
A Reputation Management and Selection
Advisor Schemes for Peer-to-Peer Systems

Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

University of Waterloo, Waterloo, Canada
{lmekouar, iraqi, rboutaba}@bbcr.uwaterloo.ca

Abstract. In this paper we propose a new and efficient reputation man-
agement scheme for partially decentralized peer-to-peer systems. The
reputation scheme helps to build trust between peers based on their past
experiences and the feedback from other peers. We also propose two
selection advisor algorithms for helping peers select the right peer to
download from. The simulation results show that the proposed schemes
are able to detect malicious peers and isolate them from the system,
hence reducing the amount of inauthentic uploads. Our approach also
allows to uniformly distribute the load between non malicious peers.

1 Introduction

1.1 Background

In a Peer-to-Peer (P2P) file sharing system, peers communicate directly with
each other to exchange information and share files. P2P systems can be divided
into several categories. Centralized P2P systems (e.g. Napster [1]), use a cen-
tralized control server to manage the system. These systems suffer from the
single point of failure, scalability and censorship problems. Decentralized P2P
systems try to distribute the control over several peers. They can be divided
into completely-decentralized and partially-decentralized systems. Completely-
decentralized systems (e.g. Gnutella [2]) have absolutely no hierarchical struc-
ture between the peers. In other words, all peers have exactly the same role.
In partially-decentralized systems (e.g. KaZaa [3], Morpheus [4] and Gnutella2
[5]), peers can have different roles. Some of the peers act as local central indexes
for files shared by local peers. These special peers are called “supernodes” or
“ultrapeers” and are assigned dynamically [6]. They can be replaced in case of
failure or malicious attack. Supernodes index the files shared by peers connected
to them, and proxy search requests on behalf of these peers. Queries are therefore
sent to supernodes, not to other peers. A supernode typically supports 300 to
500 peers depending on available resources [5]. Partially-decentralized systems
are the most popular in P2P systems.

In traditional P2P systems (i.e. without any reputation mechanism), the user
is given a list of peers that can provide the requested file. The user has then to
choose one peer from which the download will be performed. This process is
frustrating to the user as this later struggles to choose the right peer. After

the download has finished, the user has to check the received file for malicious
content (e.g. viruses1) and that it actually corresponds to the requested file (i.e.
the requested content). If the file is not good, the user has to start the process
again. In traditional P2P systems, little information is given to the user to help
in the selection process.

In [8] it is stated that most of the shared content is provided by only 30%
of the peers. There should be a mechanism to reward these peers and encourage
other peers to share their content. At the same time, there should be a mechanism
to punish peers with malicious behavior (i.e. those that provide malicious content
or misleading filenames) or at least isolate them from the system.

Reputation-based P2P systems [9–13] were introduced to solve these prob-
lems. These systems try to provide a reputation management system that will
evaluate the transactions performed by the peers and associate a reputation
value to these peers. The reputation values will be used as a selection criteria
between peers. These systems differ in the way they compute the reputation
values, and in the way they use these values. The following is the life cycle of a
peer in a reputation-based P2P system:

1. Send a request for a file
2. Receive a list of candidate peers that have the requested file
3. Select a peer or a set of peers based on a reputation metric
4. Download the file
5. Send a feedback and update the reputation data

1.2 Motivation and contribution

Several reputation management systems have been proposed in the literature (cf.
Section 5). All of these have focused on the completely-decentralized P2P sys-
tems. Only KaZaa, a proprietary partially-decentralized P2P system, has intro-
duced basic reputation metric (called “participation level”) for rating peers. Note
that the proposed reputation management schemes for completely-decentralized
P2P systems cannot be applied in the case of partially-decentralized system as
this later relies on the supernodes for control messages exchange (i.e. no direct
management messages are allowed between peers.)

In this paper, we propose a reputation management system for partially-
decentralized P2P systems. This reputation mechanism will allow a more clear-
sighted management of peers and files. Our contribution is in step 3 and 5 of the
life cycle of a peer in a reputation-based P2P system (cf. section 1.1). The rep-
utation considered in this paper, is for trust (i.e. maliciousness of peers), based
on the accuracy and quality of the file received. Good reputation is obtained by
having consistent good behavior through several transactions. The reputation
criteria is used to distinguish between peers. The goal is to maximize the user
satisfaction and decrease the sharing of corrupted files.

