A MuDDy Experience-ML Bindings To A BDD
Library

Ken Friis Larsen*

Department of Computer Science, University of Copenhagen
Njalsgade 132, DK-2300 Copenhagen S, Denmark
kflarsen@diku.dk

Abstract. Binary Decision Diagrams (BDDs) are a data structure used
to efficiently represent boolean expressions on canonical form. BDDs are
often the core data structure in model checkers. MuDDy is an ML inter-
face (both for Standard ML and Objective Caml) to the BDD package
BuDDy that is written in C. This combination of an ML interface to
a high-performance C library is surprisingly fruitful. ML allows you to
quickly experiment with high-level symbolic algorithms before handing
over the grunt work to the C library. I show how, with a relatively lit-
tle effort, you can make a domain specific language for concurrent finite
state-machines embedded in Standard ML and then write various cus-
tom model-checking algorithms for this domain specific embedded lan-
guage (DSEL).

1 Introduction

The aim of this paper is twofold. Firstly, I show how a simple domain specific
language for specifying concurrent finite state machines can be embedded in
Standard ML. The combination of a high-level functional language and a BDD
package allows us to make some lightweight experiments with model checking
algorithms: lightweight in the sense that the approach has a low start-up cost in
terms of programmer time. Furthermore, I show that there is no loss of perfor-
mance using ML compared to using C or C++.

Secondly, I would like to advocate the data structure binary decision diagrams
(BDDs). BDDs are used to efficiently represent boolean expression on canonical
form. The canonical form makes it possible to check whether two expressions are
equivalent in constant time. Therefore, BDDs are often a core data structure in
model checkers and similar tool. BDDs are naturally presented as a persistent
abstract data type, hence it is a good fit for functional programming languages.
Because first order logic is generally useful as a symbolic modelling language
BDDs can also be used for applications other than model checking such as, for
instance, program analysis. However, in this paper I concentrate on examples of
simple model checking algorithms. To work with BDDs I use our ML interface,

* Supported by the Danish National Advanced Technology Foundation through the
3gERP project.

Fig. 1. Example BDD representing (z < y) A -z, with variable ordering x <
y < z. Dashed edges represent the case where the variable in a node is false and
full edges represent the case where the variable is true. The two special nodes 0
(zero) and 1 (one) represents false and true respectively.

MuDDy, to the BDD C library called BuDDy. MuDDy contains both a Standard
ML interface (for MLton and Moscow ML) and an Objective Caml interface.
Because MuDDy contains both a Standard ML and an Objective Caml interface,
I use “ML” when it does not matter which dialect is used.

The remainder of the paper is structured as follows, Section [2| contains a
short introduction to BDDs, Section [3| introduces the domain specific language
SGCL and shows how it can be embedded in Standard ML, Section [f] shows how
to implement some model check algorithms for SGCL, Section [5] compares the
performance of a reachable state-space computation programmed in Standard
ML, Objective Caml, C++, and C. Finally, Section [6] reviews related work and
Section [concludes.

2 Binary Decision Diagrams

BDDs are directed acyclic graphs (DAGs) used to represent boolean expressions|1].
The main feature of BDDs is that they provide constant time equivalence test-

ing of boolean expressions, and for that reason BDDs are often used in model

checkers and theorem provers. The expressions, exp, represented by BDDs can

be described by the following grammar:

exp ::=true | false | = | exp, con expy | —exp
| (z1,za,...,2,) exp | V(21,29,...,2,) €xp

where con is one of the usual boolean connectives, and x ranges over boolean
variables, with one unusual requirement: there is a total order of all variables.

signature bdd =

sig
type bdd
type varnum = int
val TRUE : bdd
val FALSE : bdd
val ithvar : varnum -> bdd
val OR : bdd * bdd -> bdd
val AND : bdd * bdd -> bdd
val IMP : bdd * bdd -> bdd
type varSet
val makeset : varnum list -> varSet
val exist : varSet -> bdd -> bdd
val forall : varSet -> bdd -> bdd
val equal : bdd -> bdd -> bool
end

structure bdd :> bdd = ...
Fig. 2. Cut-down version of the Standard ML module bdd from MuDDy

Figure [I] shows a graphical representation of a BDD. The important thing
to note is that nodes that represent semantically equivalent boolean expressions
are always shared.

