
Model-driven Engineering from Modular
Monadic Semantics: Implementation Techniques

Targeting Hardware and Software?

William L. Harrison1, Adam M. Procter1, Jason Agron2, Garrin Kimmell3, and
Gerard Allwein4

1 Department of CS, University of Missouri, Columbia, Missouri, USA
2 Department of CS & CE, University of Arkansas, Fayetteville, Arkansas, USA

3 Department of EECS, University of Kansas, Lawrence, Kansas, USA
4 US Naval Research Laboratory, Code 5543, Washington, DC, USA

Abstract. Recent research has shown how the formal modeling of con-
current systems can benefit from monadic structuring. With this ap-
proach, a formal system model is really a program in a domain spe-
cific language defined by a monad for shared-state concurrency. Can
these models be compiled into efficient implementations? This paper ad-
dresses this question and presents an overview of techniques for compil-
ing monadic concurrency models directly into reasonably efficient soft-
ware and hardware implementations. The implementation techniques de-
scribed in this article form the basis of a semantics-directed approach to
model-driven engineering.

1 Introduction

System software is notoriously difficult to reason about—formally or informally—
and this, in turn, greatly complicates the construction of high assurance systems.
This difficulty stems from the conceptual “distance” between the abstract mod-
els of systems and concrete system implementations. Formal system models are
expressed in terms of high-level abstractions while system implementations re-
flect the low-level details of hardware, machine languages and C. One recent
trend in systems engineering—model-driven engineering (MDE) [39]—attempts
to overcome this distance by synthesizing implementations directly from system
specifications. The MDE methodology is attractive for high assurance applica-
tions because the process proceeds from a domain specific modeling language
that, when specified with a suitable formal semantics, will support verification.

The starting point for this work is recent research applying modular monadic
semantics to the design and verification of trustworthy concurrent systems [15,
14, 12, 13]. There are a number of natural “next” questions concerning the set of
design and verification principles developed in the aforementioned publications.
? This research was supported by NSF CAREER Award 00017806; US Naval Res. Lab.

Contract 1302-08-015S; DARPA/AFRL Contract FA8650-07-C-7733; the Gilliom
Cyber Security Gift Fund; Cadstone, LLC; and the ITTC Tech. Transfer Fund.

2

Can system implementations be generated from monad-based specifications and,
if so, how is this best accomplished? Are critical system properties preserved by
implementation techniques? Can acceptable performance across many dimen-
sions (including speed, size, power consumption, etc.) be achieved? This paper
addresses the first question and leaves the others to future work.

This paper considers an instance of MDE for which the models are based in
the modular monadic semantics (MMS) of concurrent languages [12, 34]. Monads
have a dual nature, being both algebraic structures with properties and a kind of
domain-specific language (DSL) supporting programming. The view of monads
as DSLs is just the standard view within the functional programming community
expressed in a non-standard way: monads encapsulate a specific flavor of com-
putation and provide language constructs (i.e., monadically-typed operators) in
which to build computations.

The contributions of this paper are: (1) An exploration of the design
requirements for a monadic DSL for describing small concurrent systems with
shared state (e.g., embedded controllers). This language is called Cheap Threads
after an article of the same name [18]. (2) Implementation techniques for Cheap
Threads (CT) programs targeting both a fixed instruction set and hardware
circuits. The first technique is a traditional compiler for a non-traditional lan-
guage. The second technique translates a CT program into VHDL code from
which circuitry may be synthesized and loaded into an FPGA. A DSL for speci-
fying state machines called FSMLang [3] serves as an intermediate language. (3)
A significant case study demonstrating the application of these techniques to the
automatic generation of software-defined radios [23] from CT-style specifications.

It is sometimes said of domain specific languages that what is left out of them
is more important than what is left in. By restricting its expressiveness, a DSL
design can better capture the idioms of its targeted domain. This is just as true
in our case where the limitations imposed are intended to aid in the ultimate
goal of verifying high assurance properties. Both with respect to its semantics
and implementation strategies, what is left out of CT is crucial to the success
of this approach. Because the semantics of CT is fundamentally simpler than
that of Haskell, its implementation can be made far simpler as well. Although it
dispenses with the constructs that complicate Haskell 98’s semantics, CT retains
the necessary expressiveness—but no more expressiveness than is necessary.

The decision to create a standalone CT language (as opposed to an em-
bedding within a language such as Haskell) was made for the sake of semantic
simplicity. Haskell 98 [36], for example, has a surprisingly complicated seman-
tics [17, 21, 11] due to certain of its features (e.g., the seq operator, expressive
pattern-matching, polymorphic recursion and type classes), while its extension,
GHC Haskell, has no standard semantics at all. Furthermore, excluding features
such as general recursion results in much more predictable time and space behav-
ior. CT possesses a built-in semantics as each CT language construct corresponds
to an algebraic operator of a fixed monad.

Syntactically, CT is simply a sublanguage of Haskell, extended with a simple
declaration form for specifying monads. Any CT program is also a Haskell pro-

3

gram that can be executed with standard implementations like GHC or Hugs.
CT contains only the small core of Haskell 98 necessary for defining computa-
tions within these monads (function and data declarations, etc.). In particular,
CT dispenses with first-class functions, curried functions and partial application,
recursive data structures, type classes, polymorphism, the IO monad, and much
of the complexity of Haskell 98’s pattern matching. General recursion is eschewed
in favor of an explicit fixed point operator which operates only on tail-recursive
functions.

Another reason to define CT as a standalone language is that, as it will be
independent of Haskell implementations, the ultimate results of this research can
be re-used far more readily in a variety of settings. There is no high assurance
run-time system for Haskell, so relying on the GHC run-time, for example, just
“kicks the high assurance can down the road.” For embedded systems and many
varieties of system software (e.g., garbage collectors, network controllers, device
drivers, web servers, etc.), the size of the object code produced would have to be
small to be practical, thus eliminating all current Haskell implementations. The
presence of garbage collection in Haskell run-time systems is completely unac-
ceptable for some software systems because of timing issues (e.g., flight control
software). It is fortunate, therefore, that CT does not require the full power of
the Haskell RTS with its attendant unpredictable time and space behavior.

When considered individually, software compilation and hardware synthe-
sis represent signal achievements in Computer Science. While there has been
some success with mixed target compilation—i.e., the generation of either hard-
ware or software implementations from a single source—the record is mixed.

Cheap
Threads

Register
Transfer
Language Xilinx

MicroBlaze
FPGAFSMLang

DSL

The challenge derives in trying
to compile the same specification
into targets—i.e., hardware and
software—that encapsulate vastly
different notions of computation.
The use of monads in the present work allows us to explicitly tailor the source
notion of computation so that it may be implemented efficiently in either hard-
ware or software. The implementation techniques considered here are portrayed
in the inset figure. The Cheap Threads language is defined in Section 3. The top
route (described in Section 4) shows what is essentially a traditional compiler
for a non-traditional language producing RISC MicroBlaze machine language.
The lower path (described in Section 5) first generates an intermediate form in
FSMLang, which is a DSL specifying for abstract state machines. FSMLang pro-
vides a clean target for synthesis at a lower level of abstraction than CT and can
be readily translated into a netlist for the Xilinx FPGA. The rest of this section
presents related work and Section 2 presents an overview of monadic seman-
tics and defunctionalization. Section 6 presents a case study in the application
of Cheap Threads to the specification and implementation of software defined
radios. Section 7 presents conclusions and future work.

Related Work. Recent research concerns the construction and verification of
formal models of separation kernels using concepts from language semantics [15,

4

14, 12]. These models may be viewed as a domain-specific language (DSL) for
separation kernels and can easily be embedded in the higher-order functional
programming language Haskell 98 to support rapid prototyping and testing.

