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Abstract. Key challenges in managing an I/T environment for e-business lie in 
the area of root cause analysis, proactive problem prediction, and automated 
problem remediation. Our approach as reported in this paper, utilizes two 
important concepts: dependency graphs and dynamic runtime performance 
characteristics of resources that comprise an I/T environment to design 
algorithms for rapid root cause identification in case of problems. In the event 
of a reported problem, our approach uses the dependency information and the 
behavior models to narrow down the root cause to a small set of resources that 
can be individually tested, thus facilitating quick remediation and thus leading 
to reduced administrative costs.  

1   Introduction 

A recent survey on Total Cost of Operation (TCO) for cluster-based services [1] 
suggests that a third to half of TCO, which in turn is 5-10 times the purchase price of 
the system hardware and software, is spent in fixing problems or preparing for 
impending problems in the system. Hence, the cost of problem determination and 
remediation forms a substantial part of operational costs. Being able to perform timely 
and efficient problem determination (PD) can contribute to a substantial reduction in 
system administration costs. The primary theme of this paper is to show how 
automatic PD can be performed using system dependency graphs and run-time 
performance models.  

The scope of our approach is limited to typical e-business systems involving HTTP 
servers, application servers, messaging servers, and databases. We have experimented 
with benchmark storefront applications, such as TPC-W bookstore [2]. The range of 
problems in distributed applications is very large, from sub-optimal use of resources, 
violation of agreed levels of service (soft-faults), to hard failures, such as disk crash. 
In a traditional management system, problem determination is related to the state of 
components at system level (e.g., CPU, memory). Thus, a monitored system 
component that fails, notifies the management service, which manually or 



automatically detects and fixes the problem. However, when a transaction type “search 
for an item in an electronic store” shows a slowdown and violates user SLA (in this 
paper, we do not distinguish between SLA and SLO (Service Level Objective)), it is 
often an overwhelming and expensive task to figure out which of the many thousands 
of components, supporting such a transaction, should be looked at for a possible root 
cause. In this paper, we focus on the soft-faults within the e-business service provider 
domain. An approach towards tackling this complex area is combining the run-time 
performance modeling of system components with the study of their dependencies. 
The next section will provide a short summary of the notion of dependencies and 
dependency graphs, reported in detail in previous publications [4]. 

The main thesis of this paper is that PD applications can use the knowledge 
provided by dependency graphs and resource performance models to quickly pinpoint 
the root cause of SLA or performance problems that typically manifest themselves at 
the user transaction level. The monitoring data, say response time, is collected from 
individual components and compared against thresholds preset by a system 
administrator. Each time the monitored metric exceeds the threshold, an alert event is 
sent to a central problem determination engine, which correlates multiple such events 
to compute the likely root cause. Thresholds are hard to preset, especially in the event 
of sudden workload changes, and their use often results in spurious events. The 
primary contribution of this paper is that, we dynamically construct response time 
baselines for each component by observing its behavior. When an SLA monitor 
observes an end-to-end transaction response time violation due to some degradation 
inside the system, the individual components are automatically ranked in the order of 
the violation degree of their current response time level with their constructed good 
behavior baseline and of their dependency information. A system administrator can 
then scan the limited set of ranked components and quickly determine the actual root 
cause through more detailed examination of the individual components. The net gain 
here is that the administrator would need to examine far fewer components for the 
actual root cause, than conventional management approaches.  

In this paper, we describe the creation of simple performance models using 
response time measurement data from components, end-to-end SLA limits, and 
component dependency graphs. We show how, given end-to-end SLA violations, these 
dynamic models, in combination with dependency graphs, can be used to rank the 
likely root cause components.  

The management system has an architecture designed in three tiers, as shown in  
Fig. 1. The first tier consists of monitoring agents specific to server platforms. These 
agents can interface with the monitoring APIs of the server platforms, extract 
component-wise monitoring data and send them to the second tier. In the second tier, 
the online mining engine (OME) performs dependency extraction (if required), weighs 
the extracted dependencies, and stores them in a repository. The accurate dependency 
data may be provided through transaction correlation instrumentation, such as ARM 
[3]. Otherwise it is extracted by mining techniques in OME [4][5], from aggregate 
monitoring data. A standardized object-oriented management data modeling 
technology called Common Information Modeling (CIM) [6] is used when storing the 
dependency information in a database. The third tier comprises management 



applications, for example the PD application to be described in this paper, which uses 
the CIM dependency database. 

