
An Architecture for Privacy-aware Inter-domain
Identity Management

Wolfgang Hommel

Munich Network Management Team
Leibniz Supercomputing Center Munich

hommel@lrz.de

Abstract. The management of service oriented architectures demands
an efficient control of service users and their authorizations. Similar to
structured cabling in LANs, Identity & Access Management systems
have proven to be important components of organizations’ IT infras-
tructures. Yet, due to new management challenges such as virtual or-
ganizations, on-demand computing and the integration of third party
services through composition, identity information has to be passed to
external service providers; this decentralization inherently leads to inter-
operability and privacy issues, which existing management standards are
not dealing with appropriately yet. We present an architecture, based on
SAML, XACML and XSLT, which provides a tight integration of cross-
organizational identity data transfer into the local provisioning business
processes along with a policy-driven inter-domain privacy management
system, and its implementation.

1 Introduction and Problem Statement

Besides network components and systems, the operation of complex IT infras-
tructures more and more has to focus on the management of application-level
services offered to end users. An essential part of service provisioning is the setup,
configuration, maintenance and deletion of user accounts, also known as Iden-
tity & Access Management (I&AM). The I&AM paradigm demands to provide
a holistic view of a user instead of administrating each account on each service
independently. Typically, a central identity repository, such as an LDAP-based
enterprise directory, provides the user data required for authentication, autho-
rization and accounting, as well as for service personalization. I&AM systems are
usually fed by an organization’s human resources (HR) system and customer re-
lationship management (CRM) database; they thus contain sensitive data, which
must be protected due to privacy and governance aspects.

However, in an increasing number of scenarios, cross-organizational identity
data transfer is required. If, for example, IT services are outsourced to third
parties, personalization and accounting data must be made available to the ser-
vice provider (SP), as they are required for service provisioning and billing.
Similarly, aligning with other organizations to form a virtual organization, e.g.
in Grid projects, requires to pool together parts of the resources and user data

alike. To avoid redundant and inconsistent storage of identity information, as
well as the administrative overhead to acquire and maintain this data multiple
times, dedicated languages and web services based management protocols exist
for the exchange of identity information. Standards like the Security Assertion
Markup Language (SAML, [1]), the Liberty Alliance specifications [2] and the
Web Services Federation Language (WS-Federation, [3]) provide methods which
allow an SP to retrieve information about a user from the user’s so-called Iden-
tity Provider (IDP). Especially SAML is in wide-spread use, as it has served
as basis for Liberty Alliance and because WS-Federation has adopted SAML
support meanwhile. The application of these standards to inter-domain service
provisioning is also known as Federated Identity Management (FIM).

While those standards provide a lot of much needed inter-domain provision-
ing functionality, we have shown in previous work that they have several defi-
ciencies in common [4]. In this paper, we present solutions for two of the most
urgent problems of the current FIM standards and their existing implementa-
tions. First, the demand for an identity federation wide common data schema is
not considerate of the syntax and semantics of local I&AM solutions and thus
makes the seamless integration of FIM into existing provisioning business pro-
cesses next to impossible in practice. Second, none of the standards specifies
how administrators and users can control and restrict which information about
a user is allowed to be sent to which provider, as is urgently required to protect
the user’s privacy.

We address these issues in this paper by extending the standard SAML ar-
chitecture by two IDP-side components, while still maintaining full SAML com-
pliance. First, we introduce an Attribute Converter component. It translates
incoming requests from the federation-wide data schema into the one used by
the local I&AM solution; then, it converts outgoing responses back into the fed-
eration’s data schema. Second, we demonstrate how the eXtensible Access Con-
trol Markup Language (XACML, [5]) can be used efficiently to specify which
service providers can access which identity information. We have implemented
both components prototypically as extensions to the well-known Shibboleth soft-
ware [6].

After discussing the state of the art in section 2, we present the concept of
our SAML architecture extensions in section 3. We focus on implementational
aspects and the introduction of our prototype in section 4 and give an outlook
to our further research in section 5.

2 Towards Federated Identity Management

Because more and more services and applications supported the LDAP pro-
tocol for both authentication and storage of configuration data, LDAP-based
enterprise directories have been widely adopted as basis for intra-organizational
I&AM solutions, which focus on the integration and centralized management
of an organization’s employees, customers and users and their access rights to
the local services. Unfortunately, as in many other management areas, no single

data schema standard exists, and thus default vendor configurations, such as
those found in Microsoft Active Directory or Novell eDirectory, compete with
non-proprietary LDAP schema definitions such as inetOrgPerson [7]. In practice,
many organizations even create their own LDAP schema to cover their individual
needs.

