation System

Interpreters are easily thought of and implemented as ”giant” case/switch statements
[?], and as such are easily converted to an FSM description. The purpose of this bench-
mark is to show how easily an interpreter can be re-targeted when written in FSMLan-
guage. In this test a small interpreter is written in FSMLanguage that implements the
instruction set listed in Table 5. The interpreter is designed to have 3 separate inter-
faces: (1) a control interface, (2) a memory interface for instructions and data, and (3)
a ”state” interface used to perform context switching. The internal state of the inter-
preter is composed of a 256-entry 32-bit memory used as a register file, as well as a 10
other registers used for bookkeeping (instruction decode, intermediate results, program
counter, etc.). A snippet of the interpreter’s FSMLanguage program is shown in Figure

12. This code snippet highlights the fetch/decode/execute cycle of the interpreter for
arithmetic instructions.

-- **** Fetch Next Instruction ****
fetch | (go = ’1’ and mode = CMD_INTERPRET) -> decode where
{

instr’ <= prog_mem[pc];
}
--- **** Decode Instruction ****
decode | (opcode_type = TYPE_ARITHMETIC) -> do_arithmetic where
{

-- Fetch arguments
a’ <= regfile[r_arg_a]; -- Contents of registerA
b’ <= regfile[r_arg_b]; -- Contents of registerB

}
-- **** Execute Stage (ARITHMETIC) ****
do_arithmetic | (opcode = OPCODE_ADD) -> writeback where
{

regfile[r_dest] <= a + b;
}
do_arithmetic | (opcode = OPCODE_SUB) -> writeback where
{

regfile[r_dest] <= a - b;
}

.

.

.
-- **** Writeback Stage ****
writeback -> fetch where
{

-- Increment PC to go to the next instruction
pc’ <= pc + pcInc;

}

Fig. 12. Code Snippet - Interpreter FSMLanguage Program

The FSMLanguage description of the interpreter is compiled to both software and
hardware implementations and tested for correctness using a a set of recursive pro-
grams (Fibonacci, factorial, and McCarthy91). These programs exercise a majority of
the interpreter’s control and data path through data/stack manipulation, control flow,
and arithmetic operations. The code structure of the interpreter uses HDL-specific bit
manipulation routines that are not available in C, so a small library of C routines was
created by hand to duplicate this functionality. The language-specific bit manipulation
routines can be encapsulated in functions in both C and VHDL so that an FSMLan-
guage program can make use of the functions in an implementation-independent way.
This problem will be solved in the future by outfitting the FSMLanguage compiler with
additional support for implementing arbitrary bit-manipulation routines in the generated
C code.

The hardware implementation of the interpreter requires a total of 730 slice LUTs,
306 slice registers, and 1 Block RAM for implementing the register file, which is ap-
proximately half of the size of the MicroBlaze processor implemented in the same
FPGA technology. Another advantage of the hardware implementation is that it op-
erates in a completely deterministic manner. Instruction fetches always take 3 clock

Table 5. Interpreter Instruction Set

Name Format Description
Add ADD Rd Ra Rb Rd = Ra + Rb

Subtract SUB Rd Ra Rb Rd = Ra - Rb
Multiply MULT Rd Ra Rb Rd = Ra * Rb

Logical And AND Rd Ra Rb Rd = Ra ’and’ Rb
Logical Or OR Rd Ra Rb Rd = Ra ’or’ Rb

Exclusive Or XOR Rd Ra Rb Rd = Ra ’xor’ Rb
Shift-Right Arithmetic SHRA Rd Ra Rd = Ra ’shr’ 1, (MSB’ = LSB)

Shift-Right Logical SHRL Rd Ra Rd = Ra ’shr’ 1, (MSB’ = 0)
Shift-Left SHL Rd Ra Rd = Ra ’shl’ 1, (LSB’ = 0)
Load Low LLOW Rd Imm Rd = (Rd ’and’ 0xffff0000) ’or’ (Imm ’and’ 0x0000ffff)
Load High LHI Rd Imm Rd = (Rd ’and’ 0x0000ffff) ’or’ (Imm ’and’ 0xffff0000)

Jump Equal To Zero JEZ Rc Ra If (Rc == 0) Then PC = Ra
Load LOAD Rd Ra Roff Rd = MEM[Ra + Roff]
Store STORE Rd Ra Roff MEM[Ra + Roff] = Rd

cycles (1 cycle read setup, and 2 cycle read latency for BRAM), decode requires an
additional 3 cycles as the register file is also implemented using BRAM. Instruction
execute and write-back latency is deterministic, but varies for each instruction type.
Execution requires 2 cycles for arithmetic operations, 3 cycles for multiplies, 5 cycles
for load immediate instructions, 5 cycles for stores, and 7 cycles for loads. This results
in a worst-case execution time for an interpreter instruction of 13 clock cycles. The
fetch/decode cycle of a software-based interpreter requires multiple accesses to mem-
ory and often involves bus operations that require an order of magnitude more time
(100s to 1000s of cycles) to complete. The fetch/decode process in the hardware im-
plementation is able to make use of a dual-ported BRAM as the interpreter’s register
file. This architecture allows simultaneous access to the dual-ports of the register file, as
found in the decode stage shown in Figure 12. Additionally, the BRAM-based register
file and memories makes the hardware implementation fully deterministic, whereas the
software implementation has non-determinacy introduced by cache misses and branch
mispredictions. Overall, the results of the interpreter benchmark show that a simple
FSMLanguage description of an interpreter can be translated into an efficient hardware
implementation without requiring a programmer to have detailed knowledge of hard-
ware design techniques.

6 Conclusion

FSMLanguage provides programmers with the ability to concisely describe Mealy finite-
state machines in a form that allows the code to be targeted to efficient software and
hardware implementations. The language and compiler are designed to take advantage
of all the resources provided by modern Platform FPGAs; namely custom logic, dis-
tributed Block RAMs, soft-core processors, and FIFO channel connections. Individual
implementation strategies can be changed for each FSM without affecting overall sys-

tem operation, as FSMLanguage communication abstractions are able to transparently
cross HW/SW boundaries. This makes it much easier for designers to explore their
system’s design space by eliminating the need to manually re-implement higher-level
descriptions of system components.

The three micro-benchmarks demonstrate that FSMLanguage can reduce code size
and verbosity, while also providing choices in terms of implementation style, speed, and
resource usage. The producer/consumer benchmarks highlights the ability of FSMLan-
guage programs to cross the HW/SW boundary as well as the ability to make changes to
the HW/SW partitioning of a system after initial design and implementation has already
occurred. The sorting benchmark highlights the ability to produce efficient hardware
implementations of FSMLanguage programs that can be used as application accelera-
tors or co-processors. Finally, the interpreter use-case highlights the ease of re-targeting
FSMLanguage programs, and the different features of the software and hardware im-
plementation options.

Overall, the purpose of FSMLanguage is to demonstrate that simple domain-specific
languages can be effective for hardware/software co-design for FPGAs. A re-targetable
language, such as FSMLanguage, allows a single program specification to be imple-
mented in a variety of ways without forcing a programmer to undergo re-implementation.
FSMLanguage permits program specifications to be coded, compiled, debugged, and
tested in both a hardware- and software-environment. The hardware and software im-
plementations of FSMLanguage programs remain compatible with one another, allow-
ing the hardware/software partitioning of a system to be altered post-design time.