The “by layer” approach to implementing monadic programs—i.e., compiling
by monad transformer—was first explored by Filinski [9] who demonstrated how
the most commonly used layers (i.e., monad transformers) may be translated into
a λ-calculus with first-class continuations; the resulting program could be then
further compiled in the manner of Appel [5]. Filinski’s approach would work
here as it handles all of the monad transformers used in CT. Li and Zdancewic
[26] show how a monadic language of threads may be implemented via the GHC
compiler; their implementation is efficient with respect to execution speed. Their
work is not intended to provide efficiency with respect to code size as is ours.
Liang and Hudak [27] embed non-proper morphisms of a source monadic ex-
pression in Standard ML, thereby providing a means of implementing monadic
programs. We opted for a more standard approach to compilation than these as
doing so would give more control over the target code produced and, further-
more, seemed more susceptible to verification.

Recent research applies DSLs to bridge the distance between the abstract
models of systems and concrete system implementations. DSLs targeting the
design, construction, and/or verification of application-specific schedulers are
CATAPULTS [38], BOSSA [24], and Hume [10]. DSLs have also been successfully
applied to the construction of sensor networks and network processors [25, 7]. The
research reported here has similar goals to this work, although we also seek to
address high assurance as well; this motivated our use of monadic semantics as
a basis for system modeling and implementation.

Semantics-directed compilation (SDC) [35] is a form of programming lan-
guage compilation which processes a semantic representation of the source pro-
gram to synthesize the target program. Because one starts from a formal specifi-
cation of the input program, semantics-directed compilers are more easily proved
correct than traditionally structured compilers, and this is the principal moti-
vation for structuring compilers in this manner. This research uses a classic
program transformation called defunctionalization as a basis for SDC. Defunc-
tionalization is a powerful program transformation discovered originally in the
early 1970s by Reynolds [37] that has found renewed interest in the work of
Danvy et al. [8, 1, 2]. Hutton and Wright [20] defunctionalize an interpreter for a
small language with exceptions into an abstract machine implementation. Ear-
lier, they described a verified compiler for the same language [19].

Monads have been used as a modular structuring technique for DSLs [41]
and language compilers [16]. The research reported here differs from these in
that monads are taken as a source language to be implemented rather than as a
tool for organizing the implementations of language processors.

Lava [6] is a domain-specific language for describing hardware circuitry, em-
bedded in Haskell. Similarly, HAWK [29] is a Haskell-based DSL for the modeling
and verification of microprocessor architectures. Both of these DSLs utilize the
embedding within Haskell to allow the modeling of hardware signals as Haskell

5

lazy lists, providing a simple simulation capability. Moreover, Lava and Hawk
allow a programmer to define the structural implementation of circuits, using the
Haskell host language to capture common structural patterns as recursive com-
binators. This stands in contrast to the work presented in this paper, where we
use a monadic language to describe and compile behavioral models of systems,
in keeping with our goal of enabling verification of high-level system properties.

SAFL [32, 40] is a functional language designed for efficient compilation to
hardware circuits. SAFL provides a first-order language, restricted to allow static
allocation of resources, in which programs are described behaviorally and then
compiled to Verilog netlists for simulation and synthesis. An extension, called
SAFL+, adds mutable references and first-class channels for concurrency. CT
provides similar capabilities [23], especially in regards to hardware compilation.
However, language extensions facilitating stateful and concurrent effects are con-
structed using the composition of monad transformers to add these orthogonal
notions of computation.

2 Background

We assume of necessity that the reader possesses some familiarity with monads
and their uses in functional programming and the denotational semantics of
languages with effects. This section includes additional background information
about monadic semantics intended to serve as a quick review. Readers requiring
more should consult the references for further background [31, 28].

Monads. A monad is a triple 〈M , η, ?〉 consisting of a type constructor M
and two operations η (unit) and ? (bind) with the following types: η : a→M a
and (?) : M a→ (a→M b)→M b. These operations must obey the well-known
monad laws [31]. The η operator is the monadic analogue of the identity func-
tion, injecting a value into the monad. The ? operator is a form of sequential
application. The “null bind” operator, >> : M a→M b→M b, is defined as:
x >> k = x ? λ .k . The binding (i.e., “λ ”) acts as a dummy variable, ignoring
the value produced by x.

Recent research [12, 18] has demonstrated how concurrent behaviors (includ-
ing process synchronization, asynchronous message passing, preemption, forking,
etc.) may be described formally and succinctly using monadic semantics. These
kernels are constructed using resumption monads [34]. Resumptions are a deno-
tational model for concurrency discovered by Plotkin that were later formulated
as monads by Moggi [31]. Intuitively, a resumption model views a program as
a (potentially infinite) sequence of atoms, [a0, a1, . . .], where each ai may be
thought of as an atomic machine instruction. Concurrent execution of multi-
ple programs may then be modeled as an interleaving of each of these program
threads (or as the set of all such interleavings).

Monad transformers allow us to easily combine and extend monads. There
are various formulations of monad transformers; we follow that given in Liang
et al. [28]. Below we give several equivalent definitions for both a “layered”
state monad, K , and a resumption monad, R. The first definition of monad K

6

is in terms of state monad transformers, StateT Regi , and the identity monad,
I a = a. The state types, Regi , can be taken, for the sake of this article, to
represent integer registers. The resumption monad, R, is defined first with the
resumption monad transformer ResT , and then in Haskell. The definitions of
the state monad and resumption transformers can be found elsewhere [28, 12].

K = StateT Reg1 (· · · (StateT Regn I) · · ·)
K A ∼= Reg1→ · · · → Regn → (A× Reg1 × · · · × Regn)
R = ResT K
data R a = Done a | Pause (K (R a))

These two monads define the following language:

geti : K Regi puti : Regi →K () step : K a→ R a

The operation, geti , reads the current contents of the ith register and (puti v)
stores v in the ith register. The operation, step ϕ, makes an atomic action out
of the K -computation ϕ. Monadic operations are sometimes referred to as non-
proper morphisms.

Resumption based concurrency is best explained by an example. We define
a thread to be a (possibly infinite) sequence of “atomic operations.” Think of
an atomic operation as a single machine instruction and a thread as a stream of
such instructions characterizing program execution. Consider first that we have
two simple threads a = [a0; a1] and b = [b0]. According to the “concurrency as
interleaving” model, concurrent execution of threads a and b means the set of
all their possible interleavings: {[a0; a1; b0], [a0; b0; a1], [b0; a0; a1]}.

The ResT monad transformer introduces lazy constructors Pause and Done
that play the rôle of the lazy cons operator in the stream example above. If the
atomic operations of a and b are computations of type K (), then the computa-
tions of type R () are the set of possible interleavings:

Pause (a0 >> η(Pause (a1 >> η(Pause (b0 >> η(Done ()))))))
Pause (a0 >> η(Pause (b0 >> η(Pause (a1 >> η(Done ()))))))
Pause (b0 >> η(Pause (a0 >> η(Pause (a1 >> η(Done ()))))))

In CT, these threads would be constructed without reference to Pause and Done
using step: (step a0 >>R step a1 >>R step b0); this thread is equal to the first one
above.

Just as streams are built with a lazy “cons” operation (h : t), the resumption-
monadic version uses an analogous formulation: Pause (h >> ηt). The laziness of
Pause allows infinite computations to be constructed in R just as the laziness of
cons in (h : t) allows infinite streams to be constructed.