2.1 The MuDDy Interface

Figure [2| shows a cut-down version of the Standard ML signature bdd from
MuDDy (for now we shall ignore initialization of the library, see Section
for more details), the structure bdd implements the signature bdd!'. The only
surprising thing in this interface is the representation of boolean variables, the
type varnum, as integers and not strings as you might have expected. Thus,
to construct a BDD that represents z; (the i’th variable in the total order of
variables) you call the function ithvar with ¢ as argument.

Using this interface it is now straight forward to build a BDD, b, correspond-
ing to the tautology ((zo = 1) A xg) = x; (assuming that the bdd structure
has been opened, initialised, and the proper infix declarations have been made):

val (x0, x1) = (ithvar 0, ithvar 1)
val b = ((xO IMP x1) AND x0) IMP x1

We can now check that b is indeed a tautology. That is, b is to (the BDD) TRUE:
- equal b TRUE;
> val it = true : bool

! Tt is the standard Moscow ML and Objective Caml convention that a structure A
implements signature A (opaque matching) I use that convention throughout the
article

2.2 Motivation and Background for MuDDy

Why does it make sense to interface to a BDD package implemented in C rather
than write a BDD package directly in ML? The obvious reason is reuse of code.
When somebody already has implemented a good library then there is no reason
not to reuse it (if possible).

Secondly, high performance is a necessity (if you want to handle problems of
an interesting size) because BDDs are used to tackle a NP complete problem.
Even a tiny constant factor has a great impact if it is in an operation that is
performed exponentially many times. This is the reason why it is hard to write
a high performing BDD package in a high-level programming language.

BDDs are directed acyclic graphs where all nodes have the same size. Thus,
lots of performance can be gained by implementing custom memory management
routines for BDD nodes in C.

The three main advantages of the ML wrapping are:

— The garbage collector in ML takes care of the reference counting interface
to BuDDy. Thus, freeing the programmer from this burden (see Section
to see why this is important).

— Compared to the C interface, the ML API is more strongly typed, which
makes it impossible to, say, confuse a set of variables with a BDD (which is
represented by the same data structure in BuDDy).

— The interactive environment makes it useful in education, because the stu-
dents can easily work interactively with BDDs.

The first version of MuDDy was written to support state-of-the-art BDDs
in the interactive theorem-prover HOL [2]. This usage has influenced many of
decisions about how the interface should be, in particular the design principle
that there should be as small an overhead as possible for using MuDDy. Thus,
convenience functions such as, for instance, mapping variable numbers to human-
readable strings should be implemented outside of the library.

3 Small Guarded Command Language

This section introduces Small Guarded Command Language (SGCL) as an ex-
ample of a small yet somewhat realistic example of domain specific language
(DSL) that can be used for describing concurrent finite state-machines.

Figure [3| shows the grammar for SGCL. An SGCL program consists of a set
of boolean variables, an initialisation and a set of concurrent guarded multi-
assignments.

3.1 SGCL Embedded in Standard ML

To embed SGCL in Standard ML we need two parts: a representation of the
abstract syntax of SGCL and an embedding of a concrete syntax for SGML.
Figure [4] shows the straightforward representation of abstract syntax trees for
SGCL in Standard ML.

e true | false | x | e1 op ez | e

assignment = Ti,...,Tn = €1,...,€n
command ::=e 7 assignment
program 1= assignment

commandy || ... || command,

Fig. 3. Grammar for SGCL.

type var = string
datatype boolop = AND | OR | IMP | BIIMP
datatype bexp = BVar of var
| BBin of bexp * boolop * bexp
| NOT of bexp
| TRUE | FALSE
datatype command = CMD of bexp * (var * bexp) list
datatype program = PRG of (var * bexp) list * command list

Fig. 4. Abstract syntax for SGCL in Standard ML.

fun mkBBin opr (x, y) = BBin(x, opr, y)
infix /\ \/ ==> <==>
val (op /\, op \/, op ==>, op <==>) =
(mkBBin AND, mkBBin OR, mkBBin IMP, mkBBin BIIMP)
infix ::=

val op ::= = ListPair.zip
infix 7

fun g 7 ass = [CMD(g, ass)]
infix ||

val opl| = op@

val $ = BVar

Fig. 5. Syntactic embedding of SGCL in Standard ML.

start

Fig. 6. Milner’s Scheduler with four cyclers.