The rest of the paper is structured as follows: Section 2 provides a short 
background on dependency analysis and dependency graphs. Section 3 outlines some 
of the more popular tools and approaches for performing PD to establish the relevance 
of our work to this area. In Section 4 we describe our algorithms for resource behavior 
modeling and we show how they can be used for PD in Section 5. Section 6 presents 
the prototype environment on which our PD technique is being applied and tested. We 
conclude the paper in Section 7 with a summary and a discussion of our on-going and 
future work in this domain. 

 

 
 

Fig. 1. Management system architecture 

2   Background 

This section presents an overview of the general concept of dependencies as applied 
to modeling relationships in a distributed environment.  

Consider any two components in a distributed system, say A and B, where A, for 
example, may be an application server, and B a database. In the general case, A is said 
to be dependent on B, if B’s services are required for A to complete its own service. 
One of the ways to record this information is by means of a directed graph, where A 
and B are represented as nodes and the dependency information is represented by a 
directed arc, from A to B, signifying that A is dependent on B. A is referred to as the 
dependent and B as the antecedent. A weight may also be attached to the directed 
edge from A to B, which may be interpreted in various ways, such as a quantitative 
measure of the extent to which A depends on B or how much A may be affected by the 
non-availability or poor performance of B, etc. Any dependency between A and B that 
arises from an invocation of B from A may be synchronous or asynchronous.  
 



There are different ways in which dependency information can be computed. Many 
of these techniques require invasive instrumentation, such as the use of ARM [3]. The 
algorithms that we have designed and implemented [5] do not require such invasive 
changes. Instead they infer dependency information by performing statistical 
correlation on run time monitored data that is typically available in a system. Of 
course, this approach is not as accurate as invasive techniques, but our experiments 
show that the level of accuracy achieved is high enough for most management 
applications, such as problem determination/root cause analysis, that can benefit by 
using the dependency data. Here, accuracy is a measure of how well an algorithm does 
in extracting all existing dependencies in a system. An additional consequence of a 
probabilistic algorithm, such as ours, is that false dependencies may be recorded 
which could mislead a PD application into identifying an erroneous root cause. We 
have devised a way of minimizing such adverse effects by ensuring that our 
probabilistic algorithms attach low weights to false dependencies. Thus, if all the 
antecedents of a dependent component were ranked in order of descending weights in 
the dependency graph, a PD application, while traversing this graph would be able to 
identify the root cause before encountering a false dependency with low weight. A 
measure of how disruptive false dependencies are in a weighted dependency graph is 
precision [4]. Simply stated, a dependency graph with high precision is one where the 
false dependencies have been assigned very low weights. In the next section we 
highlight some of the PD systems that are available today and point out their relevance 
to our work.  

3   Related Work 

Problem Determination (PD) is the process of detecting misbehavior in a monitored 
system and locating the problems responsible for the misbehavior. In the past, PD 
techniques have mainly concentrated on network [7], and system [9] level fault 
management. With the emerging Internet based service frameworks such as e-
commerce sites, the PD challenge is how to pinpoint application performance root 
causes in large dynamic distributed systems and distinguish between faults and their 
consequences.  

In a traditional management system, PD is related to the state of components at 
system level (e.g., CPU, memory, queue length) [9]. In application performance 
analysis, the starting point for choosing the metrics for detecting performance 
problems is the SLA. In our scenario, we consider a response time based SLA and 
characterize the system components in terms of their response time to requests 
triggered by user transactions.  Our solution addresses the case of ARM enabled 
systems as well as legacy systems, and relies on agents (both, ARM agents and native 
agents) to collect monitoring data. 

The classical approach to constructing models of the monitored components is one 
that requires detailed knowledge of the system [11][12]. As such models are difficult 
to build and validate. Most approaches use historical measurements and least-squares 
regression to estimate the parameters of the system components [13]. Diao et al. use 



the parameters in a linear model and the model generation is only conducted once for 
a representative workload, experimentally showing that there is no need to rebuild the 
model once the workload changes [14]. We generate the behavior characteristics of 
the monitored components based on historical measurements and statistical 
techniques, distinguishing between the good behavior model and the bad behavior 
model. Furthermore, while many efforts in the literature address behavior modeling of 
individual components, e.g., Web Server [14], DB2 [15], we characterize the 
resources’ behavior keeping in mind the end-to-end PD of the application environment 
as a whole. 