A refinement to the concurrency model provided by ResT , called reactive re-
sumptions [12], supports a request-and-response form of concurrent interaction,
while retaining the same notion of interleaving concurrency. Reactive concur-
rency monads also define a signal construct for sending signals between threads.
We do not consider the signal construct in this article, although it is used in the
case study in Section 6. Its implementation is similar to a procedure call.

7

(* main0 : int -> int *)

fun main0 n

= fac0 n

(* fac0 : int -> int *)

and fac0 0

= 1

| fac0 n

= n * (fac0 (n - 1))

n ⇒init 〈n,C0〉
〈0, k〉 ⇒fac 〈k , 1〉
〈n, k〉 ⇒fac 〈n − 1,C1(n, k)〉
〈C1(n, k), v〉 ⇒cont 〈k ,n×v〉
〈C0, v〉 ⇒final v

Fig. 1. Defunctionalizing Produces an Abstract State Machine. The factorial function,
fac0 (left), is transformed via defunctionalization into the state machine (right). Ex-
ample originally appears in Danvy [2].

Defunctionalization. Defunctionalization is a program transformation (due
originally to Reynolds [37] and rejuvenated of late by Danvy et al. [1, 2]) that
transforms an arbitrary higher order functional program into an equivalent ab-
stract state machine. Defunctionalization may also be performed on monadic
programs as well [2]. This section reviews defunctionalization.

(* main1 : int -> int *)
fun main1 n

= fac1 (n, fn a => a)
(* fac1 : int*(int->int)->int *)
and fac1 (0, k)

= k 1
| fac1 (n, k)
= fac1 (n - 1, fn v => k (n * v))

(* main2 : int -> int *)
fun main2 n

= fac2 (n, C0)
(* fac2:int*cont->int *)
and fac2 (0, k)

= appcont (k, 1)
| fac2 (n, k)
= fac2 (n-1, C1(n,k))

datatype cont
= C0
| C1 of int*cont

(* appcont : cont*int->int *)
fun appcont (C0, v)

= v
| appcont (C1 (n, k), v)
= appcont (k, n * v)

Fig. 2. Defunctionalization process for the factorial function. The function, fac0 (see
Fig. 1, left), is transformed into an equivalent state machine by CPS transformation
(left), closure conversion (right), and defunctionalization (see Fig. 1, right).

Defunctionalizing the factorial function (Fig. 1, left) produces an equivalent
state machine (Fig. 1, right). In this machine, there are three types of config-
urations on which the rules act; integers are initial/final configurations, pairs
of type int*cont and pairs of type cont*int. The translation first performs
the continuation-passing style (CPS) transformation (Fig. 2, left) to expose con-
trol flow and then performs closure conversion (Fig. 2, right) to represent the
machine states as concrete, first-order data. The function fac2 resulting from
closure conversion is then reformatted into the familiar arrow style for rewrite
rules (Fig. 1, right).

Defunctionalization for monadic programs proceeds along precisely the same
lines as before once the definitions for the monadic operators (i.e., η, ?, and
non-proper morphisms) are unfolded [2]. CT programs are simpler to defunc-

8

tionalize than general higher-order functions. Because the control flow within a
CT program is already made manifest by its monadic structure, the CPS trans-
formation is unnecessary. We show below in Section 5 how CT programs may
be defunctionalized.

monad K = StateT (Int) G
monad R = ResT K

actionA :: K ()
actionA = getG ?K λ g . putG (g + 1)

actionB :: K ()
actionB = getG ?K λ g . putG (g − 1)

chan :: Int → Int → R ()
chan = fix (λ κ. λ a. λ b.

step (putG a >>K actionA >>K getG) ?R λ newa.
step (putG b >>K actionB >>K getG) ?R λ newb.
κ newa newb)

main :: R ()
main = chan 0 0

Fig. 3. Example Cheap Threads program

3 Defining the Cheap Threads Language

The CT language is a proper subset of Haskell 98, extended with a special decla-
ration form for specifying monads. It shares a concrete syntax with Haskell—in
fact, any CT program may be tested in a standard Haskell environment such
as GHC or Hugs, provided that Haskell definitions are supplied for the mon-
ads declared in that program. The implementation of tuples and algebraic data
types, while straightforward, is not discussed in this paper in order to simplify
the presentation. These features are not needed for the case study.

Figure 4 gives a grammar for CT. A program consists of one or more declara-
tions, which may be a type signature, a function declaration, a data declaration,
or a monad declaration. All function declarations must be preceded by an ex-
plicit type signature. The distinguished symbol main serves as the main entry
point to the program and must have type R (). An example program is given in
Figure 3. The example defines two atomic state operations actionA and actionB ,
which respectively increment and decrement the global register G . The function

9

chan interleaves an infinite sequence of actionA operations with an infinite se-
quence of actionB . Between atomic operations, chan performs a context switch
by saving the value of G in process A, and restoring the value of G in process
B (or vice versa). As a result, the processes A and B do not affect each other’s
execution, even though they both make use of the same global register.

program ::= decl∗

decl ::= tysig
| fundecl
| datadecl
| monaddecl

fundecl ::= ident ident∗ = expr
datadecl ::=

data dtype = condecl {| condecl}∗
condecl ::= constr basetype∗

monaddecl ::= monad K = layer {+ layer}∗
| monad R = ResT K

layer ::= StateT (basetype) ident
tysig ::= ident :: type
basetype ::= Int

| Bool
| ()

| (basetype{,basetype}+)
| dtype

type ::= (type)
| basetype
| type→ type
| m basetype

pat ::=
| ident
| constr ident∗

| (ident{,ident}+)

expr ::= (expr)
| expr expr
| expr binop expr
| integer literal
| boolean literal
| -expr
| if expr then expr else expr
| case expr of

{pat → expr}∗
| (expr{,expr}+)
| ()
| expr ?m expr
| expr ?m lambda
| expr >>m expr
| ηm expr
| fix expr
| fix lambda
| getident
| putident expr
| step expr

lambda ::= (lambda)
| λident.expr
| λident.lambda

m ::= K | R

Fig. 4. Grammar for the Cheap Threads language.

While CT’s concrete syntax is borrowed from Haskell, it is fundamentally
a much simpler language. We note a few important distinctions at the outset.
Declaration Form for Monads. A special monad declaration form is used to
construct state and resumption monads. The types and morphisms associated
with these declarations are built in to the language—they are not represented
in terms of the source language. We require that a program define exactly one
state monad named K , and one resumption monad named R defined in terms
of K . Recursion Tightly Controlled, No Mutual Recursion. Recursive
functions may be defined only by explicit use of the fixed point operator fix ,
which only accepts tail-recursive functions. Any function not defined in terms of
fix is total. Recursion without fix is not possible, because the body of a function
may not refer to that function’s name, nor to any named function that does
not precede it in the source text. Algebraic data types also are not allowed to
be recursive. Simplified Type System. The type system dispenses entirely
with polymorphism and type classes. No Higher-Order Functions. The only
place where the type system allows a higher-order function to be used is as the
operand to fix . Lambda expressions are only allowed to occur on the right-hand

10

side of a monadic “bind” operator, or as the operand of fix . Simplified Pattern
Matching. Pattern matching is limited to deconstructing algebraic data types
and tuples, and may occur only in the context of a case expression. Patterns
may not be nested.