To facilitate cross-organizational identity data exchange, early attempts to
grant other organizations access to own enterprise directories quickly turned out
to be tedious and suffer from bad scalability. Having to set up accounts for users
from other organizations and getting applications to work with different schemas
leads to massive administrative overhead and is impractical when more than a
handful of organizations is involved.

Thus, dedicated management standards were created, out of which SAML [1]
has found wide-spread adopters and is supported by the recent versions of iden-
tity management solutions by most big vendors, including HP, IBM, Novell, and
Sun. SAML establishes a web services based back channel between the service
provider (SP) and the user’s home organization, which is called Identity Provider
(IDP). Over this back channel, the SP can request information about the user,
as shown in figure 1:

Enterprise
Directory

SAML PDP Attribute
Requester

Service Provider

1

3

Identity Provider

2a

2b

Fig. 1. Identity data exchange through a standard SAML back channel

1. The SP sends a SAML request to the IDP’s SAML Policy Decision Point
(PDP), e.g. it queries the user’s billing address. The user is identified by a
handle known to both providers, and the billing address consists of attributes
such as name, street, postal code and city, which must have been defined
in a federation-wide data schema a priori.

2. Those attributes are looked up in the IDP’s local identity repository, which
is typically the enterprise directory also used by the local I&AM solution.
The result is returned to the IDP’s SAML component.

3. The data is wrapped into a SAML attribute assertion and sent back to the
SP.

Having to use a federation-wide data schema in a SAML architecture raises
two problems: First, finding a common data schema for all involved parties is
a non-trivial task due to different technical demands, e.g. different syntactical
requirements of applications, and each involved organization’s political goals.
Second, as an IDP’s SAML component must be able to look up the attributes in
this schema, the organization either has to use this schema internally as well or
provide an extra repository which is synchronized with the local I&AM solution
regularly; either way, this causes costs for the extra hardware, synchronization
software and operation. Two solution attempts are presently available:

1. The Liberty Alliance provides two standardized schemas, called employee
and personal profile ([8], [9]). However, these schemas provide only the great-
est common divisor of potentially required identity information, and thus are
per se insufficient and have to be extended by other required attributes, sim-
ilar to their LDAP counterparts.

2. Most vendors support a technique called attribute mapping. For example,
if an SP requests the dateOfBirth attribute, it could be mapped to the
DOB attribute in the local repository. However, more complex transforma-
tions than just renaming an attribute, such as changing the date format
from YYYY-MM-DD to DD.MM.YY, or composing the result from three separate
attributes day, month and year, are not possible.

As can also be seen from figure 1, there is no filtering mechanism in place
that restricts which attributes are allowed to be sent to the SP. Yet, it is crucial
to protect the users’ privacy and empower each user to control and restrict which
SP has access to which attributes. This issue is also dealt with insufficiently:

– Of the three FIM standards, only Liberty Alliance introduces the idea of
Attribute Release Policies (ARPs). However, it does neither specify the
content of such ARPs nor how they should be implemented.

– Only Shibboleth [6], a SAML-based open source FIM software, which is the
de-facto standard among higher education institutions, supports ARPs, but
in a proprietary format and with rather limited functionality, i.e. the release
of each attribute to each SP can be restricted only based on this attribute’s
current value.

More complex conditions, such as granting access to one’s credit card data
only if one is actually buying something from a shop and not just browsing for
information, cannot be modelled with current ARP concepts and implementa-
tions. Also, no obligations can be specified, such as informing a user whenever
an SP accesses certain attributes, e.g. by means of an e-mail or a log file.

As both an integration of FIM into existing local business processes and an
enhanced privacy protection are urgently required to achieve a smooth setup of
identity federations and earning of user acceptance, we have extended the SAML
architecture by schema conversion and privacy management components, which
are described in the next sections.