Most PD techniques rely on alarms emitted by failed components to infer that a 
problem occurred in the system [19]. Brodie et al. discuss an alternate technique using 
synthetic transactions to probe the system for possible problems [16]. Steinder et al. 
review the existing approaches to fault localization and also presents the challenges of 
managing modern e-business environments [8]. The most common approaches to fault 
localization are AI techniques (e.g., rule-based, model-based, neural networks, 
decision trees), model traversing techniques (e.g., dependency-based), and fault 
propagation techniques (e.g., codebook-based, Bayesian networks, causality graphs). 
Our solution falls in the category of model traversing techniques. Bagchi et al. 
implement a PD technique based on fault injection, which may not be acceptable in 
most e-business environments [17]. Chen et al. instrument the system to trace request 
flows and perform data clustering to determine the root cause set [21]. Our technique 
uses dynamic dependencies inferred from monitored data without any extra 
instrumentation or fault injection.  

4   Behavior Modeling Using Dependency Graphs 

We assume an end-user SLA with an end-to-end response time threshold specified for 
each transaction type. An SLA monitor typically measures the end-to-end response 
time of a transaction, but it has no understanding of how the transaction is executed by 
the distributed application on the e-business system. Hence, when an SLA limit for a 
transaction type is exceeded, the monitor has no idea about the location of the 
bottleneck within the system. In this section, we describe how one can construct 
dynamic thresholds for the internal components by observing their response time 
behavior. 

 
4.1 Monitoring 

 
A threshold is an indicator of how well a resource is performing. In most management 
systems today, thresholds are fixed, e.g., an administrator may set a threshold of x 
seconds for the response time of a database service, meaning that if the response is 
over x, it is assumed that the database has a problem and an alert should be issued. We 
introduce the concept of dynamic thresholds, which can be changed and adjusted on a 
regular basis through our behavior modeling, thus accommodating changes in 
operating conditions, such as application load. The good behavior model or dynamic 



threshold of a component is constructed based on two inputs: response time samples 
obtained through the monitoring infrastructure and a resource dependency graph. A 
typical real-life monitoring infrastructure provides only aggregate information, such as 
average response time and access counts of components etc. In our earlier work [4][5] 
we have shown how such aggregate monitoring information can be used to construct 
aggregate dependency graphs. As shown in Fig. 2, an aggregate graph captures the 
dependency of a transaction type on resources aggregated over multiple transaction 
instances.  

Our technique of dynamic threshold computation uses an aggregate monitoring 
infrastructure and aggregate dependency graphs. Such graphs may even have 
imperfections, such as false and/or missing dependencies. In an extended research 
report, we show how our PD algorithm deals with such shortcomings [20]. Our 
dynamic threshold computation technique currently uses data from HTTP Server logs, 
WAS Performance Monitoring Infrastructure (PMI), and DB2 Snapshot API. We 
assume that the same aggregate monitoring APIs have also been used for dependency 
graph construction. 

 

 
Fig. 2. Aggregate graph and model-builder logic 

4.2 Behavior Modeling 

The goal of behavior modeling is to construct a dynamic threshold of a component, 
such that when an end-to-end problem is detected, the current response time samples 
from the component may be compared with its dynamic threshold. 

A transaction type can have two states, henceforth called “good” or “bad”, 
corresponding to when they are below or above their SLA limits, respectively. 
Similarly, each system component should also have a good state or a bad state 
depending on whether they are the cause of a problem or are affected by a problem 
elsewhere. In a traditional management system, a hard-coded threshold is configured 
on each individual component. A component is in bad state if its response time is 
beyond the threshold else it is in good state. Each component in bad state sends an 
event to a central event correlation engine, which determines the likely root cause 



based on some human generated script or expert rule base. This approach results in a 
large number of events from various components. Besides, it is very difficult and error 
prone for the system administrator to configure a threshold for a component without 
extensive benchmarking experience.  