Monad Declarations. CT provides built-in support for constructing monads
from the standard state monad transformer StateT [28], as well as the resump-
tion monad transformer ResT [34, 12] for concurrency. Monads are specified by
a special declaration form, similar to (but less general than) that provided by
MonadLab [22]. The example in Figure 5 (top) defines two monads K and R.
Monad K is built from three applications of the state monad transformer, reflect-
ing a notion of state comprised of two Int-typed registers and one Bool -typed
flag. Note that StateT components must have unique names. Monad R applies
the resumption transformer to K , enabling us to express interleavings of K -
computations.

monad K = StateT(Int) Reg1 + StateT(Int) Reg2 + StateT(Bool) Flag
monad R = ResT K

getReg1 : K Int
putReg1 : Int → K ()

getReg2 : K Int
putReg2 : Int → K ()

getFlag : K Bool
putFlag : Bool → K ()

step : K a → R a

Fig. 5. Example monad declarations in Cheap Threads (top). Non-proper morphisms
produced by the declarations (bottom). N.b., step can be typed at any base type a;
CT is not polymorphic.

These declarations produce “bind” and “unit” operations for the K and
R monads, along with the non-proper morphisms for state and resumptions
given in Figure 5 (bottom). It is important to note that these operations are
primitive within the CT language; unlike their Haskell counterparts, they are
not implemented in terms of newtypes, higher-order functions, etc., but instead
are handled directly by the compiler.

Restricting Recursion. An important design consideration of CT is that it
should be implemented in a straightforward manner with loop code. To that
end, one important distinction between CT and Haskell is that recursion in CT
is strictly limited to tail recursive functions whose codomain is in the resump-
tion monad. Recursive declarations must include explicit applications of the fixed

11

point operator fix . This operator takes a function whose type is of the form:

(τ1 → τ2 → · · · → τn → R t) → (τ1 → τ2 → · · · → τn → R t)

where τ1, τ2, · · · , τn, t are base types (i.e. non-functional and non-monadic),
and iterates it. A static check, separate from the type system, enforces the re-
quirement that the iterated function be tail recursive. Algebraic data types also
are not allowed to be recursive.

Type System. CT is a simply-typed language with primitive types Int , Bool ,
and (); tuples and non-recursive algebraic data types; function types; and monadic
types. Support for higher-order functions is limited. A simply-typed system was
chosen over a polymorphic one because it makes it easier to restrict type expres-
siveness. Because the typing rules are mostly standard, we will discuss only the
unusual cases.

Due to the fact that functions are not true first-class values, partial applica-
tion is not allowed, and the use of higher-order functions is limited to the built-in
fix operator. These restrictions are expressed by the rule for application:

Γ ` e1, e2, · · · , en : τ1, τ2, · · · , τn
Γ ` f : τ1 → τ2 → · · · → τn → t

Γ ` f e1 e2 · · · en : t
(τ1, · · · , τn, t do not contain →)

Note that while this rule does not stop the programmer from defining higher-
order functions, it does preclude the application of higher-order functions. We
make this distinction rather than excise higher-order functions altogether be-
cause fix actually does operate on higher-order functions of a certain form.

The monadic “bind” and “unit” operators for each supported monad are
built in to the language. Rather than supply a single set of operators overloaded
over all monads, the operators are subscripted to make explicit the monad in
which they operate. In each of the following rules, m may stand for a monad (K
or R in Figure 5 (top)), and τ , τ ′ must be base types.

Γ ` ϕ :mτ Γ ` f : τ → mτ ′

Γ ` ϕ?m f :mτ ′
Γ ` ϕ :mτ Γ ` ϕ′ :mτ ′

Γ ` ϕ >>m ϕ′ :mτ ′

Γ ` e : τ
Γ ` ηm e :mτ

State and resumption monad operations are also built in, and have analogous
types to their Haskell counterparts [28, 34]. If the state monad K has a compo-
nent StateT (τ) Elem, it is assumed that the tags (e.g., Elem) are unique. The
state operations getElem and putElem are typed as follows:

Γ ` getElem :K τ
Γ ` e : τ

Γ ` putElem e :K ()

12

The step and fix morphisms of the R monad are typed as follows:

Γ ` ϕ :K τ

Γ ` stepϕ :Rτ
Γ ` f : (τ1 → · · · → τn → R t)→ (τ1 → · · · → τn → R t)

Γ ` fix f : τ1 → · · · → τn → R t

where τ1, τ2, · · · , τn, t are base types.

4 Compiling Cheap Threads

In this section we discuss the compilation of CT to intermediate code. The
compiler targets the intermediate language described in Table 1, which we will
refer to as the RTL. The RTL is a simple register transfer language. Two types
of registers exist: general-purpose virtual registers (rn), and “named” registers
(rs where s is a string beginning with a non-numeric character) which are used
to hold global state (i.e. state components of K).

Instruction Meaning

l: Label.
r := n Stores the constant value n in register r .
r1 := r2 Copies the value in register r2 into register r1.
r1 := r2 + r3 Adds the value stored in r2 to the value stored in r3 and stores the

result in r1.
r1 := r2 - r3 Subtracts the value stored in r3 from the value stored in r2 and

stores the result in r1.
BZero r l Jumps to label l if the value stored in r is zero.
Jump l Jumps to label l .

Table 1. The intermediate language targeted by the compiler.

It is a simple matter to generate instructions for a RISC-like architecture
from our intermediate language. We have implemented an instruction selection
phase for MicroBlaze, a 32-bit RISC soft processor designed to be run on FPGA
fabric. Instruction selection is entirely straightforward, so we omit the details.

4.1 Translation from Cheap Threads

This section describes the compilation of CT to the RTL. The compiler is imple-
mented in Haskell, using the parser from the haskell-src library. Compilation
proceeds in three passes: type checking (see Section 3), inlining, and code gen-
eration.

Inlining. In the inlining pass, all calls to non-recursive functions are inlined,
starting with main at the root of the call tree. The output from the inliner is
essentially one “giant term” in which the only function applications that occur

13

are those of recursive functions, and the only variable references that occur are
to λ-bound variables, which may appear only in a function passed to fix or on
the right-hand side of ?m.

Code Generation. After inlining, we generate code for the resulting term in
a syntax-directed fashion. The code generation function codegen returns a se-
quence of RTL commands implementing the source expression, and the register in
which those commands store the result, if any. Let CtExpr be the data type cor-
responding to expr in Figure 4, and RtlCom be the data type representing RTL
commands. Then the type of codegen is CtExpr → CM ([RtlCom],Register),
where CM is a monad providing mechanisms for generating fresh registers and
labels, and binding variables to registers.

Notational Convention. For the sake of brevity, we will describe the transla-
tion rules according to the convention that peq is the code generated by trans-
lating the expression e, and anywhere after an occurrence of peq, we may refer to
the register in which e’s result is stored as re. That is, peq is the list of RtlComs
returned by codegen e, and re is the Register returned by codegen e. We use
Haskell-style comments (beginning with a long dash — and extending to the
end of a source line), and a comment at the end of the translation rule indicates
which register is the result register.

Compiling Pure Expressions. We first consider the compilation of pure, that
is non-monadic, expressions. If the expression to be compiled is of type Int , Bool ,
or (), the result is simply stored in a freshly-generated register. For example, we
compile addition as follows:

pe1 + e2q = pe1q ; pe2q ; r := re1 + re2

— Where r is fresh. Result register is r.

Values of type () have no result register.

Compiling Monadic Expressions. The ?m and >>m operators are compiled
much like function composition. Assume without loss of generality that terms
on the right-hand side of ?m are always λ-expressions. Then:

pϕ?m λx .χq = pϕq ; pχ[x 7→ rϕ]q — Result register is rχ.
pϕ >>m ϕ′q = pϕq ; pϕ′q — Result register is rϕ′ .

where pχ[x 7→ rϕ]q denotes that χ is compiled in the current environment, ex-
tended by binding variable x to register rϕ.