3 An extended SAML Architecture with Schema
Conversion and Privacy Management Support

Figure 2 shows our extended SAML architecture; as only the IDP-internal work-
flow has been modified and the SAML PDP is still the only point of contact
to the outside world, we preserve full SAML compliance. We now describe the
overall workflow and then go into conceptual details of the attribute conversion
component in section 3.1 and specify the privacy management mechanism in
section 3.2:

XACML
ARP

Component

Enterprise
Directory

Policy
Repository

SAML PDP Attribute
Requester

Attribute
Converter

Service Provider

Identity Provider

Policy
Administration

Point
Our extension to the SAML architecture

A

1

2

3

4

6

7
8

9

10

11

5

Fig. 2. Extended SAML architecture and workflow

1. The SAML attribute request is sent by the service provider (SP) to the
IDP’s SAML PDP as before. The data schema used in the request is the
federation-wide.

2. The IDP’s SAML PDP extracts the list of the wanted attributes from the
SAML request; instead of looking them up in the enterprise directory di-
rectly, it forwards this list to our attribute converter, which is described in
more detail in section 3.1. It also passes information about the requesting
SP and the affected user, which are required later to pick the appropriate
policies.

3. The attribute converter contacts the IDP’s policy repository. It stores pairs
of conversion rules which are used to first convert incoming requests from
the federation-wide into the locally used data schema, and then convert the
results from the locally used to the federation-wide data schema. The rules
can be administrated via the policy administration point (see arrow A).

4. The rules required to convert the actually requested attributes to and from
the locally used data schema are returned to the attribute converter.

5. The attribute converter translates the list of originally requested attributes
into the list of attributes which need to be looked up in the local enterprise
directory. By doing so, the names of the attributes can be changed, but
attributes may also be added to or deleted from the list, depending on which
attributes are required in the local schema to provide the content for the
requested attributes in the federation-wide schema. This list of attributes is
then looked up in the enterprise directory.

6. Before those attributes can be returned to the SP, Attribute Release Policies
(ARPs) are used to protect the user’s privacy. We are using the eXtensi-
ble Access Control Markup Language (XACML, [5]) to model and enforce
ARPs as described in section 3.2. The attributes and their values, which have
been retrieved from the enterprise directory, are forwarded to our XACML
component.

7. The XACML component looks up the applicable ARPs in the IDP’s policy
repository. The selection of ARPs depends on various factors, such as the
requesting SP, the affected user and the attributes which have been looked
up.

8. The relevant ARPs, which typically include IDP-wide ARPs defined by an
administrator and user-specific ARPs, are returned to the XACML compo-
nent. Details are provided in section 4.

9. The XACML ARP component filters the list based on the rules specified by
XACML policies as described below and returns only those attributes whose
release is allowed back to the attribute converter.

10. This time, the attribute converter has to convert the attributes from the
locally used schema back to the federation-wide schema. The necessary rules
have already been fetched in step 3. The final result is returned to the IDP’s
SAML PDP.

11. The IDP’s SAML PDP wraps the result in a SAML assertion, which is finally
sent to the SP as result of the original attribute request.

The following sections describe the internals of the attribute converter and
the XACML ARP component in detail.

3.1 Cross-organizational Identity Schema Conversion

The attribute converter’s purpose is to enhance the interoperability of FIM so-
lutions with existing I&AM systems by letting all IDP components work with
the IDP’s locally established data schema and nevertheless communicate with
federation partners transparently.

An example of its use is shown in figure 3. It assumes that a federation
has defined a DOB attribute which holds the user’s date of birth in the format
YYYY-MM-DD; however, the IDP, which receives the request, stores the user’s date
of birth in three separate attributes for day, month and year of birth. Even such
seemingly simple problems cannot be solved with the existing FIM standards.

Requests
DOB

Expects
YYYY-MM-DD

Converts request
into bd_day,

bd_month and
bd_year

Composes return
value from

attribute values

1967-03-25

bd_year = 67
bd_month = 03
bd_day = 25

Service Provider
Identity Provider,

Attribute Converter

Identity Repository

Fig. 3. Solution workflow for a simple schema mismatch example

The figure also shows the attribute conversion relevant steps of the workflow
described above. First, the incoming request for one attribute is modified, so the
three locally required attributes are looked up. Then, before returning the result
to the SP, the return value for the originally requested attribute is composed
from the three separate attributes.

Three kinds of conversions can be made:

1. The names of the requested attributes can be changed, e.g. from DOB to
dateOfBirth. This is equivalent to the attribute mapping approach de-
scribed in section 2.

2. The attribute’s value can be text-processed, in order to fulfill syntactical
requirements of the target data schema, or to compose or split up attributes.

3. The attribute’s value can be modified to adapt different semantics; for exam-
ple, the value of a user’s nationality attribute may have to be German in
the local schema but DE in the federation-wide. Such semantical conversions
are eased in practice because many attributes can only have discrete values.