The paper is organized as follows. In Section 2, we introduce the new rep-
utation management schemes proposed in this paper. Section 3, describes the
1 such as the VBS.Gnutella Worm [7]

proposed selection advisor mechanisms. Section 4 presents the performance eval-
uation of the proposed schemes while Section 5 presents the related works. Fi-
nally, Section 6 concludes the paper.

2 Reputation Management

In this section, we introduce the new reputation management schemes. The
following notations will be used.

2.1 Notations and Assumptions

– Let Pi denotes peer i
– Let Di,j be the units of downloads performed from peer Pj by peer Pi

– Let Di,∗ denotes the units of downloads performed by peer Pi

– Let D∗,j denotes the units of uploads by peer Pj

– Let AF
i,j be the appreciation of peer Pi for downloading the file F from Pj .

– Let Sup(i) denotes the supernode of peer i

In this paper, we assume that supernodes are selected from a set of trusted
peers. This means that supernodes are trusted to manipulate the reputation
data. The mechanism used to do so is outside the scope of this paper and will
be addressed in the future. We also assume that the supernodes share a secret
key that will be used to digitally sign data. The reader is referred to [14] for a
survey on key management for secure group communication. We also assume the
use of public key encryption to provide integrity and confidentiality of message
exchanges.

2.2 The Reputation Management Scheme

After downloading a file F from peer Pj , peer Pi will value this download. If
the file received corresponds to the requested file and has good quality, then
we set AF

i,j = 1. If not, we set AF
i,j = −1. In this case, either the file has the

same title as the requested file but different content, or that its quality is not
acceptable. Note that if we want to support different levels of appreciation, we
can set the appreciation as a real number between −1 and 1. Note also that a
null appreciation can be used, for example, if a faulty communication occurred
during the file transfer.

Each peer Pi in the system has four values, called reputation data (REPPi),
stored by its supernode Sup(i):

1. D+
i,∗: Appreciated downloads of peer Pi from other peers,

2. D−
i,∗: Non-appreciated downloads of peer Pi from other peers,

3. D+
∗,i: Successful downloads by other peers from peer Pi,

4. D−
∗,i: Failed downloads by other peers from peer Pi

D+
i,∗ and D−

i,∗ provide an idea about the health of the system (i.e. satisfaction
of the peers). D+

∗,i and D−
∗,i provide an idea about the amount of uploads pro-

vided by the peer. They can for example help detect free riders. Keeping track
of D−

∗,i will also help detecting malicious peers (i.e. those peers who are pro-
viding corrupted files or misleading filenames). Note that we have the following
relationships:

D+
i,∗ + D−

i,∗ = Di,∗ ∀i
D+
∗,i + D−

∗,i = D∗,i ∀i (1)

Keeping track of these values is important. They will be used as an indication
of the reputation and the satisfaction of the peers. Figure 1 depicts the steps
performed after receiving a file.

Pi Sup(i) Sup(j) Pj

F

AF
ij

Update
D+

*,j , D-
*,j

Update
D+

i,* , D-
i,*

AF
ij

Fig. 1. Reputation update steps

When receiving the appreciation (i.e. AF
i,j) of peer Pi, its supernode Sup(i)

will update the values of D+
i,∗ and D−

i,∗. The appreciation is then sent to the
supernode of peer Pj to update the values of D+

∗,j and D−
∗,j . The way these

values are updated is explained in the following two subsections 2.3 and 2.4.
When a peer Pi joins the system for the first time, all values of its reputation

data REPPi are initialized to zero2. Based on the peer transactions of uploads
and downloads, these values are updated. Periodically, the supernode of peer
Pi sends REPPi to the peer. The frequency is not too low to preserve accuracy
and not too high to avoid extra overhead. The peer will keep a copy of REPPi

to be used the next time the peer joins the system or if its supernode changes.
To prevent tempering with REPPi , the supernode digitally signs REPPi . The
reputation data can be used to compute important reputation parameters as
presented in section 3.