For the syntactic embedding we make heavy use of Standard ML’s infix
declaration. Figure [5| shows the few declarations we need to make to get a much
nicer syntax for SGCL rather that the raw abstract syntax trees. The biggest
wart is that we need to distinguish between variables occurring on the left-hand
side of an assignment and variables occurring in expressions. We use $ to lift a
variable to an expression.

Thus, if we have a command that monitors when two variable, v; and wvs,
are both true and then set them both to false, and a command that does the

reverse:
v A ve 7 vy, vg:=false, false
|| =v1 A —wg ? vy, vg:=true, true

then these two commands can now be written as the following Standard ML
expression:

($"V1" /\ $"V2") ? (["Vl", "V2"]
|| (NDT($I|V1|I) /\ NOT($"V2")) ? (["Vl", "V2"]

[TRUE, TRUE])
[FALSE, FALSE])

Aside from minor warts like the annoying quotation marks and dollar signs,
I consider this to be fully acceptable syntax for SGCL programs. It is definitely
nicer to read than the IATEX encoding of the SGCL program.

3.2 Example: Milner’s Scheduler

The driving example in this section is Robin Milner’s scheduler taken from [3],
the modelling is loosely based on the modelling by Reif Andersen found in [4].
Milner’s scheduler is a simple protocol: N cyclers cooperate on starting N tasks,
one at a time. The cyclers use a token to ensure that all tasks are started in
order.

Figure [f] shows Milner’s Scheduler with four cyclers. Each of the cyclers ¢ has
three Boolean c¢;, h; and t;. The Boolean ¢; is used to indicate that the token
is ready to be picked up by cycler i, the Boolean h; indicates that cycler i has
picked up the token and is holding the token, and t¢; indicates that task i is
running.

val (cO, tO, ... , t3, h3) = ("cO", "tO", ... ,"t3", "h3")

fun cycler c t h ¢’ =

($c /\ NOT($t)) ? ([t, c, hl] ::= [TRUE, NOT($c), TRUE])
Il ($3h ? ([c’, h] ::= [TRUE, FALSE]))
fun task t = $t ? ([t] ::= [FALSE])

val milner4 =
PRG([(cO, TRUE), (tO, FALSE), (hO, FALSE), ...],
cycler cO tO hO ci
| cycler c1 t1 hl c2
| cycler c2 t2 h2 c3
| cycler c3 t3 h3 cO
| task tO0O || task ti1
| task t2 || task t3
)

Fig. 7. Standard ML program that show Milner’s scheduler with four cyclers.

The initial state of the system is that the token is ready to be picked up
by cycler 0 and all tasks are stopped. This can be represented by the following
predicate:

Co A\ _‘h() N _|t0 N (/\ —C; AN _\hi A\ _|ti>.
i€l...(N—1)

When a task is not running, and the token is ready, the cycler can pick up
the token and start the task. The cycler can then pass on the token to the next
cycler, and the task can stop. For a cycler ¢ this can be described using two
guarded commands:

cycler; = ¢; N —t; 7 4, ci, hy 1= true, —c;, true
| hi ? Cit1 mod N, hi 1= true, false
Furthermore we need to model the environment that starts and ends task.

This is simply done with one command per task that simply monitors when the
right t-variable becomes true and then sets it to false. That is, for task i:

task; =t; 7 t; := false

All of this can be translated to Standard ML in a straightforward manner.
Figure[7]shows the Standard ML code required to model Milner’s Scheduler with
four cyclers. The code in Figure [7| is hardwired to four cyclers. However, it is
trivial to generalise the code so that it generates a scheduler for arbitrary V.

4 Symbolic Execution of SGCL Programs

One thing that we can do with an SGCL program is to execute it symbolically
to find the set of all reachable states from the initial state. That is, we want to

(* commandToBDD: (string * {var: bdd.varnum, primed: bdd.varnum}) list
-> command
-> bdd.bdd
*)
fun commandToBDD allVars (CMD(guard, assignments)) =
let val changed = List.map #1 assignments
val unchanged =
List.foldl (fn ((v, {var, primed}), res) =>
if mem v changed then res
else bdd.AND(bdd.BIIMP(bdd.ithvar primed,
bdd.ithvar var),
res))
bdd.TRUE allVars
val assigns =
List.foldl (fn ((v,be), res) =>
bdd.AND (bdd .BIIMP(primed v, bexp be),
res))
bdd.TRUE assignments
in bdd.IMP(bexp guard, assigns) end

Fig. 8. The function commandToBDD translates an SGCL command to a BDD.
It uses the helper functions bexp that translates an SGCL expression to a BDD
and primed that translates an SGCL variable to the corresponding primed BDD
variable.

compute some kind of representation that denotes the set of all states. One choice
is to give an explicit enumeration of all the states. However, for an SGCL program
with only a moderate number of variables this representation will quickly explode
to enormous sizes. Instead we shall use BDDs to represent the set of reachable
states and also to perform the symbolic execution.