Our management system uses average response time samples from the components 
to build their bad or good state performance models. A key feature of our system is 
that it uses the dependency graph to classify response time samples from a component 
into bad and good state, instead of hard-coded thresholds on individual components. 
The classification rule states that if any parent transaction of a component is in bad 
state when the response time sample is obtained, then the sample is classified as “bad” 
and added to the bad behavior model of the component, otherwise it is added to its 
good behavior model. The good behavior model is an average of the good response 
time values and also serves as the dynamic threshold. 

Fig. 2 shows the dependency graph of transactions T1 and T2. S1 sometimes 
accesses Q1 and sometimes Q2. When a response time sample from query Q2 is 
obtained, the model-builder logic checks the current state of T1 as well as T2. Only 
the SLA monitor can modify the state of T1 and T2. If T1 and T2 are in good state, 
the sample is added to the good model of Q2. If either of them is bad because the fault 
lies in any of the component in the sub-tree of the bad transaction, the sample is added 
to the bad model of Q2. The problem determination logic is invoked after a few 
samples of the bad model are obtained. Thereafter, the bad and good models of each 
component are compared and the components are ranked as described in Section 5. In 
our current implementation, a good or bad model is simply the average of the 
distribution of good or bad values, respectively. Fig. 2 shows the pseudo-code for the 
model-builder logic. 

The good model of a component is persistent across problem phases, i.e., it is never 
forgotten and more samples make it more dependable for comparison against a bad 
model. The bad model samples are typically unique to the particular type and instance 
of the problem. Hence the bad models are forgotten after each problem is resolved. 
We assume that problems are not overlapping, i.e., there is only one problem source 
and independent problem phases do not overlap. 

In our current implementation, the cumulative response time of a component 
obtained from the monitoring infrastructure is used as the model variable. This 
response time includes the response time of the child components. For example, the 
average response time of S1 includes average response times of Q1 and Q2, as 
illustrated in Fig. 2. Thus, if a bottleneck is created at Q1, Q1 as well as S1’s response 
time behavior models are affected.  

The cumulative time is effective in identifying a faulty path in the dependency tree, 
but, in many cases, is not adequate in pinpointing the root-cause resource. We are 
working on an enhanced approach, where the model variable can be changed to 
capture the local time spent at a component, excluding the response time of the 
children.  This approach will be reported in a later paper. 

  



5   Problem Determination 

In this section we discuss how components may be ranked, so that a system 
administrator may investigate them in sequence to determine the actual bottleneck. In 
normal mode of operation each component computes a dynamic threshold or a good 
behavior model. When a problem occurs at a component, the dependent transactions 
are affected and all components that are in the transaction’s sub-tree start computing a 
bad behavior model. The components that do not build a bad behavior model in this 
phase, i.e., those that do not belong to a sub-tree of any affected transaction type, are 
immediately filtered out. The next step is to rank all the components in the sub-tree of 
an affected transaction.  

Each component is assigned a severity value, which captures the factor by which 
the bad model differs from the good behavior model or dynamic threshold of the 
component. Since a model in the current implementation is a simple average of the 
distribution of samples, a simple ratio of the bad model average to the dynamic 
threshold represents the severity value. Fig. 5 shows a graph with severity values 
computed per node when the problem is at Q2. For example, for component Q2, the 
bad model is 105.2 times the dynamic threshold. The un-shaded nodes are not 
considered because they do not have a bad model and are assigned a default severity 
of 0. 

The shaded components are sorted based on their severity value as shown in the first 
ranking. Besides the root cause component, say Q2, the components that are on the 
path from transaction T1 to Q2, such as S1 and S2, have high severity values because 
we use the cumulative response time as the model variable and not the local time spent 
at a component. Bad models are computed for other nodes in the subtree, such as Q1 
and Q3, but their bad model is very close to their good model because they do not lie 
on the “bottleneck path”. Thus, in the first ranking we prune and order the components 
in the subtree so that only nodes, which are on the “bottleneck path” are clustered on 
top. However, this is not enough to assign the highest rank to the root cause node. 
There is no guarantee that a parent of a root cause node, such as S1, is not going to 
have higher severity value. For example, in the first ranking in Fig. 5, Q2 appears after 
S1. 