2.3 The Number Based Appreciation Scheme

In this first scheme, we will use the number of downloads as an indication of the
amount downloaded. This means that D∗,j will indicate the number of uploads
2 i.e. neutral reputation

by peer Pj . In this case, after each download transaction by peer Pi from peer
Pj , Sup(i) will perform the following operation:

If AF
i,j = 1 then D+

i,∗ + +, else D−
i,∗ + +.

and Sup(j) will perform the following operation:
If AF

i,j = 1 then D+
∗,j + +, else D−

∗,j + +.
This scheme allows to rate peers according to the number of transactions

performed. However, since it does not take into consideration the size of the
downloads, this scheme makes no difference between peers who are uploading
large files and those who are uploading small files. This may rise a fairness issue
between the peers as uploading large files necessitates the dedication of more
resources. Also, some malicious peers may artificially increase their reputation
by uploading a large number of small files to a malicious partner.

2.4 The Size Based Appreciation Scheme

An alternative for the proposed algorithm is to take into consideration the size
of the download. Once the peer sends its appreciation, the size of the download
Size(F) (the amount, in Megabytes, downloaded by the peer Pi from the peer
Pj) is also sent3. The reputation data of Pi and Pj will be updated based on the
amount of data downloaded.

In this case, after each download transaction by peer Pi from peer Pj , Sup(i)
will perform the following operation:

If AF
i,j = 1 then D+

i,∗ = D+
i,∗ + Size(F),

else D−
i,∗ = D−

i,∗ + Size(F).
and Sup(j) will perform the following operation:
If AF

i,j = 1 then D+
∗,j = D+

∗,j + Size(F),
else D−

∗,j = D−
∗,j + Size(F).

If we want to include the content of files in the rating, it is possible to
attribute a coefficient for each file. For example, in the case that the file is rare,
the uploading peer could be rewarded by increasing its successful uploads with
more than just the size of the file. Eventually, instead of using the size of the
download, we can use the amount of resources dedicated by the uploading peer
to this download operation.

3 The Selection Advisor Algorithms

In this section we assume that peer Pi has received a list of peers Pj that have the
requested file. Peer Pi has to use the reputation data of these peers to choose the
right peer to download from. Note that the selection operation can be performed
at the level of the supernode, i.e. the supernode can, for example, filter malicious
peers from the list given to peer Pi.

The following is the life cycle of a peer Pi in the proposed reputation-based
P2P system:
3 Alternatively the supernode can know the size of the file from the information re-

ceived as a response to the peer’s request.

1. Send a request for a file F to the supernode Sup(i)
2. Receive a list of candidate peers that have the requested file
3. Select a peer or a set of peers Pj based on a reputation metric (The reputa-

tion algorithms are presented in the following subsections 3.1 and 3.2)
4. Download the file F
5. Send the feedback AF

i,j . Sup(i) and Sup(j) will update the reputation data
REPPi and REPPj respectively

The following subsections describe two alternative selection algorithms. Any-
one of these algorithms can be based on one of the appreciation schemes pre-
sented in section 2.3 and 2.4.

3.1 The Difference Based Algorithm

In this scheme, we compute the Difference-Based (DB) behavior of a peer Pj as:

DBj = D+
∗,j −D−

∗,j (2)

This value gives an idea about the aggregate behavior of the peer. Note that the
reputation as defined in equation 2 can be negative. This reputation value gives
preference to peers who did more good uploads than bad ones.

3.2 The Real Behavior Based Algorithm

In the previous scheme, only the difference between D+
∗,j and D−

∗,j is considered.
This may not be able to give a real idea about the behavior of the peers.

Example If peer P1 and peer P2 have the reputation data as follows: D+
∗,1 = 40,

D−
∗,1 = 20, D+

∗,2 = 20 and D−
∗,2 = 0. Then according to Difference-Based repu-

tation (cf. equation 2) and the Number-Based Appreciation scheme (cf. section
2.3), we have DB1 = 40 − 20 = 20 and DB2 = 20 − 0 = 20. In this case, both
peers have the same reputation. However, from the user’s perspective, peer P2

is more preferable than peer P1. Indeed, peer P2 has not uploaded any malicious
files.

To solve this problem, we propose to take into consideration not only the
difference between D+

∗,j and D−
∗,j but also the sum of these values. In this scheme,

we compute the real behavior of a peer Pj as:

RBj =
D+
∗,j
−D−∗,j

D+
∗,j

+D−
∗,j

=
D+
∗,j
−D−∗,j

D∗,j
if D∗,j 6= 0

RBj = 0 otherwise
(3)

Note that the reputation as defined in equation 3 can vary from −1 to 1. If
we go back to the example, then we have RB1 = (40 − 20)/60 = 1/3 and
RB2 = (20− 0)/20 = 1. The Real Behavior Based scheme will choose peer P2.