The actual conversion rules are specified as XSLT [10] stylesheets, i.e. XML
transformations are performed; an example is given in section 4. XSLT is an ob-
vious choice, as all FIM standards are XML-based and most of their implementa-
tions use XML internally as well. Furthermore, also well-established products for
local I&AM, such as Novell’s Nsure Identity Manager 2, are using XSL trans-
formations for intra-organizational data conversions, so existing programming
experience and code can be reused efficiently in the federated case.

3.2 Inter-domain Policy-based Privacy Management

Privacy management is a well-studied field; standards such as P3P [11] and
EPAL [12] have been widely adopted. However, they are intended to specify,
publish and enforce privacy policies on the service provider side; they do not
specify how the user’s preferences shall be stored on the client or identity provider

side. Existing implementations, such as Shibboleth [6], use proprietary privacy
policy formats on the IDP side; thus, users cannot reuse their policies at other
IDPs if they use a different implementation.

We have chosen the eXtensible Access Control Markup Language (XACML,
[5]) as basis for the implementation of Attribute Release Policies (ARPs) for the
following reasons:

– XACML and SAML have been paired before to achieve fine-grained inter-
domain access control, e.g. in well-known systems such as PERMIS [13] and
Cardea [14]; a detailed overview can be found in [15].

– XACML is a OASIS standard with a reference implementation available as
open source [16]. As XACML is a generic access control language, the pol-
icy format can be tailored to individual needs and still be evaluated by any
standard compliant XACML PDP; this ensures interoperability and elim-
inates the need to implement a dedicated PDP. XACML’s relationship to
P3P, which has been outlined in [17], allows us to leverage a proven privacy
standard to FIM applications.

– XACML already provides functionality which is required for advanced ARPs
but not available in current proprietary implementations, e.g.
• Support for multiple roles of a user, e.g. one used at work and one used

in spare time.
• Grouping of attributes, i.e. release rules do not have to be specified for

each attribute separately, e.g. as in Shibboleth.
• Arbitrarily decentralized management, i.e. multiple XACML policies can

be combined to form the effective policy. Typically, an IDP administrator
will specify default policies which each user can override individually on
demand.

• Very flexible condition formulation; for example, certain attributes may
only be released for a certain purpose which the SP has to disclose.
Conditions may also contain environmental data such as the current
date and time.

• Formulation of obligations. Logging an SP’s access to selected attributes
and informing the user by e-mail are two popular obligations which are
already part of the XACML standard; arbitrary other obligations can be
implemented through XACML’s extension mechanisms.

• Policy protection, i.e. an existing public key infrastructure (PKI) can be
used to sign and encrypt the ARPs to prevent unauthorized modification
and disclosure.

The XACML PDP component shown in figure 2 consists of an XACML
policy enforcement point (PEP) and a standard XACML PDP. The PEP creates
XACML requests based on the attributes which are passed in from the enterprise
directory (see step 6 of the workflow on page 5). It then fulfills any obligations
returned by the XACML PDP and returns the attribute values to the converter
component if their release was allowed. An example can be found in the next
section.

4 Implementation Details

We will now describe our implementation of the SAML architecture extension
and the integration of its components into Shibboleth.

As described in section 3.1, the attribute converter uses XSLT stylesheets to
transform incoming requests and outgoing responses. We have implemented this
functionality using Xalan [18] as XSLT processor through the standard JAXP
Java API. Our prototype uses the local file system as XSLT stylesheet repository;
additionally, a web server can be used as policy administration point (PAP) to
upload new stylesheets and edit them online (see arrow A in figure 2). Example
stylesheets which solve the date of birth schema problem discussed in section 3.1
are shown in figure 4.

<request user="johndoe"
 requestor="sp.example.com">

 <attribute> DOB </attribute>

</request>

<xsl:template match="/">
 <attributes>

<xsl:attribute name='name'>
 <xsl:value-of select="request/@user"/>
 </xsl:attribute>
 <xsl:apply-templates select="request/
attribute"/>
 </attributes>
</xsl:template>

<xsl:template match="request/attribute">
 <xsl:if test="normalize-space(.) = 'DOB'">
 <attribute> bd_day </attribute>
 <attribute> bd_month </attribute>
 <attribute> bd_year </attribute>
 </xsl:if>
</xsl:template>

