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Abstract. Current network management architectures are using different 
models to define management information objects. These definitions actually 
also include, in a non-formal way, the definition of some behaviour information 
that a manager should accomplish related to the managed objects. So, a 
manager is not able to make an automatic processing of this behaviour 
information. Prior research work proposed the use of formal ontology 
languages, such as OWL, as a way to make a semantic integration of different 
management information definitions. This paper goes further proposing a 
formal definition of the different management behaviour specifications 
integrated with the management information definitions. Thus, usual behaviour 
definitions included implicitly in the management information definitions and 
explicitly in policy definitions can be expressed formally, and included with the 
information definitions. This paper focuses on the definition of behaviour rules 
in management information with SWRL, a rule language defined to 
complement OWL functionality. 

1 Introduction 

The heterogeneity of the resources found in telecommunications networks and 
services has led to the definition of several integrated management architectures, 
which are intended to manage a heterogeneous environment by using a common 
mechanism for accessing the management information. Initially, two frameworks 
emerged: the OSI management architecture and the Internet management architecture. 
While the Internet management architecture has gained widespread acceptance, OSI 
management is still used in some cases, especially in telecommunications networks 
managed with the TMN architecture. 

In addition, by the end of the 1990’s, a new framework, which makes use of the 
web protocols, came onto scene with the same goal of achieving integrated 
management: the WBEM architecture (Web Based Enterprise Management). 
Nevertheless, this new architecture did not exclude the previous ones, including some 
interoperability with different integrated network management architectures. 



In this environment with multiple integrated management frameworks, the initial 
problem that those architectures tried to solve arises once again, since one manager 
has to interact with different resources using several different mechanisms. Even so, 
the manager cannot achieve a truly integrated management of the environment: since 
it cannot know about the semantics of the managed resources defined in the different 
models, it cannot apply common policies to manage those resources, which are in fact 
the same. Policies should be generic and independent of the model in which the 
resources are defined. 

In order to solve this problem, a proposal of the so-called Ontology-based 
Semantic Management is included in [1]. This semantic management allows a 
manager working with a unique information model, which integrates all the different 
definitions of the managed resources, taking into account the semantic aspects of 
those definitions (i.e. their meaning). Another advantage of this approach was also 
pointed out in that proposal: it allows the integration, in that same unified 
management information model, of the definition of behavioural characteristics of the 
manager and of the resources. These behavioural aspects are usually found as 
comments inside the definitions, or explicitly declared outside of the definitions of the 
managed resources. With this approach, all the definitions (information and 
behaviour) are integrated, so they can be jointly processed automatically. 

This paper proposes a starting point for this integration: beginning with the unified 
information model, defined in an ontology language such as OWL, it proposes 
inclusion in this model of the behaviour definitions, expressing them by means of the 
Semantic Web Rule Language, SWRL. For this purpose, next section shows the 
semantic management architecture and the SWRL language. This language will allow 
definition of the behaviour as part of the definitions of the management information, 
as will be shown. Also, the different types of behaviour are explained: implicit 
restrictions, explicit behaviour of the manager, and behaviour of the managed 
elements. Example definitions in SWRL are included for each one of these types. 
Lastly, the most relevant concepts are summarized. 

2 Semantic Management 

The global architecture proposed in [2] is based on a manager that works and reasons 
with a unique information management model, represented by means of ontologies. 
This system manages elements from different domains (SNMP, CIM, etc.) from a 
common and neutral perspective. Fig. 1 shows the proposed architecture of the 
semantic manager. 

The main goal is the usage by the manager of only one information model, but, in 
many cases, the different network resources are defined in different management 
domains (SNMP MIBs, CIM schemas, etc.), so they have to be accessed by using the 
predefined protocols for those domains. Therefore, it is necessary to translate and 
integrate those definitions into one unified specification, taking into account the 
semantics of the initial definitions. In other words, the same resource, defined twice in 
two different models, will have one single representation in the unified model, and 
will have two translations to the original models. So, the goal is not just to make a 



syntactic translation of the definitions, but also about their integration from a semantic 
viewpoint. 

