
Policy-Based Resource Assignment in Utility
Computing Environments

Cipriano A Santos, Akhil Sahai, Xiaoyun Zhu, Dirk Beyer, Vijay Machiraju,
Sharad Singhal

HP Laboratories, Palo-Alto, CA, USA
{psantos, asahai, xiaoyun, dbeyer, vijaym, sharad}@hpl.hp.com

Abstract. In utility computing environments, multiple users and
applications are served from the same r esource pool. To maintain
service level objectives and maintain high levels of utilization in the
resource pool, it is desirable that resources be assigne d in a manner
consistent with operator policies, while ensuring that shared resources
(e.g., networks) within the pool do not become bottlenecks. This paper
addresses how operator policies (preferences) can be i ncluded in the
resource assignment problem as soft constraints. We provide the
problem formulation and use two examples of soft constraints to
illustrate the method. Experimental results demonstrate impact of
policies on the solution.

1 Introduction

Resource assignment is the process of assigning specific resources from a resource
pool to applications such that their requirements can be met. This problem is
important when applications are provisioned within l arge resource pools (e.g. data
centers). In order to automate resource assignment, it is impo rtant to convert user
requests into specifications that detail the application requirements in terms of
resource types (e.g. servers) and the network bandwidth required between application
components. This application topo logy is then mapped to the physica l topology of a
utility computing environment. The Resource Assignment Problem (RAP)
specification [1] describes this process. In RAP, applications are mapped to the
topology of a utility computing environment. While RAP accounts for constraints
imposed by server, storage and networking requirements during assignment, it does
not consider policies that may be desirab le by operators, administrators or users. In
this paper we discuss how operator preferences (policies) may be incorporated as
logical constraints during resource assignment. We present formulations and
experimental results that deal with classes of users and resource flexing as examples
of policies that may be used during resource assignment.

Policies have been traditionally considered as event -action expressions that are
used to trigger control actions when certain events/conditions occur [2], [3]. These

policies have been applied in network and system management domain by triggering
control actions as a result of thres hold-based or time-based events. Sahai et al. [4]
have formulated policies as hard constraints for automated resource construction.
Other related work [5]-[8] on constraint satisfaction approaches to policy also treats
policy as hard constraints.

In this paper, we describe policies as soft constraints for resource assignment. To
the best of our knowledge, earlier work on resource assignment [1], [9] has not
explored usage of soft constraints in resource -assignment. It is important to
emphasize that the assignment system may violate s oft constraints to varying degrees
in order to ensure a technically feasible solution. In contrast, hard technological
constraints, such as capacity limits, cannot be violated during resource assignment
because their violation implies technolog ical infeasibility.

The rest of this paper is organized as follows. In Section 2, we review the resource
assignment problem, and present the mathematical optimization approach to resource
assignment. Section 3 describes how policy can be incorporated in this problem as
soft constraints. It also presents the formulation for incorporating class -of-user
policies during resource assignment as well as for application flexing. Simulation
results using this approach are described in Section 4. We conclude with some
directions for future work in Section 5.

2 An Optimization Problem for Automated Resource Assignment

In [1], a resource assignment problem (RAP) for a large -scale computing utility, such
as an Internet data center, was defined as follows. Given the topology of a physical
network consisting of switches and servers with varying capabilities, and for a given
component-based distributed application with requirements for processing and
communication; decide which server from the physical network should be assigned to
each application component, such that the traffic -weighted average inter -server
distance is minimized, and the application’s processing and communication
requirements are satisfied without exceeding network capacity limits. This section
briefly reviews the models used to represent computing resources and applications .
The reader is referred to [1] for more details.

2.1 The RAP Models

Figure 1 shows an example of the physical network. The network consists of a set of
switches and a set of servers connected in a tree topology. The root of the tree is a
switching/routing device that connects the fabric to the Internet or other utility fabrics.
All the internal nodes are switches, and all the leaf nodes are servers. Note that the
notion of a “server” here is not re stricted to a compute server. It includes other
devices such as firewalls, load balancers, network attached storage (NAS), VPN
gateways, or other such components. Each server is described by a set of attribute
values, such as processor type, processor spee d, memory size, etc. A complete list of
parameters that characterize the network topology and resource capabilities is
available in [1].