The first step is to transform an SGCL program into a pair that consists of
a BDD that represents the initial state and a BDD that represents the possible
transitions from one set of states to the following set of states (post-states).
To model these transitions we shall use two BDD variables, one unprimed and
one primed, for each SGCL variable. The primed variables are used to model
post-states.

Thus, the interesting part is that we must translate each SGCL command
to a predicate, represented as a BDD, that relates a set of states to their post-
states. This predicate consists of two parts, one for all the unchanged variables,
the variables not assigned in the assignment, that just say that the unchanged
variables in the post-state are equivalent to their values in the current state.
The other part of predicate is for the variables in the assignment. Figure
shows the function commandToBDD that takes a mapping, here as a simple list, of
all SGCL variables to the corresponding BDD variable numbers and a command
and translates it to a BDD.

fun reachable allVars I T =
let val renames =
List.map (fn(_,{var,primed}) => (var, primed)) allVars
val pairset = bdd.makepairSet renames
val unprimed = bdd.makeset(List.map #var allVars)

open bdd infix OR
fun loop R =
let val post appex T R And unprimed
val next = R OR replace next pairset
in if equal R next then R else loop next end
in loop I end

Fig. 9. Compute the set of all reachable states for a SGCL program.

Once we have defined commandToBDD it’s straightforward to define a function,
programToBDDs, that translates an SGCL program to the two desired BDDs:

fun programToBDDs allVars (PRG(init, commands)) =
let val init =
List.map (fn (v,be) => bdd.BIIMP(var v, bexp be) init
in (conj init, disj(List.map commandToBDD commands)) end

Again I use some helper functions: var translates an SGCL variable to the
corresponding unprimed BDD variable, bexp translates an expression to a BDD,
conj makes a conjunction of a list of BDDs, and disj makes a disjunction of a
list of BDDs.

Now we are ready to compute the set of all reachable states for an SGCL pro-
gram. Figure[9]shows the function reachable that computes the set of reachable
states, represented as a BDD, given an initial state, I, and a predicate, T, relat-
ing unprimed variables to primed variables. The interesting part is the nested
function loop that repetitively expands the set of reachable states until a fix-
point is found. This kind of algorithm is one of the cornerstones in most model
checkers.

Once we have computed the set of reachable states, it is easy to check
whether, for instance, they all satisfy a certain invariant. We just check that the
BDD representing the invariant imply the BDD representing the set of reachable
states. Thus, if R is the BDD representing the set of reachable states and Inv is
the BDD representing the invariant we want to check, then we compute:

val invSatisfied = bdd.IMP Inv R

And if invSatisfied is equal to bdd.TRUE we know that all reachable states
satisfies the invariant.

5 ML versus C++4 versus C

In this section we will compare model checking using MuDDy with more tra-
ditional approaches such as using a C++ or C library directly. We will show
fragments of code and we will measure the performance of the different alterna-
tives. Again we use Milner’s scheduler as example.

Model checking is generally NP-complete (due to the exponential number of
states). However, BDDs seems to be an efficient representation of the predicates
used in Milner’s scheduler. In fact, it turns out that the size of the representation
of the state space “only” grows polynomially in the number of cyclers rather than
exponentially.

We shall compare implementation in C, C++, Standard ML, and Objective
Caml. So as to show what modelling with BDDs looks like in the different lan-
guages, I show how to construct the BDD for initial state of Milner’s scheduler
in C++4 and C. Finally, I show running times for the different languages.

51 CH++

In this section we show a C++ implementation using the BuDDy C++ library.
The BuDDy C++ library defines a class bdd that represent a bdd, similar to
bdd.bdd in MuDDy. The class defines bunches of smart operators that makes
building Boolean expressions quite easy. Furthermore, all reference counting is
managed by the constructor and destructor for the bdd class.

bdd initial_state(bdd* t, bdd* h, bdd* c)

{
int i;
bdd I = c[0] & 'h[0] & 't[0];
for(i=1; i<N; i++)
I &= 'c[i] & 'n[i] & 't[i];
return I;
}

The code shows that it is possible to embed a DSEL for boolean expression
quite nicely in C++.