<attributes name=“johndoe“>
 <attribute> bd_day </attribute>
 <attribute> bd_month </attribute>
 <attribute> bd_year </attribute>
</attributes>

<response user="johndoe">
 <DOB>1967-03-25</DOB>
</response>

<xsl:template match="/">
 <response>
 <xsl:attribute name='user'>
 <xsl:value-of select="user/@name"/>
 </xsl:attribute>
 <xsl:apply-templates select="user/db_year"/>
 </response>
</xsl:template>

<xsl:template match="user/db_year">
 <DOB> <!-- simplified assume fixed '19'
 as century here -->
 <xsl:value-of select="concat('19',
 normalize-space(.), '-',
 normalize-space(../db_month), '-',
 normalize-space(../db_day))"/>
 </DOB>
</xsl:template>

<user name="johndoe">
 <db_year> 67 </db_year>
 <db_month> 03 </db_month>
 <db_day> 25 </db_day>
</user>

Incoming request

Request conversion stylesheet

Converted request

Retrieved attributes

Response conversion stylesheet

Outgoing response

Fig. 4. An example for request and attribute conversions using XSLT

Shibboleth provides data connectors for relational databases, LDAP servers
and flat text files; it also has an extension mechanism which can be used to
hook in custom connectors. By implementing such a custom connector, attribute
lookups can be redirected to the attribute converter, which in turn uses the Java
JNDI API to retrieve the attributes from the enterprise directory in the local

data schema. It passes their values and the meta-data about the service provider,
which is delivered by Shibboleth, on to the XACML ARP component.

The XACML ARP component is also implemented in Java, facilitating Sun’s
XACML PDP implementation [16]. The attribute values and meta-data are re-
ceived by a custom XACML PEP, which assembles an appropriate XACML
request; this request is then evaluated by the PDP, which returns the decision
whether the attribute may be released to the given service provider under the
given conditions, along with optional obligations. The following example shows
an XACML policy which grants access to the user’s credit card number to an
online shop only if an actual order is placed; an obligation specifies that each
allowed release must be logged:

1 <Pol i cy id=”xacmlARP1” RuleCombiningAlg=” f i r s t −app l i c ab l e ”>
2 <CombinerParameters>
3 <CombinerParameter ParameterName=”ARPpriority ”>
4 100
5 </CombinerParameter>
6 </CombinerParameters>
7 <Desc r ip t i on> ARP by user John Doe </ Desc r ip t i on>
8 <Rule id=”CreditCardToBookShop” e f f e c t=”permit ”>
9 <Desc r ip t i on> Release c r e d i t card number to bookshop </ Desc r ip t i on>

10 <Target>
11 <Resources>
12 <Resource>
13 <ResourceMatch MatchId=” st r ing−equal ”>
14 <Attr ibuteValue>
15 idp . example . com/ johndoe/ d e f a u l t r o l e /creditCardNumber
16 </Attr ibuteValue>
17 <ResourceAttr ibuteDes ignator Att r ibute Id=” resource−id ” />
18 </ResourceMatch>
19 </Resource>
20 </Resources>
21 <Subject s>
22 <Subject>
23 <SubjectMatch MatchId=” st r ing−equal ” Attr ibuteValue=”shop . example . com”>
24 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” s e r v i c e p r o v i d e r ” />
25 </SubjectMatch>
26 <SubjectMatch MatchId=” st r ing−equal ” Attr ibuteValue=”bookshop”>
27 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” s e r v i c e ” />
28 </SubjectMatch>
29 <SubjectMatch MatchId=” st r ing−equal ” Attr ibuteValue=”purchase ”>
30 <Subjec tAtt r ibuteDes ignator Att r ibute Id=”purpose ” />
31 </SubjectMatch>
32 </ Subject>
33 </ Subject s>
34 <Actions>
35 <Action>
36 <ActionMatch MatchId=” st r ing−equal ” Attr ibuteValue=” read”>
37 <Act ionAttr ibuteDes ignator Att r ibute Id=” act ion−id ” />
38 </ActionMatch>
39 </Action>
40 </Actions>
41 </Target>
42 <Obl igat ions>
43 <Obl igat ion Id=”Log” Fu l f i l lOn=”Permit”>
44 <AttributeAssignment Id=” text ”>
45 Your c r e d i t card number has been r e l e a s ed t o :
46 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” s e r v i c e p r o v i d e r ” />
47 </AttributeAssignment>
48 </Obl igat ion>
49 </ Obl igat ions>
50 </Rule>
51 <Rule id=”DoNotReleaseAnythingElse ” e f f e c t=”deny”/>
52 </ Pol i cy>