The resulting mappings from the original definitions to the ontology specification 
are then used by the so-called “providers” or gateways in Fig. 1. They are responsible 
for translating the information of the network elements in the unified model back into 
the information in their original management models. 

Using an ontology language for defining the management information has 
additional advantages, such as the possibility to use existing tools in order to work 
and to reason with the ontologies (for example inference engines used in artificial 
intelligence). 

Another advantage, already mentioned in the previous section, is that a 
management ontology allows the integration of rules defining the expected behaviour 
of the management information. In this way, the behaviour definitions that are usually 
implicitly included in the management information definitions (declared in natural 
language, or tacitly supposed), can now be formally expressed as an integrated part of 
the management information definitions, and in their same language (ontology 
language). This approach implies that the behaviour definitions are now formally 
expressed in the same definition language, and that they can be interpreted and 
validated or enforced by the same semantic manager, in order to work and reason with 
them. All definitions, information management (MIBs) and behaviour rules (policies), 
are now integrated in the same network management ontology. One of the main 
advantages of this approach is that it will permit generic managers to behave 
depending on definitions, instead of having embedded encoded behaviour. 

OWL [3] is proposed [4] as the ontology language for the definitions, a general 
purpose ontology language defined for the Semantic Web that contains all the 
necessary constructors to formally describe most of the information management 
definitions: classes and properties, with hierarchies, and range and domain 
restrictions. SWRL [5] extends the set of OWL axioms in order to include conditional 
rules (Horn clauses), of the form if… then … 

 

Fig. 1. Proposed architecture for the semantic manager [2] 



Axioms and rules can be used in this management framework in order to: 
1. Further constrain or define more precisely the behaviour of the OWL management 

information. This will guarantee the correct use and implementation of the 
management information. 

2. Formally define the behaviour of the manager. This allows the declaration of the 
manager actions when certain conditions are met on the managed elements. 

3. Formally define the behaviour of the managed objects. This allows the definition 
of what the managed resources should do upon certain events or conditions. 
 
The purpose of this paper is to integrate the definition of the management 

information (expressed in OWL) with the definition of the management behaviour 
(expressed in SWRL). The next section explains briefly the SWRL language, used to 
define rules for OWL ontologies. 

3 SWRL: definition of rules for OWL ontologies 

An OWL ontology contains a sequence of axioms and facts. It includes several types 
of axiom, such as subclass axioms, equivalent Class axioms and property constraints. 
SWRL proposes to extend these with rule axioms. 

A rule axiom consists of an antecedent (body) and a consequent (head), each of 
which consists of a (possibly empty) set of atoms.  

In the “human-readable” syntax of SWRL, a rule has the form:  
antecedent э consequent 
Informally, a rule may be read as meaning that if the antecedent holds (is "true"), 

then the consequent must also hold. Using this syntax, a rule asserting that the 
composition of parent and brother properties implies the uncle property would be 
written:  

Person(?x)  isFather(?x,?y)  isBrother(?y,?z) э 
isUncle(?x,?z) 
 

An SWRL rule has therefore the form of an implication relationship between the 
head and the body. The SWRL specification [5] provides an abstract syntax that 
extends the OWL abstract syntax described in [6] to include this relationship in the 
ontology language. The XML labels used for defining rules include: 
• <ruleml:imp>: it is the element that relates the body of the rule with the head (the 

label of the relationship). 
• <ruleml:_body>: it is the element that contains the atoms that form body of the 

rule. 
• <ruleml:_head>: it is the element that contains the atoms that form the head of the 

rule. 
• <ruleml:var>: it allows the definition of the variables used in the evaluation of 

rules. 
• <swrlx:individualPropertyAtom>: it allows the definition of atoms that refer to 

specific properties. It is also possible to define atoms that refer to classes, data 



ranges, valued properties, or typed functions such as mathematical, dates and 
strings. 
As is shown, many of these labels are not defined inside the SWRL namespace, but 

in RuleML’s [7], a rule language previously defined that has been taken as the base 
for SWRL definition. SWRL mainly brings the definition of atoms and the integration 
of these rules into an ontology written in OWL. 