52 C

The C code for building the initial state space predicate lacks the construc-
tor/destructor mechanisms for managing the reference counting. Thus, you must
manually keep track of calling the reference counting functions. From hard-
earned experience, I guarantee that the code is error prone, unreadable and
really hard to maintain. The function bdd_addref references a BDD and then
returns the BDD and similar for bdd_delref.

bdd initial_state(bdd* t, bdd* h, bddx c)

{
int i;
bdd I, tmpl, tmp2, tmp3;
tmpl = bdd_addref (bdd_not(h[0]));
tmp2 = bdd_addref (bdd_apply(c[0], tmpl, bddop_and));
bdd_delref (tmpl);
tmpl = bdd_addref (bdd_not(t[0]));
I = bdd_apply(tmpl, tmp2, bddop_and) ;
bdd_delref (tmpl);
bdd_delref (tmp2) ;
for(i=1; i<N; i++)
{
bdd_addref (I);
tmpl = bdd_addref (bdd_not(c[i]));
tmp2 = bdd_addref (bdd_not(h[il));
tmp3 = bdd_addref (bdd_apply(tmpl, tmp2, bddop_and));
bdd_delref (tmpl);
bdd_delref (tmp2) ;
tmpl = bdd_addref (bdd_not(t[il));
tmp2 = bdd_addref (bdd_apply(tmp3, tmpl, bddop_and));
bdd_delref (tmp3) ;
bdd_delref (tmpl);
tmpl = bdd_apply(I, tmp2, bddop_and);
bdd_delref (tmp2) ;
bdd_delref (I);
I = tmpl;
}
return I;
}

5.3 Performance

In the following we benchmark the ML implementations of Milner’s scheduler
against their C and a C++ counterparts. As benchmark we compute the number
of reachable states in Milner’s scheduler for a given number of cyclers.

No. of cyclers: 50 100 150 200

c: 1.63 4.69 13.66 31.20
CXX : 1.66 4.82 13.89 31.51
ocamlopt: 1.71 5.04 14.47 32.05
ocaml : 1.74 5.15 14.58 32.91
sml : 1.76 5.15 15.12 33.42

Table 1. Milner’s scheduler benchmark. Running time is in seconds, measured
on a 1 Ghz PII with ulimit 156 Mb. The C and C++ programs was compiled
using gee 3.3 with flag -03, ocamlopt is native-code from Objective Caml 3.04,
ocaml is byte-code from Objective Caml 3.04, and sm! is byte-code from Moscow
ML 2.01.

The source programs were obtained as follows: The C and the C++ imple-
mentations are very close to example programs provided with the BuDDy library.
We have modified the programs slightly to get them as equal as possible and
thereafter translated them into Standard ML code and Objective Caml code.
(All implementations are included in the (upcoming) MuDDy distribution.)

You will recall that even though the number of reachable states is exponen-
tial in the number of schedulers, it turns out that the representation is only
polynomial using BDDs.

Table [I] shows the running times for running the programs with different
numbers of cyclers. As we can see, the running times for the ML programs are
only slightly slower than the C and C++ programs. This is expected because
most of the time in all of the programs is spent in the BuDDy library. Yet, it
is reassuring to see that we can write high-level algorithms, such as finding the
reachable state-space, in ML without being overly penalised.

6 Related Work

Combining BDDs and functional languages is not a new idea. For instance,
Lifted-FL [5] is a domain-specific, strongly typed, lazy, functional programming
language, where BDDs are available as a build-in type. Lifted-FL is used as a
combined model-checking and theorem-proving tool at Intel SCL Logic Team.
And the successor to Lifed-FL, the verification framework Forte[6], is built
around the strongly-typed ML-like language FL. Like in Lifted-FL. BDDs are
built into the language, and every Boolean object is represented as a BDD.

Nancy Day et al [7] shows how BDDs and SAT solvers can be nicely wrapped
in Haskell so that it feels like a native Haskell structure, hiding the mucky details
of an underlying C library—similar to how MuDDy wraps BDDs in ML.