S10S9S8S7S6S5S4S3S2S1

R1

R4

R2

Root

R5

R3

R6

S11 S12

Fig. 1. Topology of a physical network

Figure 2 shows the component architecture of a distributed application, which is
represented by a directed graph G(C, L). Each node Cc∈ represents an application
component, and each directed edge Lccl ∈=)',(is an ordered pair of component
nodes, representing communication from component c to component c’. The
bandwidth requirement is characterized by a traffic matrix T, where each element

'ccT represents the amount of traffic from component c to component c’. Each
component has a set of requirements on the attributes of the server that will be
assigned to it.

T12

T21

C1

C3

C7C6

C4 C5

C2

Fig. 2. A component-based distributed application architecture

2.2 A Mathematical Optimization Approach

The very large number of resources and inherent complexity of a computing utility
impose the need for an automated process for dealing with RAP. Two elements make
a decision problem: First there is the set of alternatives that can be followed – “like
knobs that can be turned.” Second, there is a description of what is “allowed”,
“valid”, or “feasible”. The task of the decision maker is to find a “setting of the
knobs” that is “feasible.” In many decision problems, not all feasible se ttings are of
equal desirability. If there is a way o f quantifying the desirability of a setting, one can
ask to find the best of all feasible settings, which results in an optimization problem.
More formally, we model the RAP optimization problem with three elements:

• The decision variables describe the set of choices that can be made. An assignment
of values to all decision variables constitutes a candidate solution to the
optimization problem. In RAP, the decision variables represent which server in the
computing utility is assigned to each application c omponent.

• The feasible region represents values that are allowed for the decision variables.
Typically not all possible combinations of values assigned to the decision var iables
denote an assignment that meets all technical requirements. For example,
application components may have processing or communication requirements that
cannot be satisfied unless those components are assigned to specific servers. These
requirements are expressed using equality or inequality constraints .

• The objective function is a measure of goodness of a given assignment of values to
all decision variables, expressed as a parameterized function of these decision
variables. In [1], we chose a specific objective function for RAP that minimizes the
traffic-weighted inter-server distance. However, the formulation is flexible enough
to accommodate other choices of goodness measures, such as costs, or certain
utility functions.
We chose mathematical optimization as a technique to automate the resource

assignment process primarily for its expressive power and efficiency in traversing a
large and complex search space. Arriving at a solution that is mathematically optimal
within the model specified is a welcome side effect. Therefore, RAP was formulated
as a constrained optimization problem. We were not interested in developing our own
optimization technology, so we chose to use off -the-shelf optimization tools. Through
proper linearization of certain constraints in RAP, we derived a mixed integer
program (MIP) [10] formulation of the problem. Our prototype solver is implemented
in the GAMS language [11], which generates a MIP model that can be fed into the
CPLEX solver [12]. The latter either finds an optimal/sub -optimal solution that
denotes a technically feasible and desirable assignment of resources to applications,
or declares the problem as infeasible, which means there is no possible assignment of
resources to applications that can meet a ll the technical requirements.

A detailed description of the MIP formulation is presented in [1]. Note that the
model in [1] also contains a storage area network (SAN) in the utility fabric and
includes applications’ requirements on storage. In this paper, only policies and rules
that are directly related to server resources are considered. If necessary, policies for
storage resources can be easily incorporated in a fashion similar to those described
here.

3 Incorporating Policies in Resource Assignment

In addition to technical constraints described above, we need to include operator
policies and business rules during resource assignment. For example, it may be
important to consider application priority when resources are scarce, or components
migration policies during application fle xing.

Operator policies and business rules are often expres sed as logical statements that
are actually preferences. The operator would like these preferences to be true, as long
as other hard constraints are not violated. The set of operator policies for an

assignment itself defines a feasible region of decision v ariables. Replacing the
feasible region of the original problem with the intersection of that region and the
feasible region defined by operator policies provides the region of all feasible
assignments that meet technical requirements and operator policies at the same time.
Because a wide variety of operator policies can be expressed by the decision region
formed by linear inequal ities, they can be incorporated into the resource assignment
problem during mathematical optimization.