4 Definition of Management Behaviour in OWL+SWRL 

4.1 Types of management behaviour  

In order to define management behaviour let us first classify which types of behaviour 
can exist. Concretely, three types of management behaviour have been identified: 
1. Implicit constraints and rules about the behaviour of the modelled objects in the 

MIBs and CIM schemas 
2. Explicit behaviour of the manager, in the traditional manager-agents architecture, 

which defines how the manager should behave upon analysing the information 
obtained from the agents 

3. Explicit defined policies to specify the dynamic behaviour or dynamic 
configuration of the managed resources (Policy-Based Management [8]) 
 
In this semantic management framework, policies can be defined in the same 

management language – OWL+SWRL – in which the objects of the management 
information base (MIB) are defined, with the advantage of working with a unified 
model. 

Going back to the management architecture proposed in Fig. 1, the constraints, 
rules, and policy definitions would be stored in the rule information base – part of the 
common model, whose purpose is verifying the integrity of the information, and 
automating the control of the managed elements. 

The following sections focus on each of the identified behaviour types. 

4.2 Implicit restrictions on the management information 

This kind of rules refers to restrictions in the data type, cardinality, or access. They 
are typical restrictions upon the properties and classes of the managed objects. In this 
case SWRL rules complement the existing mechanisms in OWL to form the 
management information definitions, in the sense that they allow expressing more 
complex restrictions: values that depend on the values of other variables, relationships 
among objects, state-machine behaviour of the values, etc. 

In a general way, SWRL allows the representation of behaviour restrictions that 
can be expressed in a natural language as conditional clauses (if… then …). This 
includes, for example, values that depend on other values, state-machine behaviour, 
temporal behaviour, or complex types such as composed functions. The following 
subsections present some examples of these kinds of behaviour found in SNMP 



MIBs, and how SWRL is used to formally define these restrictions. In many cases, the 
definition of the restrictions will require the creation of new classes and properties 
that would extend the management ontology. 

Example 1 
This first example shows how to specify in SWRL that the value of one variable 
depends on the value of another variable. It is based on a definition from SNMP’s 
MIB II, which restricts the value of the mask for route entries, in the routing table: 

ipRouteMask OBJECT-TYPE 
 SYNTAX IpAddress 
 ACCESS  read-write 
 STATUS  mandatory 
 DESCRIPTION 
  "… If the value of the ipRouteDest is 0.0.0.0 (a 
default route), then the mask value is also 0.0.0.0 …" 
 ::= { ipRouteEntry 11 } 
This implicit restriction is expressed in natural language in the DESCRIPTION 

clause, but it is not formally defined in SMIv2, so it cannot be automatically 
implemented by a manager when the MIB is compiled. 

If theMIB II has been mapped and integrated in the management information base 
in OWL, the SWRL rule to define this example restriction would be the following: 

ipRouteEntry(IR?)  swrlb:equal (ipRouteDest(IR?), "0.0.0.0") 
э swrlb:equal(ipRouteMask(IR?), "0.0.0.0") 
where ipRouteDest and ipRouteMask are properties of the class ipRouteEntry. 
It is interesting to notice that this kind of restriction, hereby expressed in a simple 

manner, is not currently supported by existing management definition languages. In 
fact, the IETF’s SMIng Working Group proposed the following objective for the next 
generation of the SMI definition language, stated in [9]: “SMIng should provide 
mechanisms to formally specify constraints between values of multiple attributes”, but 
its implementation was not accomplished: “This objective as is has been rejected as 
too general, and therefore virtually impossible to implement”. 

On the other hand, further reinforcing the idea under study, it so happens that OWL 
without SWRL can neither express this constraint: a restriction on a property 
(owl:restriction clause) cannot be made to depend on the value of another property of 
the same object. 