The “unit” operator ηm serves to inject pure computations into a monad. The
resumption monad operator step serves a similar function, lifting K computa-
tions into R. For step we generate a label to delineate “step-ed” state operations;
for the purposes of this paper, these labels are purely informational.

pηm eq = peq — Result register is re.
pstepϕq = l : pϕq — Where label l is fresh. Result register is rϕ.

14

Finally, the state monad morphisms getElem and putElem simply read or
modify the associated register rElem.

pgetElemq = r := rElem — Where r is fresh. Result register is r.
pputElem eq = peq ; rElem := re — No result register.

Compiling fix. As we mentioned previously, functions produced by the fix
operator must be tail recursive. This means that we can compile applications
of fix to simple loop code. Let f be any function satisfying this condition, with
parameters named κ, v1, v2, · · · , vn. Call the body of this function b.

p(fix f) e1 e2 · · · enq = pe1q ; pe2q ; · · · penq
l :

pbq — in a special environment—see below
— Where label l is fresh. Result register is rb.

Expression b is compiled in an environment where v1, v2, · · · , vn are bound to
registers re1 , re2 , · · · , ren

, and in which application of κ is compiled by the fol-
lowing special rule:

pκ e ′1 · · · e ′nq = pe ′1q ; pe ′2q ; · · · ; pe ′nq
re1 := re′1

; re2 := re′2
; · · · ; ren

:= re′n
Jump l

— No result register.

Note that the translation schema given above is slightly simplified in that it
produces a separate loop for each (outermost) application of a recursive func-
tion, resulting in code duplication. This duplication can easily be avoided by
memoizing the label at which pbq is stored.

Example. Figure 6 gives the code generated for the example program in Fig-
ure 3. Each monadic operation compiles to only a handful of RTL instructions.
The resulting code contains only 17 instructions, which one may reasonably
expect, at an extremely conservative estimate, to translate to at most a few
hundred machine language instructions on any given architecture.

By comparison, ghc-6.10.1 compiling the same code produces a 650-kilobyte
binary when targeting x86 on Windows with optimization enabled (disabling
optimization produces a slightly larger binary). We believe that most of this
code (432 kilobytes) is accounted for by the Haskell runtime system, and much
of the remainder is code for various prelude and library functions. Of course,
we do not claim that this comparison provides evidence that the CT compiler
is “better” than GHC—obviously, GHC compiles a far more expressive source
language, and therefore an increase in code size is inevitable. But the comparison
does highlight a major advantage of a directly-compiled DSL over one embedded
in Haskell: the code produced by Cheap Threads is several orders of magnitude
smaller, making it more suitable for use in embedded systems.

15

-- Init G-save for A and B
r1 := 0
r2 := 0

mainloop:
l1:

-- Restore G for process A
rG := r1
-- Execute actionA
r3 := rG
r4 := 1
r5 := r3 + r4
rG := r5
r6 := rG

l2:
-- Restore G for process B
rG := r2
-- Execute actionB
r7 := rG
r8 := 1
r9 := r7 - r8
rG := r9
r10 := rG
-- Save G vals for next iteration
r1 := r6
r2 := r10
-- Loop
Jump mainloop

Fig. 6. RTL code for the program in Figure 3

5 Synthesizing Circuits from Cheap Threads Programs

Producing a circuit from a Cheap Threads program proceeds in two steps. First,
the source program is defunctionalized, producing an abstract state machine
that is readily formatted in the syntax of the FSMLang DSL. The FSMLang
compiler is used to produce VHDL code from which a hardware implementation
on an FPGA may be synthesized. Section 5.1 defines the defunctionalization
transformation for CT. Section 5.2 describes the design and syntax of FSMLang.

5.1 Defunctionalizing Cheap Threads.

This section formulates the defunctionalization transformation for CT. The re-
sulting state machine, 〈States,Rules〉, consists of a set of states, States, and a
set of transformation rules, Rules, of type States → States. Defunctionalization
takes place “by layer” in that terms typed in K are defunctionalized separately
from those typed in R.

Defunctionalizing Layered State Monads. The states and rules of the tar-
get machine arise directly from the definitions of K and the source term being
transformed, respectively. Let us assume that K is a state monad of the form,
K = StateT Reg1 (· · · (StateT Regn I) · · ·). The elements of States are tuples
determined by (1) the λ-bound variables within the program, (2) the states Regi

within monad K , and an additional component for the value returned by the
computation. Variables bound by λ are assumed without loss of generality to
be unique and any fix bound variables (e.g., the “κ” in “fix(λκ. · · ·)”) are not
considered λ-bound. For the language defined in Section 3, the type of return
values will always be one of Int , Bool , or (); let type Val = Int + Bool + ().

Taking this into consideration, the elements of States of the target machine
have type Reg1× · · ·×Regn×Var1× · · ·×Varm×Val . For each λ-bound variable
or state in K , there is a corresponding component within the States type. Define
c as the total number of components as: c = m + n. We define the update and

16

read transitions, updx and readxi
, as:

(x1, · · · , x , · · · , xc , v) 7→updx
(x1, · · · , v , · · · , xc , v)

(x1, . . . , xi , . . . , xc , v) 7→readxi
(x1, . . . , xi , . . . , xc , xi)

The updx transition sets the x “slot” to the value component while the readxi

transition sets the value component to the current contents of xi .
Each K term gives rise to one rule only and is derived in a syntax-directed

manner. The get, put and unit operations are straightforward. Below, assume
that 1 ≤ i ≤ n (i.e., puti and geti are defined only on components corresponding
to K states) and let s = (x1, . . . , xc , v) be the input state in:

K dputi ee = s 7→ (x1, . . . , eval e s, . . . , xc , ())
K dgetie = readxi

K dηK ee = s 7→ (x1, . . . , xc , eval e s)

The unit computation, ηK e, is defunctionalized to a transition that only updates
the return value state component to the value of e in the input state s, eval e s.
The definition of eval is not given as it is an unremarkable expression interpreter.
Note that, by construction, expression e will be of base type and will only refer
to the components corresponding to λ-bound variables.

The bind operations for K , ?K and >>K, are defined in terms of function
composition. The transitions are total endofunctions on system configurations
and, therefore, possess the standard notion of function composition.

K dϕ >>K γe = K dγe ◦ K dϕe
K dϕ?K λx .γe = K dγe ◦ updx ◦ K dϕe

Defunctionalizing R. This section first describes the defunctionalization of the
resumption layer at a high level. Then equations formulating Rd−e are given
next. Finally, the results of defunctionalizing the running example are then pre-
sented. Defunctionalizing an R computation produces a state machine whose
state type includes one more component than does K ’s:

PC×Reg1× · · ·×Regn×Var1× · · ·×Varm×Val where PC = Int

This additional component may be thought of as a “program counter” repre-
sented as an Int . The resulting state machine also includes multiple transitions.

High-level overview. Whereas layered state adds functionality to CT languages
in the form of put and get operations, the resumption layer adds control mech-
anisms in the form of step and fix . Roughly speaking, an R-computation is a
sequence of K -computations chained together by ?R or >>R; using only >>R for
presentation purposes, an R-computation looks like:

(step ϕ1) >>R · · · >>R (step ϕj)

17

Defunctionalizing each (step ϕi) is performed by applying Kd−e to each ϕi and
thereby producing a single corresponding rule, li 7→ri . Defunctionalizing >>R in
the above makes the control flow explicit by attaching a “program counter”
(starting without loss of generality from 1) to states; this produces the set of
rules:

{(1, l1) 7→(2, r1), . . . , (j−1, lj−1)7→(j, rj−1)}

Consider now a fixed computation, fix (λκ.λx̄ .γ). As it is tail recursive, oc-
currences of a recursive call, κ ē : R Val , will be accomplished by a rule that
(1) updates the state variables corresponding to λ-bound variables x̄ to the ar-
guments ē and (2) changing the program counter component to point to the
“beginning” of γ.