The concept of hard and soft constraints developed in the context of mathematical
programming provides a valuable tool to handle operator policies in the context of
assignment. Hard constraints are stated as inequalities in an optimization problem.
Any assignment that violate s any of such constraints is identified as infeasible and not
a viable solution. In general, we consider that co nstraints imposed by the technology
are hard constraints that cannot be violated (i.e., their violation i mplies technical
infeasibility of the solution). On the other hand, constraints imposed by rules, po licy,
or operator preferences are soft constraints that may be violated to varying degrees if
a solution is otherwise not possible. This is accomplished by introducing a variable v
that measures the degree of violation of a constraint. More formally, let a policy
constraint be given by

bxf ≤)(,

where x is the vector of decision variables, the function)(xf encapsulates the logic
of the constraint and the scalar b stands for a desirable threshold. In the above
formulation, the constraint is hard. Any valid assignment x must result in a function
value)(xf which is not larger than b. By introducing the violation variable v in the
form

vbxf +≤)(,

we see that for any choice of x, the variable v will have to take a value bxfv −≥)(
which is at least as big as the amount by which the original constraint is violated.
Nonetheless, whatever the particular choice of x, the soft constraint can be satisfied.
This alone would render the new co nstraint meaningless. In order to compel the
optimization algorithm to find an assignment x that violates the constraint only as
much as necessary to find an otherwise feasible solution, we introduce a penalty into
the objective function that is proportionate to the violation itself by subtracting 1 the
term vM ⋅ . If M is a sufficiently large number, the search for the optimal solution
will attempt to minimize the violation of the constraint and only consider a violation
if there is no feasible solution that satisfies all constraints.

The typical operator/customer policies related to resource assignment in a utility
computing environment that can be handled by an optimization approac h include the
following:
• Priority policies on classes of applications.
• Migration policies during application flexing.

1 This assumes that our goal is maximizing the objective. If we want to minimize the objective

we simply add the same term.

• Policies for avoiding hot spots inside the resource pool, such as load balancing, or
assigning/migrating servers based on local thermal co nditions.

• Policies for high availability, such as dictating redundant designs, or maintaining
buffer capacities in shared resources.

• Policies for improving resource utilization, such as allowing overbooking of
resources.
In what follows, we use the first two policies as examples to illustrate how these

policies can be incorporated into the original RAP MIP formulation. The other
policies can be dealt with in a similar fashion.

3.1 Policies on Classes of Applications

In a resource constrained environment it is useful to consider different classes of
applications, corresponding to different levels of service, which will be reflected in
terms of priorities during resource assignment. If resources are insufficient to satisfy
all applications, low priority applications are more likely to be rejected when making
assignment decisions. In this paper, we consider the following priority policy:

P1. Only assign an application with lower priority to the computing utility if its
assignment does not preclude the assignment of any application of higher priority .

While this policy has a very complex logical structure, it is easy to implement by
using soft constraints. Let the binary decision variable 1, =scx indicate that

component c is assigned to server s, otherwise 0, =scx . Let C(app) be the set of all
components of application app with |C(app)| denoting the number of components of
the respective application. Then the “hard constraint”

1, =∑
∈Ss

scx ,)(appCc ∈ (H1)

implies that at an application component should be assigned to exactly one server. It
can be relaxed as follows:

1, ≤∑
∈Ss

scx ,)(appCc ∈ . (S1)

The constraint (S1) means that each application component is either not assigned,
or is assigned to at most one server. To disallow partial assignment (where only some
of the application components are assigned) the following hard constrain t is used:

)(
)(

, appCx
appCc Ss

sc =∑ ∑
∈ ∈

. (H2)

It simply says that the number of servers assigned to an application is equal to the
number of components required by the application. Now we introducing a binary
violation variable appv to relax the hard constraint (H2) as follows,

()app
appCc Ss

sc vappCx −≥∑ ∑
∈ ∈

1*)(
)(

, . (S2)

It is easy to see from (S2) that,

)(/)(1
)(

, appCxv
appCc Ss

scapp ∑ ∑
∈ ∈

−≥ .