Example 2 
This second example, also obtained from SNMP’s MIB II, can be used to show how 
to define state-machine behaviour with SWRL. It is based on the column of the TCP 
connection table which shows the state of each connection. 

 



tcpConnState OBJECT-TYPE 
 SYNTAX INTEGER { 
    closed(1), 
    listen(2), 
    synSent(3), 
    synReceived(4), 
    established(5), 
    finWait1(6), 
    finWait2(7), 
    closeWait(8), 
    lastAck(9), 
    closing(10), 
    timeWait(11), 
    deleteTCB(12) 
  } 
 ACCESS  read-write 
 STATUS  mandatory 
 DESCRIPTION “…” 
::= { tcpConnEntry 1 } 
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Fig. 2. TCP state machine and definition 

Since this parameter has a read/write access, this example is intended to define the 
state-machine diagram shown also in Fig. 2, so that a manager could check that all 
connections comply with the state machine. 

For this purpose, in the management ontology we define a new class of objects 
called tcpConnEntry, with a property that indicates the actual state of the connection, 
tcpConnEntry, and auxiliary properties tcpConnPreviousState and tcpConnNextState, 
which indicate the list of possible before and after states. The following is an example 
rule that could be used to define the state-machine:  

tcpConnEntry(cx?)  swrlb:equal(tcpConnState(cx?), 
"fin_wait_1") э swrlb:member(tcpConnNextState(cx?), 
nextStatesForFin_Wait_1_List) 
where nextStatesForFin_Wait_1_List would be a list (rdf:list) with the values 

“closing”, “time_wait” and “fin_wait_2”.  

Example 3 
The third example is a case of defining a temporal constraint, also described in natural 
language in SNMP MIB II. It is a constraint upon the value of the column of the 
interfaces table which indicates the latest time at which the interface changed. The 
constraint definition for the property ifLastChange that can be represented in SWRL 
is marked in bold letters:  

ifLastChange OBJECT-TYPE 
 SYNTAX TimeTicks 
 ACCESS read-only 
 STATUS mandatory 
 DESCRIPTION 
  "The value of sysUpTime at the time the interface 
entered its current operational state.  If the current state 
was entered prior to the last re-initialization of the local 



network management subsystem, then this object contains a 
zero value." 
 ::= { ifEntry 9 } 
To implement this constraint it is also needed to use auxiliary classes and 

properties. In this case, the temporal comparison can be made making use of the 
property sysUpTime of the class system. 

system(?x)  ifEntry(?y)  isInterfaceOf(?y, ?x) э 
swrlb:lessThan(ifLastChange(y?), sysUpTime(?x)) 

4.3 Explicit behaviour of the manager 

The behaviour of the manager when certain conditions are met on the network or the 
managed systems, can also be specified by means of conditional rules if condition 
then action, which become the following in SWRL 

condition э action 
or, making use of the broader definition of SWRL: 
condition set э action set 

Actions 
As a management information definition language, OWL lacks the explicit ability to 
define operations or methods on the managed objects that are typical in other 
management information languages such as CIM or GDMO. In order to solve this 
problem, actions in OWL can be represented by means of the OWL-Services 
ontology, OWL-S [10], which allows an easy integration with the rest of definitions. 
One of the classes that this ontology defines, among many others, is the Process class 
that can be used for this purpose. In this way, “executing an action” can be interpreted 
as “calling a service” that executes that action, and so it is possible to define that 
action as an OWL-S Process, and then instantiate an object of the class Perform, with 
such process as its argument: 

Perform(MyProcess) 
The class Perform is an auxiliary class used in OWL-S to represent the execution 

of atomic processes inside a composite process, e.g.  Perform(Reset), 
Perform(SendAlarm(…)), Perform(SetIPRoute(…)), etc. 

These processes can be either newly defined actions or the result of integrating 
existing operations or methods of the merged information models (CIM methods, 
SNMP “set” operations, etc.) 