It is possible to reorder the components further based on dependency relationship 
and overcome the drawback of using the cumulative response time for modeling. 
Given the severity values of the shaded nodes, we apply a standard 2-means clustering 
algorithm [18] to divide the set into “high severity set” and “low severity set”. In our 
experience, the severity values of the affected and root cause components are much 
higher than the unaffected components. For example, the components in Fig. 5 are 
divided into high severity set: {S1, S2, Q2} and low severity set: {Q1, Q3}. In the 
second ranking, if a parent and child are both in the high severity set and the parent is 
ranked higher than the child in the first ranking, then their rankings are swapped. The 
assumption here is that the high severity of the parent has resulted from the high 
severity of the child. The assumption holds if there is a single fault in the system and 
the transactions are synchronous. Since S1 and Q2 are in the same set, they are 
reordered and Q2 is picked as the highest rank. Thus a system administrator 



investigating the components will first look at Q2 before any other component. The 
efficiency of our technique is defined by the rank assigned to the root cause node.  

 

 
Fig. 3. Ranking logic 

Building performance models and subsequent PD is unaffected by the presence of 
the false dependencies or by the aggregate representation of dependency graphs. In the 
interest of space, a complete proof is presented in an extended research report [20]. 

6   Experimental Evaluation 

In this section we present the experimental results to demonstrate the efficiency of our 
PD technique using behavior models and dependency graphs.  

The experimental setup is shown in Fig. 1. The OME is used to extract 
dependencies between servlets and SQLs in the TPC-W application installed on WAS 
and DB2. The TPC-W bookstore application is a typical electronic storefront 
application [2] consisting of 14 servlets, 46 SQLs and a database of 10,000 books. 
The extracted dependency graph is stored in the CIM database and used by the PD 
application. The monitoring data is gathered through agents and used by the PD 
application to build performance models. An SLA monitor (not shown in the figure) 
intercepts all HTTP requests and responses at the HTTP server. These responses are 
then classified as ‘good’ or ‘bad’ based on the SLA definition. We set individual SLA 
thresholds for all 14 transaction types in the TPC-W application as our user level SLA 
definitions. Problems are injected into the system through a problem injector program 
(not shown in the figure), that periodically locks randomly chosen servlets on WAS or 
database tables on DB2 with an on-off duty cycle for the injection period, to simulate 
higher response times for the targeted servlets or tables. The TPC-W code is 
instrumented to implement the servlet level problem injection. Once we lock the table 
or servlet, all transactions based on that particular table or servlet slow down and we 
see an escalation in the response times of the corresponding transactions at the user 
level and thus violation of the SLAs. We have 10 tables in the DB2 holding data for 
the TPC-W application and 14 servlets. Thus we can inject problems at 24 different 
locations in the system. We log these injected problems in a separate log file as the 
ground truth. We then use this ground truth information to compute the efficiency of 
our PD technique. The efficiency is measured in terms of average accuracy and 
average rank of the root cause in the ordered list of probable components, where the 
averaging is performed over multiple problem injections. Accuracy is the measure of 



finding an injected problem in the list of probable root causes discovered by our PD 
algorithm. The rank measure of the root cause is the position the root cause 
component occupies in the ordered list of probable root causes. If the injected 
problem lies in the nth position from the top of listed root causes, it is assigned rank n. 
The success of our PD technique is determined by how close the average accuracy and 
the average rank of the root cause are to 100% and rank 1, respectively.  

Table 1. Effect of dependency information with 
servlet and table level problems 

  Load 
   Graph   
    Type 

   Avg. 
Acc (%) 

   Avg   
  Rank1 

  List   
  Size 

40 ARM 100 1.3 2.1 
  Mining 100 1.1 2.7 
  Instant 100 1.3 5.5 

80 ARM 100 1.5 3.2 
  Mining 100 1.4 4.0 
  Instant 100 1.5 7.1 
120 ARM 100 1.8 3.7 

  Mining 100 1.6 5.0 
  Instant 100 1.3    10.5 

 
 

Table 2. Effect of dependency information 
on table level problems 

 Load 
Graph 
Type 

Avg.  
Rank1 

   Avg  
Rank2  

 %age 
chnge 

40 ARM 2.4 1.7 20 
  Mining 2.1 1.6 24 
  Instant 1.2 1.2   0 
80 ARM 1.4 1.0 28 
  Mining 1.7 1.5 15 
  Instant 2.0 1.1 45 