When all components of application app are placed on servers, 0≥appv . On the

other hand, since appv is binary, if any component of application app does not get a

server, in which case application app has to be rejected, 1=appv . If the term

AppApp vM is added onto the objective function, not assigning an application c omes

at a price of AppM . By choosing the magnitude of AppM according to the
application’s priority in such a way that higher priority applications have penalties
that are larger than all potential penalties of lower pr iority applications combined, we
can force the optimal solution of the modified assignment problem to conform to
priority policy P1.

3.2 Migration Policies for Application Flexing

We use the term “application flexing” to refer to the process of adding addi tional
resources to or removing resources from running applications. In this section we
consider policies that are related to flexing applications. Of particular interest are
policies dictating whether or not a component of an application can be migrated t o
accommodate changing resource requirements of the applications in the environment.
Let placedC be the set of components of running applications that have been placed
on servers of the computing utility. Every co mponent is currently placed on one
server. This assignment can be expressed as a comp onent-server pair. Let ASSIGN be
the set of existing assignments, i.e.,

{ }scscASSIGN server toassigned is component :),(= .

We denote the set of components that can be migrated as placedmig CC ⊆ and the set

of components that cannot be migrated as migplacednomig CCC −= . Let us consider
the following migration policy:

P2. If an application component is not migratable, it should remain on the server it
was placed on; if a component is migratable, migration should be a voided unless
feasible assignments meeting new application requirements can not be found
otherwise.

Prohibiting migration of the components in nomigC is accomplished by introducing
the following additional constraints: For each assig nment, ASSIGNsc ∈),(,

nomig
sc Ccx ∈= 1, .

For components that can be migrated, P1 states that migration should be avoided
unless necessary. This is incorporated by introducing a penalty migπ in the objective
function for changing the assignment of an existing component. Thus , we add

∑
∈

∈

−
migCc

ASSIGNsc
sc

mig x
),(

,)1(π

to the objective function. It is easy to see that the penalty is incurred whenever a
component is moved away from its current server, i.e. when 0, =scx .

4 Simulation Results

In this section, we present simulation results of two resource assignment scenarios
that required the two policies described in Section 3, respectively. The first simulation
shows the use of priorities in assigning resources to applicati ons when the available
resources are insufficient to meet the demands of all applications. The second
simulation demonstrates the impact of policies around mobility of application
components in an application flexing scenario.

4.1 Description of the Computing Utility

The computing utility considered in our simulations is based on a 125 -server utility
data center [1] in HP Labs. The physical network has two layers of switches below
the root switch. We refer to the one switch that is directly connected to the root switch
as the edge switch (e1), and the four additional switches that are directly connected to
the edge switch as the rack switches (r1-r4)2. There are no direct connections between
the rack switches. All the 125 servers are either connected to the edge switch, or to a
rack switch. Table 1 describes the exact network topology of the utility.

Table 1. Network topology of the computing utility

Type of switch Edge Rack

Switch label e1 r1 r2 r3 r4

No. of directly-connected servers 61 12 12 20 20

Among the 61 servers directly-connected to e1, there are 15 high-end servers in
terms of their processing capacity. All the switches in the utility are non -blocking. As
a result, if all traffic of an application is contained within one switch, network
bandwidth is not an issue. If traffic has to traverse switches, inter -switch link
capacity, as we will see, can become a scarce resource.

2 Each switch has a hot standby for high availability. However, in the logical topology of the

network, only the primary switch is considered.

4.2 Description of the Applications

In both simulations, we consider 10 applications that need to be host ed in the
computing utility. The application topology considered is a three -tier topology typical
of e-commerce applications. The resource requirements of the applications follow:
1. Application components do not share servers. Thus every application require s a

separate server for each of its components.
2. Each application contains a high -end component for its back-end component

(typically a database). Thus each application requires one high -end server.
3. The total amount of network bandwidth needed by each appl ication can be

classified into three categories: High, Medium, and Low.
4. Based on the criticality of meeting the application’s resource demand, each

application belongs to one of the three priority classes: Platinum, Gold, and Silver.