When using this reputation scheme, the peer can choose the peer Pj with
the maximum value of RBj .

In addition of being used as a selection criteria, the reputation data can
be used by the supernode to perform service differentiation. Periodically, the
supernode can check the reputation data of its peers and assign priorities to
them. Peers with high reputation will receive high priority while those with
lower reputation will receive a low priority. For example, by comparing the val-
ues of D∗,i and Di,∗ one can have a real characterization of the peer’s behavior.
If Di,∗ >> D∗,i, then this peer can be considered as a free rider. Its supern-
ode can reduce or stop providing services to this peer. This will encourage and
motivate free riders to share more with others. In addition, the supernode can
enforce additional management policies to protect the system from malicious
peers. It is also possible to implement mechanisms to prevent malicious peers
from downloading in addition to prevent them from uploading.

4 Performance evaluation

4.1 Simulated Algorithms

We will simulate the two selection advisor algorithms proposed in this paper
(cf. section 3.1 and 3.2) namely, the Difference-Based (DB) algorithm and the
Real-Behavior-Based (RB) algorithm. Both schemes will use the Size-Based Ap-
preciation Scheme proposed in section 2.4. We will compare the performance of
these two algorithms with the following two schemes.

In KaZaa [3], the peer participation level is computed as follows:
(uploaded/downloaded) × 100, i.e. using our notation (cf. section 2.1) the

participation level is (D∗,j/Dj,∗)× 100. We will consider the scheme where each
peer uses the participation level of other peers as a selection criteria and we will
refer to it as the KaZaa-Based algorithm (KB).

We will also simulate a system without reputation management. This means
that the selection is done in a random way. We will refer to this algorithm as
the Random Way algorithm (RW). Table 1 presents the list of considered algo-
rithms.

Algorithm Acronym

Difference-Based algorithm DB
Real-Behavior-Based algorithm RB
KaZaa-Based algorithm KB
Random Way algorithm RW

Table 1.

4.2 Simulation Parameters

We use the following simulation parameters:

– We simulate a system with 1000 peers.
– The number of files is 1000.
– File sizes are uniformly distributed between 10MB and 150MB.
– At the beginning of the simulation, each peer has one of the files randomly

and each file has one owner.
– As observed by [15], KaZaa files’ requests do not follow the Zipf’s law dis-

tribution. In our simulations, file requests follow the real life distribution
observed in [15]. This means that each peer can ask for a file with a Zipf
distribution over all the files that the peer does not already have. The Zipf
distribution parameter is chosen close to 1 as assumed in [15]

– The probability of malicious peers is 50%. Recall that our goal is to assess
the capability of the selection algorithms to isolate the malicious peers.

– The probability of a malicious peer to upload an inauthentic file is 80%
– Only 80% of all peers with the requested file are found in each request.
– We simulate 30000 requests. This means that each peer performs an average

of 30 requests. For this reason we do not specify a storage capacity limit.
– The simulations were repeated 10 times over which the results are averaged.

4.3 Performance Parameters

In our simulations we will mainly focus on the following performance parameters:

1. The peer satisfaction: computed as the difference of non-malicious downloads
and malicious ones over the sum of all the downloads performed by the peer.
Using our notation (cf. section 2.2) the peer satisfaction is:
(D+

i,∗ − D−
i,∗)/(D+

i,∗ + D−
i,∗). The peer satisfaction is averaged over all peers.

2. The size of malicious uploads: computed as the sum of the size of all malicious
uploads performed by all peers during the simulation. Using our notation this
can be computed as:

∑
j D−

∗,j .
3. Peer load share: we would like to know the impact of the selection advisor

algorithm on the load distribution among the peers. The peer load share is
computed as the normalized load supported by the peer. This is computed
as the sum of all uploads performed by the peer over all the uploads in the
system.

