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Abstract. Netconf is a protocol proposed by the IETF that defines a
set of operations for network configuration. One of the main issues of
Netconf is to define operations such as validate and commit, which cur-
rently lack a clear description and an information model. We propose in
this paper a model for validation based on XML schema trees. By using
an existing logical formalism called TQL, we express important depen-
dencies between parameters that appear in those information models,
and automatically check these dependencies on sample XML trees in
reasonable time. We illustrate our claim by showing different rules and
an example of validation on a Virtual Private Network.

1 Introduction

The area of network services has significantly developed over the past few years.
New and more complex services are deployed into the networks and strain the
resources. Network management capabilities have been pushed to their limits
and have consequently become more complex and error-prone. The lack of a
centralised information base, heterogeneity of all kinds (management tools, con-
figuration modes, services, networks and devices) dependencies among service
components, increase of service complexity and undesired services interaction
are all possible causes of eventual configuration inconsistency.

Network management must constantly ensure the consistency of the network
configuration and of the deployed services. This task is difficult, since there is
no formal approach for ensuring the consistency of the network services, and
no adequate information model adapted to network configuration. Therefore,
adequate formalisms, information models and verification methods are required
that must capture the constraints and properties and ensure the integrity of the
network services.

The Netconf protocol [6] provides a framework for the network configuration
operations. Its validate operation checks syntactically and semantically the
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configurations. However, since the work is in progress, this operation is still too
generic and not fully defined.

In this paper, we present an implementation of the Netconf validate capa-
bility that extends beyond simple syntax checking. From an XML Schema rep-
resenting a given device configuration, we extract a tree structure and express
validation rules in terms of these tree elements. By using an existing logical for-
malism called TQL [3], we express important, semantic dependencies between
parameters that appear in those information models, and automatically check
these dependencies against sample XML trees within reasonable delays. We il-
lustrate our claim by showing different rules and and validating some of them
on a sample Virtual Private Network configuration.

The network management community has proposed other approaches. Some
frameworks under development consist in enriching an UML model with a set
of constraints that can be resolved using policies. The Ponder language [9] is
an example of a policy-based system for service management describing OCL
constraints on a CIM model. The DMTF community as a whole is working on
using OCL in conjunction with CIM. However, object-oriented concepts like class
relationships are not sufficient for modelling dependencies between configuration
parameters in heterogeneous topologies, technologies and device types.

On a different level, [10] defines a meta-model for management information
that takes into account some basic semantic properties. [1] has also developed a
formal model for studying the integrity of Virtual Private Networks. However,
these approaches can be considered high-level, and ultimately need to be trans-
lated into concrete rules using device commands and parameters, in order to be
effectively applied on real networks.

In section 2, we give a brief overview of the Netconf protocol and the mod-
elling of XML configuration data in tree structures. Section 3 provides examples
of different syntactical and semantic constraints of typical network services, while
section 4 introduces the TQL tree logic and shows how these constraints become
logical validation rules. Section 5 presents the results of the validation of several
configuration rules referring to the Virtual Private Network service, and section
6 concludes and indicates further directions of research.

2 The Netconf Protocol

Netconf is a protocol currently under development aimed at defining a simple
mechanism through which a network device can be managed [6]. It originates
from the need for standardised mechanisms to manipulate the configuration of
a network device. In a typical Netconf session, XML-encoded remote procedure
calls (RPC) are sent by an application to a device, which in turn sends an RPC-
reply giving or acknowledging reception of a full or partial XML configuration
data set.