In the proposed architecture in Fig. 1, which follows the traditional manager-agent 
paradigm, the manager would invoke the service calls that the providers would offer, 
and these providers would in turn execute the requested operations upon the managed 
elements, in their native languages and protocols.  

The following example shows this type of definition of the behaviour of the 
manager upon the existence of certain conditions on the network: 



Example 4 
This example makes use of the class CIM_SystemDevice from the CIM schema, with 
two instances that are port devices. With this SWRL rule, the manager will activate 
the second port if the first port is not working, i.e.: 

If LogicalPort #1 is “Operatively Down”, then enable 
LogicalPort #2 

In SWRL: 
CIM_SystemDevice(LP1?)  swrlb:equal(deviceName(LP1?), 
“Lport1”)  CIM_SystemDevice(LP2?)  
swrlb:equal(deviceName(LP2?), “Lport2”)   
swrlb:equal(StatusInfo(LP1?), "OPERATIVELY_DOWN") э 
Perform(SetAdminAvailability(LP2?, "ENABLE")) 
In this case, the rule is applied upon certain instances of a class, not upon all 

elements of the class. 
In the same way as it occurred with implicit restrictions, this type of explicit 

definitions could neither be expressed in OWL without SWRL, as it is a restriction 
upon the values of a property. Also, there is a clear difference in this example with the 
example #1 in the previous section, because in this case the related values are the 
values of the same property, from two different objects of the same class, instead of 
values from different properties of the same object. 

4.4 Explicit behaviour of the managed elements: application to policy-based 
management  

If the rules being defined in the information model are not rules for the behaviour of 
the manager, but rules that define the behaviour of the managed elements, then we 
need an architecture that supports the distribution of the rules or policies to those 
managed elements. This type of architectures is defined in the PBM framework 
(Policy-Based Management) or policy-based networking (PBN). This work references 
the following elements of the PBM architecture, proposed by the IETF/DMTF [8]: 
• PEP Devices (Policy Enforcement Point): those elements that can apply or execute 

the policies. 
• PDP Devices (Policy Decision Point): they act as proxy between the PEPs and the 

policy repository, being responsible for interpreting the policies from the 
repository and indicating the corresponding actions to the PEPs. 

• Policy Repository: it stores the defined policies that will be distributed to the PDPs. 
 
A policy-based architecture presents the following key characteristics: 
• Centralization: definition of behaviour is made in a single point and can be 

massively distributed throughout the network, instead of being defined and applied 
individually for each element  

• Abstraction Levels: policies can be defined at different level: high level policies 
(i.e. business rules), intermediate level (i.e. service level rules), and lower level 
(i.e. policies applied by the network elements). It might be necessary to translate 
policies among levels, in order to convert high level rules into the lower level 
policies that will be applied by the network elements. For this task it will be useful 



to define models (business models, service models, network models). Existing 
policy definition languages can be oriented to policy definition at determinate 
levels. For example, PONDER and RBAC would be classified as high-level policy 
definition languages, since the information model is closer to natural language and 
human thinking. On the other hand, PCIM and COPS-PR PIB allow the definition 
of lower level policies, closer to the management languages used by the network 
elements. 
 
In this section, we will attempt a first approach to the possibility of using 

ontologies in OWL+SWRL as a definition language for those kinds of high and low 
level policies, through the following examples. 

Example 5: high level policy in PONDER 
This example matches in SWRL a policy previously defined in PONDER, extracted 
from [11]: 

type rel ReportingT (ProjectManagerT pm, SecretaryT secr) { 
 inst oblig reportWeekly { 
  on timer.day ("monday") ; 
  subject secr ; 
  target pm ; 
  do mailReport() ; 
 } 
 // . . . other policies 
} 
The obligation policy reportWeekly specifies that the subject of the SecretaryT role 

must mail a report to the subject of the ProjectManagerT role every Monday. In 
SWRL it could be expressed like this 

ProjectManagerT(pm?)  SecretaryT(secr?)  Timerday(t?)  
swrlb:equal (t?, "monday") э  Perform(mailReport(secr?, pm?)) 
In a similar way, other kinds of policies could be mapped to SWRL: authorization 

policies, obligation policies, filtering policies, etc. 