Table 2. Resource requiredments of the 10 applications

Application number 1 2 3 4 5 6 7 8 9 10

Total no. of components 8 8 10 5 7 8 6 10 5 6

High-end components 1 1 1 1 1 1 1 1 1 1

Bandwidth requirements.
(Hi / Med / Low)

H M H M M M L H L M

Application priority
(Platinum/Gold/Silver)

P P G P P P S P S P

These requirements are summarized in Table 2. Notice that, since a total of 73
servers are needed, not all applications can fit simultaneously on the 61 servers
directly connected to e1. As a result, some applications will have to be allocated in a
way that traffic traverses switches creating p otential network bottlenecks.

4.3 Policies on Classes of Applications

In the first simulation, we consider the problem of assigning resources to the 10
applications simultaneously. We compare two approaches for undertaking the
assignment: without any priority policies or with the priority policy P1 defined in
Section 3.1. The result of the comparison is illustrated in Fig. 3.

As we can see, when no priority policies are implemented, all the applications are
assigned resources from the computing utility except App8 – a platinum application.
This result is intuitive, because when priority levels of applic ations are ignored, the
RAP solver first tries to place the largest number of appl ications possible, second it
chooses those applications that minimize the traffic weighted inter -server distance as
described earlier. In our scenario, this results in exclud ing placement of App8 since it
requires a large number of servers and high bandwidth.

As explained in Section 3.1, when application priorities are enforced, the priority
policy P1 is incorporated into the RAP optimization problem using soft constraints,
i.e., adding a penalty onto the objective function when the policy is violated. As

indicated by the third column in Fig. 3, the resulting assignment solution is different.
Now App3 in the “Gold” class is not assigned while App8 in the “Platinum” class is.
This simulation demonstrates the impact of including the priority policy on the
resulting assignment solution. It also validates the value of the soft constraint
approach for incorporating priority policies into our RAP solver.

Application Assignments

2

1

7

2

1

6

2

0

7

0

1

2

3

4

5

6

7

8

Silver Gold Platinum

NumApp NoPriority Priority

Fig. 3. Total number of applications, number of applications placed without priority, and
number of applications with priority policy P1 in each priority class

4.4 Migration Policies for Flexing Applications

In this simulation, we consider an application flexing scenario and demonstrate the
impact of the migration policy P2 we defined in Section 3.2. Consider the assignment
obtained using the priority policy in the last section. For this assignment, all servers
directly connected to the switch e1 are assigned to applications, including the 15 high-
end servers. However, the hosted nine applications together require only nine high -
end servers. As a result, six high-end servers are used to host component s that could
have been hosted on a low -end server, and therefore, no high -end servers are currently
available for assignment.

Let us now assume that after a while of running the nine applications in the
computing utility, some applications’ r esource demands change: App8 is requesting
one additional high-end server, while App10 is able to release three low-end
components that happen to be placed on low -end servers3. It is obvious that if no
migration of application components is permissible, App8’s flexing request cannot be

3 The traffic requirements of the flexed applications have been adjusted accordingly in the input

data. Since both appl ications only use servers directly connected to the edge switch e1, the
traffic of these two applications is not affecting the a ssignments described below.

satisfied, because even after the release of the servers no longer needed by App10
there are no more high-end servers available in the free pool.

On the other hand, treating all components as migratable and, in essence, solving a
new initial assignment problem for all nine applications currently admitted may
prescribe a new assignment that requires moving many components resulting in
severe disruption of service for many of the applic ations.

The solution lies in specifying sensible migrat ion policies that can be taken into
account by the RAP solver. Let’s consider the following migration policy on top of
the formerly defined policy P2: existing low -end components can be migrated, while
existing high-end components have to stay put. This is reasonable because for
example, for a 3-tier Web application, the low -end components are Web servers and
application servers that are more likely to be migratable, while high -end components
can be database servers that are much harder to move.