4.4 Simulation Results

Figure 2 (a) depicts the peer satisfaction achieved by the four considered schemes.
The X axis represents the number of requests while the Y axis represents the
peer satisfaction. Note that the maximum peer satisfaction that can be achieved
is 1. Note also that the peer satisfaction can be negative. According to the figure,
it is clear that the DB and RB schemes outperform the RW and KB schemes in
terms of peer satisfaction. The bad performance of KB can be explained by the

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Request Number

P
ee

r
S

at
is

fa
ct

io
n

DB

RB

RW

KB

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

10

12

14

16
x 10

8

Request Number

S
iz

e
of

 M
al

ic
io

us
 U

pl
oa

ds

KB

RW

DB RB

(a) (b)

Fig. 2. (a) Peer Satisfaction, (b) Size of malicious uploads

fact that it does not distinguish between malicious and non-malicious peers. As
long as the peer has the highest participation level, it is chosen regardless of its
behavior. Our schemes (DB and RB) make the distinction and do not choose
a peer if it is detected as malicious. The RW scheme chooses peers randomly
and hence the results observed from the simulations (i.e. 20% satisfaction) can
be explained as follows. With 50% malicious peers and 80% probability to up-
load an inauthentic file, we can expect to have 60% of authentic uploads and
40% inauthentic uploads in average. As the peer satisfaction is computed as
the difference of non-malicious downloads and malicious ones over the sum of
all the downloads performed by the peer. We can expect a peer satisfaction of
(60− 40)/(60 + 40) = 20%.

Figure 2 (b) shows the size of malicious uploads, i.e. the size of inauthentic
file uploads. As in RW scheme peers are chosen randomly, we can expect to see a
steady increase of the size of malicious uploads. On the other hand, our proposed
schemes DB and RB can quickly detect malicious peers and avoid choosing them
for uploads. This isolates the malicious peers and controls the size of malicious
uploads. This, of course, results in using the network bandwidth more efficiently
and higher peer satisfaction as shown in figure 2 (a). In KB scheme, the peer with
the highest participation level is chosen. The chosen peer will see its participation
level increases according to the amount of the requested upload. This will further
increase the probability of being chosen again in the future. If the chosen peer
happens to be malicious, the size of malicious uploads will increase dramatically
as malicious peers are chosen again and again. This is reflected in figure 2 (b)
where KB has worse results than RW.

To investigate the distribution of loads between the peers for the considered
schemes, we plotted the normalized load supported by each peer in the simula-
tion. Figure 3 and 4 depict the results. Note that we organized the peers into
two categories, malicious peers from 1 to 500 and non malicious peers from 501
to 1000. As expected, the RW scheme distributes the load uniformly among the
peers (malicious and non malicious). The KB scheme does not distribute the

load uniformly. Instead, few peers are always chosen to upload the requested
files. In addition, the KB scheme cannot distinguish between malicious and non
malicious peers, and in this particular case, the malicious peer number 280 has
been chosen to perform most of the requested uploads.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Peer

P
ee

r
lo

ad
 s

ha
re

RW

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peer

P
ee

r
lo

ad
 s

ha
re

KB

Fig. 3. Peer load share for RW and KB

In figure 4 the results for the proposed schemes are presented. We can note
that in both schemes malicious peers are isolated from the system by not being
requested to perform uploads. This explains the fact that the normalized loads
of malicious peers (peers from 1 to 500) is very small. This also explains why the
load supported by non malicious peers is higher than the one in the RW and
KB scenarios. Indeed, since none of the malicious peers is involved in uploading
the requested files4, almost all the load (of the 30000 requests) is supported by
the non malicious peers.

0 100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Peer

P
ee

r
lo

ad
 s

ha
re

RB

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Peer

P
ee

r
lo

ad
 s

ha
re

DB

Fig. 4. Peer load share for RB and DB

4 after that these malicious peers are detected by the proposed schemes

According to the figure, we can observe that even if the two proposed schemes
DB and RB are able to detect malicious peers and isolate them from the system,
they do not distribute the load among non malicious peers in the same manner.
Indeed, the RB scheme distributes the load more uniformly among the non
malicious peers than the DB scheme. The DB scheme tends to concentrate the
load on a small number of peers. This can be explained by the way each scheme
computes the reputation of the peers. As explained in sections 3.1 and 3.2, the
DB scheme computes the reputation of a peer Pj as shown in equation 2 based on
a difference between non malicious uploads and malicious ones. The RB scheme,
on the other hand, computes a ratio as shown in equation 3. The fact that DB is
based on a difference, makes it choose the peer with the highest difference. This
in turn will make this peer more likely to be chosen again in the future. This is
why, in figure 4, the load is not distributed uniformly.