   120 ARM 1.8 1.5 16 
  Mining 1.2 1.2   0 
  Instant 1.3 1.3   2 

 
 

Dependency information used by the PD technique can be obtained by three means. 
An accurate and precise graph may be obtained through ARM instrumentation. A 
graph with some false dependencies may be obtained through the online mining 
techniques presented in [4][5]. We take a TPC-W bookstore graph with 100% 
accuracy and 82% precision extracted at a load of 100 simultaneous customers. This 
graph, labeled “mining” in Tables 1 and 2, is used as a more imprecise graph. Finally, 
we also consider a bottom-line case in which historical dependency knowledge is not 
used but classification is done based on instantaneous information. For example, in the 
TPC-W application, transactions are synchronous. Thus if a component B occurs 
when transaction A is active, we consider that as a dependency. This case, termed 
“instant” in Table 1 and Table 2, contains all the possible dependencies including 
much more spurious ones compared to “mined” graphs. We investigate the effect of 
the quality of the dependency information on the efficiency of our PD technique. We 
inject a set of problems sequentially over time with sufficient gaps between the 
problems so that the system recovers from one problem before experiencing another. 
We also vary the system load to observe its effect on behavior modeling and PD. Load 
is the number of simultaneous customers active in the system sending URL requests to 
the TPC-W application. At the load of 120 customers, the load generator sends around 
300 URL requests/minute. We run these experiments over the duration of 2 hours each 
during which we inject randomly chosen 12 different problems out of set of 24 
problems. Each problem is injected 5 to 10 times and the average accuracy and 
average rank are computed over all injected problems. Table 1 summarizes the results 
of our experiments.  



We see that accuracy of our PD algorithm is always 100%. It means that we can 
always find the injected problem in our list of suspected root causes. There are total 
60 different components (14 servlets and 46 SQLs). The last column “list size” shows 
the average number of components selected for ranking, which decreases as the 
quality of the dependency information increases. Thus the quality of the dependency 
information definitely helps in reducing the set of components that are considered (the 
shaded nodes in Fig. 3). However, it does not impact the ranking to a significant 
extent (see proof in [21]). The rank of the root cause, using this technique, in which all 
the components are sorted based on severity, lies between 1 and 2. This means that the 
root cause is almost always the first or the second component in the ordered list. 
Besides, the behavior modeling and PD based on the dynamic thresholds, is also not 
heavily impacted by load. The average rank of the root cause in this approach 
increases only marginally, as load increases. 

We also investigate the application of dependency graph to improve the first 
ranking. Here we inject problems only at table level so that we can observe the effect 
of swapping ranks between servlets and antecedent SQLs. In Table 2, “Avg Rank2” is 
the average rank of the root cause after applying the dependency information on the 
first ranking. In most cases, the average rank of the root cause is improved in the 
second ranking. In the cases where the percentage improvement is not significant 
enough, their “Avg Rank1” is already close to the minimum possible rank. More 
experimentation is needed to find out the effect of load and graph type on the 
percentage improvement. 

7   Conclusion 

In this paper, we have presented our research in the area of Problem Determination for 
large, distributed, multi-tier, transaction based e-business systems. The novelty of our 
approach, as compared to others reported in the literature, is that we use a 
combination of resource dependency information and resource behavior models to 
facilitate the rapid isolation of causes when user transactions manifest unacceptably 
slow response time.  

One of the drawbacks of our current approach is that, in some cases, when a user 
transaction misbehaves, we are able to narrow down the root cause to a set of 
resources that support the transaction, but may not be able to identify the offending 
resource. This is because resource behavior models are inclusive, i.e., a dependent 
resource’s model includes the effects of its antecedents. As ongoing work we are 
looking at enhancing our approach to constructing models that better reflect the 
performance of individual resources, thus providing a better framework for root-cause 
analysis. One approach is to compute a resource’s good behavior by capturing its 
individual contribution to a transaction’s end-to-end response time. In addition, we are 
investigating how our technique can provide a reliable basis for problem prediction, 
through the observation of trends in the variation of resource behavior. We are 
extending our approach for proactive problem prediction, before the problem 
manifests as a user level SLA violation.  
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