2.1 Netconf Capabilities

In order to achieve such standardised communication, the current Netconf draft
defines a set of basic operations that must be supported by devices:

— get-config: Retrieves all or part of a specified configuration from a source
in a given format

— edit-config: Loads all or part of a specified configuration to the specified
target configuration

— copy-config: Creates or replaces an entire configuration with the contents
of another configuration

— delete-config: Deletes a configuration datastore

— lock: Locks a configuration source

— unlock: Unlocks a configuration source

— get-all: Retrieves both configuration and device state information

— kill-session: Forces the termination of a Netconf session

Among other things, these base operations define a generic method enabling
an application to retrieve an XML-encoded configuration of a Netconf-enabled
device, apply modifications to it, send the updated configuration back to the
device and close its session. Alternate configuration data sets can also be copied
and protected from modifications. Figure 1 shows a typical RPC, and its reply
by the device.

This set of basic operations can be further extended by custom, user-defined
capabilities that may or may not be supported by a device. For example, version
2 of the Netconf draft proposes a command called validate, which consists in
checking a candidate configuration for syntactical and semantic errors before
effectively applying the configuration to the device.

The Netconf draft leaves a large margin in the definition of what validate
must do. A device advertising this capability must be at least able to make simple
syntax checking on the candidate configuration to be validated, thus preventing
the most trivial errors to pass undetected. However, semantic validation of the
configuration is left optional, but is equally important. For example, a simple
syntax parser will not complain in the case of a breach of the VPNs isolation
caused by address overlapping.

Moreover, although the draft currently defines the behaviour of the validation
capability, it leaves open the question of the actual implementation of this capa-
bility on a network device. At the moment, there exists no systematic procedure
for achieving such validation.

2.2 Modelling Configuration Data

One can remark from the example in figure 1 that the actual XML schema en-
coding the configuration data might depend on the device. Its format is specified
by the XML namespace of the config tag in both the RPC and its reply.



<rpc message-id="105" xmlns="http://ietf.org/netconf/base/1.0” >
<get-config>
<source>
<running/>
< /source>
<config xmlns="http://info.uqam.ca/schema/node-model” />
<format>xml< /format>
< /get-config>
</rpe>

<rpc-reply message-id="105" xmlns="http://ietf.org/netconf/base/1.0” >
<config xmlns="http://info.uqam.ca/schema/node-model” >
<node>
<name>ip_address</name>
<value>10.0.0.0< /value>
<child>< /child>
</node>

< /config>
< /rpe-reply>

Fig. 1. Typical Netconf RPC and reply by the device

We briefly describe here the generic XML schema we use in our approach.
All properties of a given configuration are described by hierarchically nested
attribute-value pairs.

The basic element of our schema is the configuration node, which implements
the concept of attribute-value pairs. A configuration node is in itself a small tree
having a fixed shape. Its main tag is named node, and it must contain three
children tags:

— name, that contains the character string of the name of the attribute
— value, that contains is the character string of the value of the attribute
— child, inside which can be nested as many other node structures as desired

For example, in figure 1, the boldface snippet of XML code inside the config
tag of the rpc-reply shows a sample encoding of an IP address using this
schema.

There is a direct correspondence between XML data and labelled trees. By
viewing each XML tag as a tree node, and each nested XML tag as a descendent
of the current node, we can infer a tree structure from any XML snippet. Figure
2 depicts the tree equivalent of the sample XML configuration code of figure 1.

The tree representation is a natural choice, since it reflects dependencies
among components, such as the parameters, statements and features. For more
information on the specific schema used in this work, we refer the reader to [8].



node

name value child

ip_address 10.0.0.0

Fig. 2. A simple configuration node

3 Service Configuration Integrity

In this section, we examine the possible configuration inconsistencies that the
validate capability could encounter and identify when performing verification
on a device’s candidate configuration. Our study is principally aimed at con-
straints arising from installation and management of network services.

A network service has a life cycle that starts from a customer’s demand,
and is followed by negotiation, provisioning and actual utilisation by the cus-
tomer. Many steps of this life cycle demand that configuration information on
one or more devices be manipulated. Configuration parameters can be created
or removed, and their values can be changed according to a goal.