Detailed formulation. We present the equations defining Rd−e in a Haskell-like
notation, suppressing certain representation details for the sake of clarity. These
equations are written in terms of a layered monad, M , containing an integer state
for generating labels and an environment mapping recursively bound variables
to their formal parameters. The specification of monad M is given in the Mon-
adLab DSL [22], which allows monads to be specified simply in terms of monad
transformers and hides certain technical details (e.g., order of application and
lifting of operations through transformers):

monad M = EnvT (Bindings) Env + StateT (Int)
type Bindings = Var → [Var]
type Var = String

MonadLab generates Haskell code defining the first four functions below; the
last operator is defined as: counter = get >>= λi . put (i + 1) >> return i .

rdEnv :: M Bindings — read current bindings
inEnv :: Bindings →M a→M a — resets current bindings
get :: M Int
put :: Int → M ()
counter :: M Int — gensym-like label generator

The defunctionalization, Rdee, is a computation of the transitions corre-
sponding to e. Defunctionalizing a stepped K -computation first defunctional-
izes its argument (ϕ), producing a transition, l 7→r. This K -transition is con-
verted into an R-transition by adjoining program counter components to both
sides; (i, (x1, . . . , xc, v)) is identified with (i, x1, . . . , xc, v). The unit computation,
(ηR e), is translated analogously to step:

Rd−e :: CTExpr → M [Rule]
Rdstep ϕe = counter >>= λi . return [(i , l) 7→ (i+1, r)]

where (l 7→r) = Kdϕe
RdηR ee = counter >>= λi . return [(i , l) 7→ (i+1, r)]

where (l 7→r) = KdηK ee

18

To defunctionalize a recursive expression, one first gets the next fresh label (i)
and reads the current bindings (β). In an expanded environment (β′) that binds
the recursive variable (κ) to its formal parameters (v1, . . . , vm), the body (e) is
defunctionalized to a list of rules (ρ). Assuming there is a unique label associated
with κ, called Lκ, the transition list ρ is augmented with a transition, mkstart κ i,
that serves as the “beginning of the loop”; the augmented list is returned:

Rdfix (λκ.λv1. · · ·λvl .e)e = get >>= λi.
rdEnv >>= λβ.
(inEnv β′ Rdee) >>= λρ.

return (mkstart κ i : ρ)

where
β′ = β{κ:=[v1, . . . , vl]}
mkstart κ i = (Lκ, x1, · · · , xc , v) 7→ (i , x1, · · · , xc , v)

A recursive call is translated to a transition that takes an input state and
moves to a state with label Lκ (defined above) and, in effect, this transition
jumps to the head of the “loop”. For the sake of simplifying the presentation,
the definition below only gives the case where κ has one argument (i.e., κ has
type τ → Rτ ′); the full definition is analogous. This recursive call occurs within
the body of an expression of form, fix (λκ.λx . body). In the following, assume
that x is the inner λ-bound variable represented in the state configuration:

Rdκee = counter >>= λi.
return [(i, x1, . . . , x, . . . , xc, v) 7→ (Lκ, x1, . . . , eval e s, . . . , xc, v)]

where s = (x1, . . . , x, . . . , xc, v)

This presentation is simplified also in that the details of looking up x in the
bindings for κ are suppressed. Defining Rd−e for the bind operations:

Rdγ >>R χe = Rdγe >>= λρ1.Rdχe >>= λρ2. return (ρ1++ρ2)
Rdγ ?R λv .χe = Rdγe >>= λ[ρ1]. Rdχe >>= λρ2. return (f v ρ1 : ρ2)

where
f :: Var→ Rule→ Rule
f v ((i , s)7→(i ′, s ′)) = ((i , s)7→(i ′, upd v s ′))

Example. Returning to the running example presented in Fig. 3; the relevant
portion of the channel code is:

chan :: Reg1→ Reg2→ R ()
chan = fix (λk. λa. λb.

step (putG a >>K actionA >>K getG) ?R λnewa.
step (putG b >>K actionB >>K getG) ?R λnewb.
k newa newb)

Multiple declarations can be easily accommodated, but rather than elaborate

19

on such details, assume that the two actions stand for particular transitions:

(a, b,newa,newb, reg , val) 7→ (a, b,newa,newb, reg+1, ()) — actionA
(a, b,newa,newb, reg , val) 7→ (a, b,newa,newb, reg−1, ()) — actionB

The transitions of the state machine produced by defunctionalization are then:

initial_state = k

(k,a,b,newa,newb,r,v) -> (1,a,b,newa,newb,r,v)

(1,a,b,newa,newb,r,v) -> (2,a,b,a+1,newb,a+1,a+1)

(2,a,b,newa,newb,r,v) -> (3,a,b,newa,b-1,b-1,b-1)

(3,a,b,newa,newb,r,v) -> (k,newa,newb,newa,newb,r,v)

These transitions may be easily reformatted in FSMLang syntax:

initial_state = state_k

state_k -> state_1 where

{ }

state_1 -> state_2 where

{ newa’ <= a+1;

r’ <= a+1;

v’ <= a+1; }

state_2 -> state_3 where

{ newb’ <= b-1;

r’ <= b-1;

v’ <= b-1; }

state_3 -> state_k where

{ a’ <= newa;

b’ <= newb; }

This constitutes the TRANS section of an FSMLang implementation. The full
version includes headers defining a number of initial conditions (e.g., values and
sizes of registers, etc.). FSMLang syntax is defined below.

5.2 Overview of FSMLang

FSMLang is a domain-specific language (DSL) for describing finite-state ma-
chines (FSMs) [3]. FSMLang targets the configurable logic, embedded memories,
and soft-core processors that can be found in modern platform Xilinx FPGAs.
FSMLang eliminates the need for a programmer to manually control sensitivity
lists, state enumerations, FSM reset behavior, and FSM default output behav-
ior. FSMLang descriptions are much smaller, and less cluttered, than equivalent
code written in an HDL. Additionally, the FSMLang compiler is re-targetable –
while we focus here on producing hardware, it is also capable of producing FSM
implementations in software.

The structure and syntax of an FSMLang program is shown in Figure 7. The
TRANS section defines the transitions of the state machine. The defunctionalized
Cheap Threads program is formatted directly into FSMLang and insert into the
TRANS section of a template with the other sections defined.

20

-- Internal state signal names
CS: <current_state_signal_name>;
NS: <next_state_signal_name>;

-- Compile-time variables
GENERICS:

(<genName>, <type>, <static_value>;)*

-- Definitions of input/output ports
PORTS:

(<portName>, <in|out>, <type>;)*
CONNECTIONS:

(<outputPortName> <= <rhs>;)*

-- Definitions of memories
MEMS:
(<mName>,
<dataWidth>, <addrWidth> [,EXTERNAL];)*

-- Definitions of FIFO channels
CHANNELS:

(<channelName>, <dataWidth>;)*

-- Internal FSM signals
SIGS:

(<sigName>, <type>;)*

-- Definition of logic/transitions
INITIAL:

<stateName>;
TRANS:
(
<curr_st> [|<bool_guard>] -> <next_st>

[where { (<lhs> <= <rhs>;)* }]
)*

-- Native VHDL Definitions
VHDL: <un-parsed VHDL code>

Fig. 7. FSMLang Program Structure and Syntax.