The RB scheme, focuses on the ratio of the difference between non malicious
uploads and malicious ones over the sum of all uploads performed by the peer
(cf. eq. 3). This does not give any preference to peers with higher difference.
Since in our simulations we did not consider any free riders, we can expect to
have a uniform load distribution between the peers as depicted by figure 4. If
free riders are considered, the reputation mechanisms will not be affected since
reputation data is based on the uploads of peers. Obviously, the load distribution
will be different.

5 Related Works

eBay [16] uses the feedback profile for rating their members and establishing
the members’ reputation. Members rate their trading partners with a positive,
negative or neutral feedback, and explain briefly why. eBay suffers from the
single point of failure problem as it is based on a centralized server for reputation
management.

In [10], a distributed polling algorithm is used to allow a peer looking for
a resource to enquire about the reputation of offerers by polling other peers.
The polling is performed by broadcasting a message asking all other peers to
give their opinion about the reputation of the servants. In [11], the EigenTrust
algorithm assigns to each peer in the system a trust value. This value is based
on its past uploads and reflects the experiences of all peers with the peer.

The two previous schemes are reactive, They require reputations to be com-
puted on-demand which requires cooperation from a large number of peers in
performing computations. As this is performed for each peer having the requested
file with the cooperation of all other peers, this will introduce additional latency
and overhead. Most of the proposed reputation management schemes for com-
pletely decentralized P2P systems suffer from these drawbacks.

6 Conclusion

In this paper, we proposed a new reputation management scheme for partially
decentralized P2P systems. Our scheme is based on four simple values associated
to each peer and stored at the supernode level. We also propose two selection ad-
visor algorithms for assisting peers in selecting the right peer to download from.
Performance evaluation shows that our schemes are able to detect and isolate
malicious peers from the system. Our reputation management scheme is proac-
tive and has minimal overhead in terms of computation, infrastructure, storage
and message complexity. Furthermore, it does not require any synchronization
between the peers and no global voting is required. Our scheme is designed to re-
ward those who are practicing good P2P behavior, and punish those who are not.
Important aspects that we will investigate in future work include mechanisms
to give incentives for peers to provide appreciations after performing downloads,
and countermeasures for peers who provide faked values for appreciations.

References

1. A.Oram. In: Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly Books (2001) 21–37

2. http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.
3. http://www.kazaa.com/us/help/glossary.htm.
4. http://www.morphus.com/morphus.htm.
5. http://www.gnutella2.com/.
6. Androutsellis-Theotokis, S.: A Survey of Peer-to-Peer File Sharing Technologies.

Technical report, ELTRUN (2002)
7. http://www.commandsoftware.com/virus/gnutella.html.
8. Adar, E., Huberman, B.A.: Free Riding on Gnutella. Technical report, HP (2000)

http://www.hpl.hp.com/research/idl/papers/gnutella/.
9. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-to-Peer Information System.

In: International Conference on Information and Knowledge Management. (2001)
10. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.:

Choosing Reputable Servents in a P2P Network. In: The Eleventh International
World Wide Web Conference, Honolulu, Hawaii, USA (2002)

11. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust Algorithm for
Reputation Management in P2P Networks. In: the Twelfth International World
Wide Web Conference, Budapest, Hungary (2003)

12. Gupta, M., Judge, P., Ammar, M.: A Reputation System for Peer-to-Peer Net-
works. In: ACM 13th International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Monterey, California, USA (2003)

13. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer
Electronic Communities. IEEE Transactions on Knowledge and Data Engineering,
Special Issue on Peer-to-Peer Based Data Management (2004)

14. Rafaeli, S., Hutchison, D.: A Survey of Key Management for Secure Group Com-
munication. ACM Computing Surveys 35 (2003) 309–329

15. Gummadi, K., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.:
Measurement, Modeling, and analysis of a Peer-to-Peer File Sharing Workload.
In: ACM Symposium on Operating Systems Principles, New York, USA (2003)

16. http://pages.ebay.com/help/feedback/reputation-ov.html.