However, these manipulations must ensure that the global conditions ruling
correct service operation and network integrity are fulfilled. Thus, the parameters
and commands of the configuration affected by a service are in specific and
precise dependencies. We present here two examples of dependencies, and deduce
from each a configuration rule that formalises them.

3.1 Acces List Example

The existence or the possible state of a parameter may depend on another such
parameter somewhere else in the configuration. As a simple example of this
situation, consider extended IP access lists. Some network devices use these lists
to match the packets that pass through an interface and decide whether to block
or let them pass, according to packet information. The configuration of these
extended IP access lists is variable. If the protocol used for packet matching is
TCP or UDP, the port information is mandatory. If the protocol used is different,
no port information is required.

Figure 3 shows two examples of access list entries, both of which are valid,
although the trees that represent them do not have the same structure.

This example leads us to the formulation of a rule related to the proper use
of access list entries:

Configuration Rule 1 If the protocol used in an access list is TCP or
UDP, then this access list must provide port information.



3.2 Virtual Private Network Example

The previous example is nearest to mere syntax checking. On the other end of
the scope, there are more complex situations that can be encountered, where the
parameters of several devices supporting the same service are interdependent.
An example is provided by the configuration of a Virtual Private Network (VPN)
service [11], [12], [13].

VPNs must ensure the connectivity, reachability, isolation and security of cus-
tomer sites over some shared public network. A VPN is a complex service that
consists of multiple sub-services and its implementation depends on the network
technology and topology. For instance, it can be provided at Layer 2 through vir-
tual circuits (Frame Relay or ATM) or at Layer 3 using the Internet (tunnelling,
IPsec, VLAN;, encryption). The MPLS VPN uses MPLS for tunnelling, an IGP
protocol (OSPF, RIP, etc.) for connectivity between the sites and the provider
backbone, and BGP for route advertisement within the backbone. The BGP pro-
cess can be configured using the direct neighbour configuration method, which

<node> <node>
<name>protocol< /name> <name>protocol< /name>
<value>tcp</value> <value>icmp< /value>
<child> <child>
<node> <node>

<name>source< /name>
<value>10.0.0.1< /value>
<child>
<node>
<name>wildcard</name>
<value>0.0.255.255< /value>
<child/>
</node>
< /child>
</node>
<node>
<name>operator< /name>
<value>eq< /value>
<child>
<node>
<name>port< /name>
<value>80< /value>
<child/>
</node>
< /child>
</node>
< /child>
< /node>

<name>source< /name>
<value>10.0.0.1< /value>
<child>
<node>
<name>wildcard< /name>
<value>0.0.255.255< /value>
<child/>
< /node>
< /child>
</node>
< /child>
</node>

Fig. 3. Excerpts of XML code for two access list entries



adds routing information necessary for the inter-connection on each provider
edge router (PE-router).

Among other requirements of this method, an interface on each PE-router
(for example, Loopback0), must have its IP address publicised into the BGP
processes of all the other PE-routers’ configurations using a neighbor com-
mand [11]. If one of these IP addresses changes the connectivity is lost and the
VPN service functioning is jeopardised. Thus,

Configuration Rule 2 In a VPN, the IP address of the LoopbackO
interface of every PE-router must be publicised as a neighbour in every
other PE-router.

4 Validating Network Service Integrity

As we have shown in section 2, each XML snippet can be put in correspondence
with a an equivalent labelled tree. Thus, configuration rules like those previously
described can be translated into constraints on trees.

For example, Configuration Rule 2 becomes the following Tree Rule:

Tree Rule 2 The value of the IP address of the interface LoopbackO
in the PE router_i is equal to the IP address value of a neighbor
component configured under the BGP process of any other PE router_j.

This conversion has the advantage that many formalisms have been developed
in recent years [2], [7] that allow such description. Among them, the Tree Query
Logic (TQL) [3] is particularly noteworthy, as it supports both property and
query descriptions. Hence one can not only check if a property is true or false,
but also extract a subtree that makes that property true or false.