6 Application: Huffman Encoding

Cheap Threads serves as a basis for generating efficient software and hardware
implementations from a monadic model. The ability to generate both hardware
and software components of a complete system is of major benefit when con-
structing embedded systems because it allows performance-critical elements to
be compiled into hardware, capitalizing on the implicit parallelism that that
fabric provides, while at the same time allowing less performance-critical com-
ponents to standard microprocessors.

The Computer Systems Design Laboratory at the University of Kansas has
used monad compilation for the implementation of software-defined radios. In
contrast to a traditional radio, which generally consists of a series of analog
and digital hardware components to implement a specific type of radio (called a
waveform in the nomenclature of the domain), a software-defined radio (SDR)
uses the flexibility of the (traditionally software) platform to allow the radio
to be reconfigured to support a variety of different waveforms, as application
requirements demand [30].

A typical software defined radio will include a variety of components per-
forming digital signal processing such as modulation, spreading, error correc-
tion, compression, and encryption. As an example component, Figure 8 shows
the definition of a simple Huffman decoder component. Huffman compression is
a simple form of data compression which encodes fixed-sized data into stream
of variable-sized symbols, and decoding performs the inverse operation. For ex-
ample, in the decoder definition, the component converts a stream of bits into
a stream of integers. The number of bits needed to represent an integer on the
input stream varies depending on the frequency that a particular integer occurs
in the original (uncompressed) text. This allows integers that occur relatively
frequently to be encoded with fewer bits, which in turn reduces the number of
bits that must be transmitted.

21

data Node = Emit Int | Branch Int Int
data BMsg = BRead | BWrite Bit | BVal Bit
data IMsg = IRead | IWrite Int | IVal Int
data Bit = Low |High

decoder pos tree input output =
get tree pos ?R λval.
case val of
Emit v → signal output (IWrite v) >>R decoder 0 tree input output
Branch l r → signal input BRead ?R λi.

case i of
BVal bit → case bit of

Low → decoder l tree input output
High → decoder r tree input output

Fig. 8. Huffman Decoder. In this example, the fix is implicit and the R monad includes
another operator, signal. See the text for further description.

The decoder uses a tree to represent the encoding of integers. The path from
the root of the tree to a leaf identifies the encoding of the integer stored at that
leaf. Cheap Threads does not allow recursive data types, so a tree is represented
using a state monad, where each value in the state is a Node. A Node can either be
Emit, which indicates an integer value, or Branch, which indicates an additional
bit is needed to encode the values in the sub-trees. The two fields for the Branch
constructor represent the addresses of the left and right child nodes in the state.
To generate the encoding for a node, follow the path from the root of the tree
(at address 0). At each Branch, if the path enters the left child, then generate a
0 (Low) bit, and if the path enters the right child, generate a 1 (High) bit.

For example, consider the Huffman tree representing the encoding for ar-
bitrary integers a, b, and c. Given an encoding with a as “0”, b as “10”,
and c as “11”, the associated tree written using a recursive tree structure is
Branch (Emit a) (Branch (Emit b) (Emit c)). The non-recursive store represen-
tation for this tree using the Node structure, mapping integer addresses to Node
values, is 0 7→ Node 1 2, 1 7→ Emit a, 2 7→ Node 3 4, 3 7→ Emit b, 4 7→ Emit c.

The decoder component in Figure 8 takes advantage of an additional monadic
construct, called signal, which allows isolated concurrent computations to com-
municate using a message passing scheme. The semantics of signal have been
described in detail elsewhere [12], as has the compilation of the construct to
VHDL and C [23]. In simple terms, signal takes request and passes it to an
external entity which interprets the request and generates a response. The com-
putation that generates the request is blocked until a response is generated. As
such, the construct models an alternative form of concurrency based on message
passing, rather than shared state.

In the implementation of the Huffman decoder, the signal construct is used
to model the consumption of values from an input stream, one at a time, and
to generate values on an output stream. This behavior replaces the common use

22

of lazy lists in languages such as Haskell to model infinite streams, defining the
stream transformation notion of computation in the monadic model rather than
in the host language.

The decoder function receives the encoded stream one bit at a time. The pos
argument to the function is used to track the current position of the decoder as
an address in the state, identified by the tree parameter. If that address contains
an Emit value, then the decoder sends that value, using the signal construct, on
the output stream. Alternatively, if the current position contains a Branch node,
then the decoder will read a value from the input stream, again using the signal
construct. The decoder then makes a tail call, using the value of the input bit
to determine the value of the pos parameter.

Having defined the Huffman decoder, the component can be compiled to
either a hardware or a software implementation and then integrated into the
overall desired radio waveform. Moreover, the monadic representation of the
component provides a sound basis for constructing an assurance argument for
the correctness of the component, a key capability in the software defined radio
domain. Compiling the monadic model directly to an executable implementation
eliminates the gap between the model used for verification and the resulting
implementation.

7 Conclusions

This article presents a foundation for the model-driven engineering of concur-
rent systems based in semantics-directed compilation. The main vehicle for this
approach is the Cheap Threads domain-specific language which encapsulates
shared-state concurrency with direct support for state and resumption monads.
Cheap Threads may be compiled in a straightforward manner to either a fixed
instruction set or to hardware. The defunctionalization program transformation,
furthermore, seems to be well-suited to the generation of hardware implementa-
tions of Cheap Threads programs.

Defunctionalization is a well-known technique that remained little used until
recently. According to Danvy and Nielsen [8], “compared to closure conversion
and to combinator conversion, defunctionalization has been used very little.” We
believe that hardware synthesis from a declarative language is an attractive and
practical use-case for defunctionalization. The growing prevalence of FPGA and
reconfigurable computing technologies means that expressive source languages
for mixed hardware/software systems will only become more important, and this
article provides evidence that the state machines produced by defunctionaliza-
tion are a natural fit for hardware synthesis.

A substantial case study of the compilation of monadic programs to hard-
ware and software has been presented as well, in the form of a Huffman decoder
for a software-defined radio. Other substantial examples may be found in Kim-
mell [23]. These case studies indicate that the approach to MDE described here
seems to “scale up” and other applications (esp., monadic separation kernels)
are currently under development. Monadic modeling provides a formal basis for

23

verifying high assurance properties of the targeted artifacts. It is expected that
the semantics-directed basis will yield benefits in this regard, although formal
verification has been left for future work.

Future Work. Hardware/software co-design presents system designers with a
continuum: at one end, a system may be implemented entirely in software, and
at the other end, it may be implemented entirely in hardware. The present
work has explored the extrema of this continuum. An important question for
future research is: can we compile some parts of a Cheap Threads program
to hardware, and other parts to software, in an efficient manner? One challenge
here is in devising an efficient interface for communication between hardware and
software logic. Previous work on the Hybridthreads project [4] at the University
of Kansas and the University of Arkansas has explored this problem, using C
and the POSIX threads API for mixed-target synthesis.

A particularly interesting follow-on revisits a classic paper by Wand [42]
which describes a method for deriving abstract machine instruction sets from
source language semantics. Modern FPGA technology may enable us to apply
similar techniques to synthesize soft processors that directly implement such a
derived instruction set. The defunctionalization-based techniques may well shed
new light on this classic research.

The High Assurance Security Kernel (HASK) Lab at the University of Mis-
souri is exploring the use of the techniques described here to implement formally
verifiable monadic security kernels [15, 14] in hardware and software. The Cheap
Threads language, when extended with support for system calls, protected mem-
ory, and asynchronous exceptions [33, 13], will provide a separation kernel mod-
eling language with a clear semantics that supports formal verification.