As described in Section 3.2, the above migration policy was implemented by
adding both hard and soft constraints to the RAP MIP formulation. Table 3 shows the
resulting assignment of high-end and low-end servers to applications before and after
flexing. Only the appl ications affected by flexing are shown. All the other
assignments remain the same. As we can see, by incorporating the above migration
policy, the RAP solver finds an assignment for the flexed applic ations, where one
low-end component of App1 previously assigned to a high-end server is migrated to a
low-end server released by App10, and this freed high-end server is used to host the
additional high-end component of App8.

Table 3. Server assignment to the applications affected by flexing

Applications App1 App8 App10
Servers Low-end Hi-end Low-end Hi-end Low-end Hi-end

Required 8 1 10 1 6 1 Before
flexing Assigned 7 2 10 1 6 1

Required 8 1 10 2 6 1 After
flexing Assigned 8 1 10 2 3 1

This simulation demonstrates that, by defining sensi ble migration policies based on
properties of application components and server technologies, we are able to
accommodate flexing requests that may otherwise be infeasible, thus increasing
resource utilization. At the same time, we minimize the disruption t o applications that
are already running in the computing utility. In addition, the result verifies that using
a combination of hard and soft constraints in the optimization problem can be an
effective way of incorporating migration policies into the RAP op timization problem.

5 Conclusion and Future Work

In this paper, we demonstrate how operator policies can be included in a automated
resource assignment using mathematical optimization techniques. Mathematical
optimization is used because, as shown in [1], a simple heuristic leads to poor

application placements that can create fragmented computing resources and network
bottlenecks. Our simulation results on two resource assignment scenarios with
common policies encountered in a utility computing environment confirm that our
framework can not only address the resource assignment problem efficiently, but also
offers a unified approach to tackle quantitative and rule based problems.

As a final note, observe that policies and rules need to be defined precisely in a
way that helps to answer the quintessential question for resource assignment: Can
resource s be assigned to component c? Consequently, we require a data model for the
business rules and operator pol icies that allows expressing these rules and policies i n
terms of the parameters and decision variables of the MIP formulation of the resource
assignment problem. In the future, we may d evelop a tool that directly writes
mathematical programming code, without the need of templates and associated data
models as shown in the examples of Section 3 and 4.

References

1. X. Zhu, C. Santos, J. Ward, D. Beyer and S. Singhal, “Resource assignment for
large scale computing utilities using mathematical programming ,” HP Labs
Technical Report, HPL-2003-243, November 2003.
 http://www.hpl.hp.com/techreports/2003/HPL -2003-243R1.html

2.N. Damianou, N. Dulay, E. Lupu, Morris Sloman, “The Ponder policy
specification language,” Proceedings of IEEE/IFIP Policy 200 1, p18-38.

3.PARLAY Policy Management, http://www.parlay.org/specs
4. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated policy -based resource

construction in utility computing environments,” HPL-2003-176, Proceedings of
IEEE/IFIP NOMS 2004 .

5. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated resource configuration
generation using policies,” Proceedings of IEEE/IFIP Policy 2004 .

6. P. van Hentenryck, Constraint Satisfaction in Logic Programming , The MIT Press,
Cambridge, Mass, 1989.

7. R. Raman, M. Livny, M. Solomon, “MatchMaking: Distributed Resource
Management for High Throughput Computing,” Proceedings of HPDC 98 .

8. Object Constraint Language (OCL),
http://www-3.ibm.com/software/awdtools/library/standards/ocl.html#more

9. D. Menasce, V. Almeida, R. Riedi, R. Flavia, R. Fonseca and W. Meira Jr., “In
Search of Invariants for E-Business Workloads,” Proceedings of the 2nd ACM
Conference on Electronic Commerce, Minneapolis , Oct. 2000, pp. 56-65.

10.L.A. Wolsey, Integer Programming, Wiley, 1998.
11.GAMS, www.gams.com
12.CPLEX, www.ilog.com