In the next section, we demonstrate this claim by showing how TQL can be
used to perform validation on tree structures.

4.1 Expressing Configuration Rules

One can loosely define TQL as a description language for trees. Following logical
conventions, we say that a tree ¢t matches a given TQL expression e, which we
write ¢ = e, when e is true when it refers to ¢. We also say that e describes t.

TQL is an extension of the traditional first-order logic suitable for description
of tree-like structures. To allow branching, two operators are added: the edge (]
]) and the composition (|).

First, the edge construct allows expression of properties in a descendent node
of the current node. Thus, any TQL expression enclosed within square brackets
is meant to describe the subtree of a given node. For example, the expression
root [child] indicates that the root of the current tree is labelled “root”, and
that this root has only one child, labelled “child”.

Second, the composition operator juxtaposes two tree roots; hence, the ex-
pression node[name | value] describes a tree whose root is “node”, and whose



two children are the nodes “name” and “value”. Like other TQL operators, edge
and composition are supported at any level of recursion.
The tree depicted in figure 2 is described by the following TQL expression:

node|
name[ip_address] |
value[10.0.0.0] |
child |

Remark the similarity between this TQL description and the XML code that
actually encodes this structure in figure 1. This similarity is not fortuitous: it is
in fact easy to see that edge and composition alone can describe any single XML
tree.

However, interesting properties do not apply on a single tree, but rather to
whole classes of trees. It is hence desirable to add the common logical operators
to the syntax, whose intuitive meaning is given in table 1.

— T': matches any tree.

— —A (negation): if a tree does not match A, then it matches - A

— AV B (disjunction): if a tree matches AV B, then either it matches A or it matches
B (or both)

— A A B (conjunction): if a tree matches A A B, then it must match both A and B

— % (label wildcard): % matches any label

— . (existence of a child): .z matches any tree whose root has a child labelled z

— 1: (all children) : !z[P] matches a tree if and only if all children labelled z verify
property P

Table 1. Some of the most common TQL operators

These operators allow us to express, for example, the fact that a given access
list entry has a port node if its protocol is TCP or UDP:

<rule xmlns="http://info.uqam.ca/config-rules/access-list” >
node|
name|protocol] |
value[TCP v UDP] |
child]
.node.child.node[.name[port]]]]]
V
node|
name|protocol] |
value[- (TCP Vv UDP)] |
child]
< /rule>



This rule stipulates that if the node defines a protocol whose value tag contains
either TCP or UDP, then there must be a child tag containing a port node.
On the contrary, if protocol is different from TCP and UDP, then the node
has an empty child tag. We can check that both XML trees in table 1 verifiy
the property. In the previous and all the following examples, the actual logical
connectors (and, or, and the like) recognised by TQL have been replaced by
their common symbols for improved clarity.

Notice that this rule is encapsulated inside an XML tag and is referenced in
a global namespace, allowing for a uniform hierarchical classification of possible
syntactical and semantic dependencies, and a better integration in Netconf’s
model. At the moment, we simply ignore this tag and submit the inside query
to the standard TQL tool.

It is even possible to extract the protocol name using the query:

node[.value[$P]]

which places into the variable $P the text inside the value tag for a given tree.

There are many other operators which further extend TQL’s rich seman-
tics [2], [3]. However, all of the interesting constraints we encountered in our
work are expressible by means of those mentioned in this section. For more
information related to TQL and its syntax, the reader is referred to [2] and [3].

4.2 The validate Operation

As there is a correspondence between XML and labelled trees, there is also a
correspondence between tree rules and TQL queries. For example, Tree Rule 2
becomes the TQL query shown in figure 4.

The first part of the query retrieves all tuples of values of device_name and
ip_address for the interface called Loopback0. These tuples are bound to the
variables $N and $A. The second part of the query makes a further selection
among these tuples, by keeping only those for which there exists a device whose
name is not $N where $A is not listed as a neighbour. If the remaining set is
empty, then all addresses are advertised as neighbours in all other devices, and
the property is verified.