References

1. M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional correspon-
dence between evaluators and abstract machines. In Proceedings of the 5th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP03), pages 8–19, New York, NY, USA, 2003. ACM Press.

2. M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science, 342(1):149–172, 2005. Extended version avail-
able as BRICS technical report RS-4-28.

3. J. Agron. Domain-specific language for HW/SW co-design for FPGAs. In Pro-
ceedings of the IFIP Working Conference on Domain Specific Languages (DSL09)
(to appear), July 2009.

4. D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass.
hthreads: a hardware/software co-designed multithreaded RTOS kernel. In Pro-
ceedings of the 10th IEEE Conference on Emerging Technologies and Factory Au-
tomation (ETFA05), Sept. 2005.

5. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
6. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in Haskell.

In Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming (ICFP98), pages 174–184, New York, NY, USA, 1998.

24

7. J. Dai, B. Huang, L. Li, and L. Harrison. Automatically partitioning packet pro-
cessing applications for pipelined architectures. SIGPLAN Notices, 40(6):237–248,
2005.

8. O. Danvy and L. R. Nielsen. Defunctionalization at work. In Proceedings of
the 3rd ACM International Conference on Principles and Practice of Declarative
Programming (PPDP01), pages 162–174, 2001.

9. A. Filinski. Representing layered monads. In Proceedings of the 26st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL99), pages 175–188. ACM Press, 1999.

10. K. Hammond and G. Michaelson. Hume: A domain-specific language for real-time
embedded systems. In Proceedings of the 2nd International Conf. on Generative
Programming and Component Engineering (GPCE03), pages 37–56, 2003.

11. W. Harrison. A simple semantics for polymorphic recursion. In Proceedings of the
3rd Asian Symposium on Programming Languages and Systems (APLAS05), pages
37–51, 2005.

12. W. Harrison. The essence of multitasking. In Proceedings of the 11th International
Conference on Algebraic Methodology and Software Technology (AMAST06), pages
158–172, July 2006.

13. W. Harrison, G. Allwein, A. Gill, and A. Procter. Asynchronous exceptions as an
effect. In Proceedings of the 9th International Conference on the Mathematics of
Program Construction (MPC08), volume 5133 of LNCS, pages 153–176, 2008.

14. W. Harrison and J. Hook. Achieving information flow security through precise
control of effects. In Proceedings of the 18th IEEE Computer Security Foundations
Workshop (CSFW05), pages 16–30, Aix-en-Provence, France, June 2005.

15. W. Harrison and J. Hook. Achieving information flow security through monadic
control of effects. Invited submission to: Journal of Computer Security, 2008. 51
pages. In press. Extends [14].

16. W. Harrison and S. Kamin. Metacomputation-based compiler architecture. In 5th
International Conference on the Mathematics of Program Construction (MPC00),
volume 1837 of LNCS, pages 213–229, 2000.

17. W. Harrison and R. Kieburtz. The logic of demand in Haskell. Journal of Func-
tional Programming, 15(5):837–891, 2005.

18. W. Harrison and A. Procter. Cheap (but functional) threads. 44 pages. Submitted
for publication to Higher-Order and Symbolic Computation; extends [12].

19. G. Hutton and J. Wright. Compiling exceptions correctly. In Proceedings of the 7th
International Conference on the Mathematics of Program Construction (MPC04),
volume 3125 of Lecture Notes in Computer Science, Stirling, Scotland, July 2004.

20. G. Hutton and J. Wright. Calculating an exceptional machine. In Hans-Wolfgang
Loidl, editor, Trends in Functional Programming, volume 5. February 2006.

21. P. Johann and J. Voigtländer. Free theorems in the presence of seq . In Proceedings
of the 31st ACM SIGPLAN Symposum on Principles of Programming Languages,
pages 99–110, January 2004.

22. P. Kariotis, A. Procter, and W. Harrison. Making monads first-class with Tem-
plate Haskell. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell
(Haskell08), pages 99–110, 2008.

23. G. Kimmell. System Synthesis from a Monadic Functional Language. PhD thesis,
University of Kansas, 2008.

24. J. Lawall, G. Muller, and H. Duchesne. Language design for implementing process
scheduling hierarchies. In Proceedings of the ACM Symposium on Partial Evalua-
tion and Program Manipulation (PEPM04), pages 80–91, August 2004.

25

25. P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An operating system for
wireless sensor networks. In Ambient Intelligence. Springer-Verlag, 2005.

26. P. Li and S. Zdancewic. Combining events and threads for scalable network services
implementation and evaluation of monadic, application-level concurrency primi-
tives. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (PLDI06), pages 189–199, 2007.

27. S. Liang and P. Hudak. Modular denotational semantics for compiler construction.
In Proceedings of the 6th European Symposium on Programming (ESOP96), volume
1058 of Lecture Notes in Computer Science, pages 219–234, 1996.

28. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL95), pages 333–343. ACM Press, 1995.

29. J. Matthews, B. Cook, and J. Launchbury. Microprocessor Specification in Hawk.
In Proc. of the Intl. Conf. on Computer Languages (ICCL98), pages 90–101, 1998.

30. G. J. Minden, J.B. Evans, L. Searl, D. DePardo, V.R. Petty, R. Rajbanshi, T. New-
man, Q. Chen, F. Weidling, J. Guffey, D. Datla, B. Barker, M. Peck, B. Cordill,
A. M. Wyglinski, and A. Agah. KUAR: A Flexible Software-Defined Radio Devel-
opment Platform. In 2nd IEEE Symposium on New Frontiers in Dynamic Spectrum
Access Networks (DySPAN), Dublin, Ireland, April 2007.

31. E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, Dept. of Computer Science, Edinburgh Univ., 1990.

32. A. Mycroft and R. Sharp. A statically allocated parallel functional language. In
Proceedings of the 27th International Colloquium on Automata, Languages and
Programming (ICALP00), pages 37–48. Springer-Verlag, 2000.

33. J. Palsberg and D. Ma. A typed interrupt calculus. In Proceedings of the 7th
International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT02), pages 291–310, London, UK, 2002. Springer-Verlag.

34. N. Papaspyrou. A resumption monad transformer and its applications in the se-
mantics of Concurrency. In Proceedings of the 3rd Panhellenic Logic Symposium,
2001. An expanded technical report is available from the author by request.

35. L. Paulson. A semantics-directed compiler generator. In Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL82), pages 224–233, 1982.

36. S. Peyton Jones, editor. Haskell 98 Language and Libraries, Revised Report. Cam-
bridge Univ. Press, April 2003.

37. J. Reynolds. Definitional interpreters for higher order programming languages.
ACM Conference Proceedings, pages 717–740, 1972.

38. M. Roper and R. Olsson. Developing embedded multi-threaded applications with
CATAPULTS, a domain-specific language for generating thread schedulers. In
Proceedings of the 2005 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES05), pages 295–303, 2005.

39. D. C. Schmidt. Model-driven engineering. IEEE Computer, 39(2), February 2006.
40. R. Sharp and A. Mycroft. The FLaSh compiler: efficient circuits from functional

specifications. Technical Report tr.2000.3, AT&T Research, 2000.
41. T. Sheard, Z. Benaissa, and E. Pasalic. DSL implementation using staging and

monads. In Proceedings of the 2nd Conference on Domain-Specific Languages,
pages 81–94, Berkeley, CA, October 3–5 1999. USENIX Association.

42. M. Wand. Semantics-directed machine architecture. In Proceedings of the 9th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL82), pages
234–241, New York, NY, USA, 1982. ACM Press.