Once you have a nice wrapping of BDDs in a high-level language, you can
leverage it to solve a variety of problems. Some examples that have used MuDDy

are: Sgrensen and Secher show how one can efficiently solve configuration prob-
lems with BDDs [8] and Sittampalam et al [9] show how BDDs, for instance,
can be used for program transformations. In general, many model checking al-
gorithms should be useful for program analysis [10].

7 Conclusion

The combination of a high-level modern language that enables DSEL with a pow-
erful data structure like BDDs makes a pleasant environment in which to learn
and experiment, for example model checking algorithms and language design.
As an experiment it would be easy, for instance, to add priority specifications to
SGCL.

The fact that we have not made a new domain-specific language with BDDs
built into it, but have merely made an ML library, means that we can leverage
all the existing tools and libraries that exist for Standard ML and Objective
Caml. For instance, it enabled us to embed SGCL into Standard ML without
problems.

An interesting possibility for the future would be to make an F# [I1] interface
for MuDDy, because F# has recently acquired powerful reflection mechanisms
inspired by reFL¢? [12] (which in turn was inspired by FL). Thus, it should
be possible to reap more of the advantages from FL while still staying within a
general purpose language.

8 Acknowledgments and MuDDy History

The first version of MuDDy was written by Ken Friis Larsen while visiting Mike
Gordon at Computer Lab. at University of Cambridge (UK), in autumn 1997
and spring 1998. Jakob Lichtenberg then extended MuDDy to cope with the new
BuDDy features: Finite Domain Blocks (fdds) and Boolean Vectors (bvecs). In
2001-2002 we added support for Objective Caml. In 2003, Ooege de Moor at
Computer Lab. at University of Oxford sponsored a research visit to Oxford for
Ken Friis Larsen which, amongst other things, resulted in the MLton binding.

It should be stressed that MuDDy is only a type safe ML wrapping around
Jorn Lind-Nielsen’s great BuDDy package, and that all the "hard work” is done
by the BuDDy package. Jgrn Lind-Nielsen has answered lots of BuDDy questions
(and BDD questions), and has been willing to change the BuDDy package to
make the ML wrappings more easier.

A special thanks should also go to Peter Sestoft, who has answered numerous
of questions about the Moscow ML/Caml Light runtime system, and he even
audited the C code at one point to help find a bug.

In addition, over the years many MuDDy users have provided bug-reports,
bug-fixes, and useful feedback.

References

10.

11.
12.

. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys 24(3) (September 1992) 293-318

Norrish, M., Slind, K.: A thread of HOL development. Computer Journal 45(1)
(2002) 37-45

Milner, R.: Communication and Concurrency. Prentice Hall (1989)

Andersen, H.R.: An introduction to binary decision diagrams. http://www.itu.
dk/people/hra/bdd97-abstract.html| (1997)

Aagaard, M.D., Jones, R.B., Seger, C.J.H.: Lifted-FL: A pragmatic implementation
of combined model checking and theorem proving. In: Theorem Proving in Higher-
Order Logics, Springer-Verlag (September 1999)

Jones, R.B., O’Leary, J.W., Seger, C.J.H., Aagaard, M.D., Melham, T.F.: Practical
formal verification in microprocessor design. IEEE Design & Test of Computers
18(4) (July/August 2001) 16-25

Day, N.A., Launchbury, J., Lewis, J.: Logical abstractions in Haskell. In: Proceed-
ings of the 1999 Haskell Workshop, Utrecht University Department of Computer
Science, Technical Report UU-CS-1999-28 (October 1999)

Sgrensen, M.H., Secher, J.P.: From type inference to configuration. In Mogensen,
T., Schmidt, D., Sudborough, I.H., eds.: The Essence of Computation: Complex-
ity, Analysis, Transformation. Essays Dedicated to Neil D. Jone. Volume 2566 of
Lecture Notes in Computer Science., SpringerVerlag (2002) 436-472
Sittampalam, G., Moor, O.D., Larsen, K.F.: Incremental execution of transfor-
mation specifications. In: In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press (2004) 26-38
Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Static Analysis Symposium. (1998) 351-380

Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress (2007)

Grundy, J., Melham, T., O’Leary, J.: A reflective functional language for hardware
design and theorem proving. Journal of Functional Programming 16(2) (March
2006) 157-196

http://www.itu.dk/people/hra/bdd97-abstract.html
http://www.itu.dk/people/hra/bdd97-abstract.html

	A MuDDy Experience--ML Bindings To A BDD Library
	Ken Friis Larsen