As one can see from the previous example, TQL queries can quickly become
tedious to write and to manage. Fortunately, these queries can be automatically
verified on any XML file by a software tool downloadable from TQL’s site [15].
The tool loads an XML file and a set of TQL properties to be verified on that
structure. It then makes the required validations and outputs the results of each

query.

5 Results and Conclusions

As a concrete example of this method, we processed sample RPC-reply tags
for multiple devices with constraints taken from the MPLS VPN service. These
constraints have been checked in a different context in [8].



P1

P2

P3

P4

P5

<rule xmlns="http://info.uqam.ca/config-rules/vpn/neighbours-declaration” >
network|
.node|[
.nameldevice_name] |
value[$N] |
.child.node][
.name[interface_type] |
.value[loopback] |
.child.node][
.name|interface_number] |
value[0] |
.child.node[
.namelip_address] |
value[$A]]]]]
N
.node|
.name|[device_name] |
value[— $N]
A
= .child.node|
.name[bgp] |
value[%)] |
.child.node[
.name[neighbor] |
.child.node[
.namelip-address] |
value[$A]]]]]]
< /rule>

Fig. 4. TQL query for Tree Rule 2

If two sites belong to the same VPN, they must have similar route distin-
guisher and their mutually imported and exported route-targets must have
corresponding numbers.

The VRF name specified for the PE-CE connectivity and the VRF name
configured on the PE interface for the CE link must be consistent.

The VRF name used for the VPN connection to the customer site must be
configured on the PE router.

The interface of a PE router that is used by the BGP process for PE con-
nectivity, must be defined as BGP process neighbor in all of the other PE
routers of the provider.

The address family vpnv4 must activate and configure all of the BGP neigh-
bours for carrying only VPN IPv4 prefixes and advertising the extended
community attribute.

All these properties were translated into TQL queries, and then verified

against sample XML schema trees of sizes varying from about 400 to 40000



XML nodes. One query verified only P1 and had a size of 10 XML nodes; the
second query incorporated all the previous five rules and was 81 XML nodes
long. Table 2 shows validation time for these different settings.

Configuration size|Query size||Validation time (s)
113 10 0,04
413 81 0,24
1639 10 0,06
1639 81 0,47
3681 10 0,09
3681 81 0,84
6539 10 0,12
6539 81 1,29
10213 10 0,15
10213 81 1,87

40823 10 0,52
40823 81 7,03

Table 2. Validation time for different configuration and rule sizes

All queries have been validated on an AMD Athlon 1400+ system running
on Red Hat Linux 9. Validation time for even the complete set of constraints is
quite reasonable and does not exceed 8 seconds for a configuration of more than
40000 nodes. As an indication, a device transmitting a configuration of this size
via an SSH connection in a Netconf rpc-reply tag would send more than 700
kilobytes of text.

For all these sets, TQL correctly validated the rules that were actually true,
and identified the different parts of the configurations that made some rules
false, if any.

6 Conclusions

We have shown in this paper a model for the validate capability proposed by
the current Netconf draft. Based on an existing logical formalism called TQL
that closely suits the XML nature of the protocol, this model extends beyond
simple syntax checking.

We stress the fact that the validation concept must not be limited simply
to mere syntax checking and should encompass semantic dependencies that ex-
press network functions and rules. Formalisms such as the Common Information
Model (CIM) [5] and Directory Enabled Networking (DEN) [14] could be further
exploited to this end.

The VPN case illustrated in the previous sections indicates that using a
subset of a query language like TQL is sufficient to handle complex semantic
dependencies between parameters on interdependent devices.



The results obtained suggest that this framework could be extended to model

most, if not all, such dependencies in device configurations. It is therefore a good
candidate as a template for a formal Netconf model of the validate capability.
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