Example 6: low level policy 
Next, an SWRL definition will be shown of a low level policy that could be executed 
by a network element. 

The following rule would set to “0100” the ToS (Type Of Service) field of each IP 
packet whose destination address belonged to the specified address range. 

IPpacket(ippacket?)  InsideIPRange(DestAddress(ippacket?), 
"192.168.1.0 – 192.168.1.255") э 
Perform(SetTOSlabel(ippacket?, "0100")) 
While this example demonstrates the possibility of defining these kinds of lower 

level policies, it might be too simple and not very useful in a real case. A better 
approach to integrate these kind of policies into the unified management ontology 
would be to attempt the mapping of the existing PIBs (Policy Information Base), or 
mapping the existing policy definition languages that the network elements or PDPs 
understand. Two kinds of necessary mappings can be identified: on one side, the 
mapping of the conditions that trigger the policies, or condition sets; on the other side, 



the mapping of the operations to be performed, or action sets. If the same kinds of 
policy are defined in different definition languages, the integration approach could 
use the M&M (Merge and Map) method [2], proposed for the integration of 
management information definitions coming from different management models to a 
common ontology. The application of this method would in turn allow a reverse 
translation, from the policies represented in the OWL+SWRL ontology, to the native 
management languages that the PDPs would understand. 

At this point it is necessary to notice that the policies represented in the examples 
hereby included (such as “<condition set> then do <action list>”) are policies 
without events. There are no explicit events to trigger the evaluation of the policies, 
but the agents must do this task whenever there is an implicit event, as would be 
starting a new session, or periodically. This would be the case of the PCIM definition 
language, but not of COPS and PONDER, since these languages allow the definition 
of policies with this kind of event-condition-action. 

Policy-based management also deals with translation of policies among different 
abstraction levels, so policies defined at higher levels (i.e. business level and service 
level) can be translated down to lower level policies  (i.e. network and system levels). 
In the semantic management approach, policy definitions at all levels would be 
defined in the same definition language, OWL+SWRL, which could facilitate the 
process of translating among levels. Nevertheless, this is currently out of the scope of 
the present work. 

5 Conclusions 

As it has been shown in previous research work [1,2,4], ontology languages such as 
OWL include the constructions necessary to define the typical aspects of the network 
management information that can be found in other management definition languages 
such as SMI-SNMP, MOF-CIM, etc., so it is possible to make a mapping and 
merging process which integrates definitions in different languages from a semantic 
point of view. 

In this semantic management framework, the present work has shown how SWRL:  
1. adds expressiveness power for defining constraints and rules for the proposed 

network management information ontology in OWL. This means that more 
complex constraints and policies can be formally expressed in the OWL 
management information model, therefore enriching and empowering the overall 
semantic framework for network management 

2. allows explicitly defining the behaviour of the manager, and of managed objects, in 
the same language – OWL+SWRL – that is used for the definitions in the 
management information base. This includes: 
− Actions that will be performed by the manager upon certain conditions on the 

network objects or the manager itself 
− Actions that will be performed by the network elements upon the existence of 

certain conditions (policies that define the behaviour of these managed 
elements) 



In this semantic management framework, some management architecture elements 
have yet to be defined, including events, translation and distribution of policies, and 
other elements from policy-based networking.  

Another direction for future work is the approach to be followed for accomplishing 
the formal definition of the existing restrictions and rules implicitly or explicitly 
defined. For this work it would be useful to develop tools that propose these 
restrictions using heuristic searches of constraints described in the “description fields” 
(e.g. strings including “if*then”, “have to” or “must” will have a high probability of 
being part of these natural language constraint definitions), and their final 
representation in SWRL making use of the existing OWL definitions. 
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