As can be seen from lines 2–6 of the example, we are using a priority based
policy combining algorithm which composes the effective policy out of an arbi-
trary number of optionally distributed ARPs. In practice, ARPs created through
the user’s PAP typically have a higher priority than the administrator-specified
ARPs, so users can override the IDP’s defaults. The attributes to which ac-
cess is controlled are specified as XACML resources, as shown in lines 11–20 of

the example; each attribute is identified globally by its name, which is a URN
composed of the IDP identifier, the person, its role and the attribute name as
specified in the federation-wide data schema. Three consecutive XACML subject
matches control which service provider is actually requesting the attributes for
the provisioning of which service and which purpose (see lines 21–33).

An integration into Shibboleth’s IDP component can be achieved by first
adapting the listPossibleReleaseAttributes() method, which must return
the names of the user attributes which should be retrieved; second, filter-
Attributes() has to remove all attributes whose release is not permitted by
the ARPs. The user’s and service provider’s ids are passed to both methods,
which provides sufficient information for the XACML PEP to identify, combine
and let the PDP evaluate the relevant XACML-based ARPs.

Shibboleth’s proprietary ARPs can be lossless converted to XACML ARPs.
Basically, Shibboleth ARP targets become XACML subjects and Shibboleth
ARP attribute elements are converted to XACML resources. As release de-
cisions are made on attribute and not on rule level in Shibboleth ARPs, each
Shibboleth attribute has to be converted into a dedicated XACML rule. We
have automated this transformation by also using an XSLT stylesheet.

5 Summary and Outlook

In this paper, we presented a SAML-based architecture for privacy-aware dis-
tributed service provisioning, which allows a tight integration of inter-domain
provisioning workflows into the individual local identity management business
processes. Two urgent problems of current standards have been addressed while
still maintaining full compliance. First, we added an attribute converter to the
standard SAML architecture; it utilizes XSLT stylesheets to convert incoming
SAML attribute requests and outgoing responses from the federation-wide data
schema to the locally used one and vice versa, so SAML can be integrated into
the local I&AM infrastructure transparently and at minimum cost. Second, to
protect each user’s privacy across administrative domains, we specified Attribute
Release Policies based on XACML, a generic access control language, which has
been successfully paired up with SAML for various other purposes before. We
demonstrated our implementation and its use on simple real-world problems.

Our further research will focus on improving other weak spots of current FIM
standards; in particular, we will study the use of data pushing mechanisms to
complement the current pull-only SAML protocol bindings.

Acknowledgment

The authors wish to thank the members of the Munich Network Management (MNM)
Team for helpful discussions and valuable comments on previous versions of the paper.
The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers
of the University of Munich, the Munich University of Technology, and the Leibniz
Supercomputing Center of the Bavarian Academy of Sciences. The web server of the
MNM Team is located at http://www.mnm-team.org/.

References

1. Cantor, S., Kemp, J., Philpott, R., Maler, E., (Eds.): Security Assertion Markup
Language v2.0. OASIS Security Services Technical Committee Standard (2005)

2. Wason, T., Cantor, S., Hodges, J., Kemp, J., Thompson,
P., (Eds.): Liberty Alliance ID-FF Architecture Overview.
http://www.projectliberty.org/resources/specifications.php (2004)

3. Kaler, C., Nadalin, A., (Eds.): Web Services Federation Language (WS-
Federation). http://www-106.ibm.com/developerworks/webservices/library/ws-
fed/ (2003)

4. Hommel, W., Reiser, H.: Federated Identity Management: Shortcomings of existing
standards. In: Proceedings of the 9th IFIP/IEEE International Symposium on
Integrated Management (IM 2005), Nice, France (2005)

5. Moses, T.: OASIS eXtensible Access Control Markup Language 2.0, core specifi-
cation. OASIS XACML Technical Committee Standard (2005)

6. Cantor, S., Carmody, S., Erdos, M., Hazelton, K., Hoehn, W., Morgan, B.: Shibbo-
leth Architecture, working draft 09. http://shibboleth.internet2.edu/docs/ (2005)

7. Smith, M.: Definition of the inetOrgPerson LDAP Object Class. IETF Proposed
Standard, RFC 2798 (2000)

8. Kellomki, S.: Liberty ID-SIS Employee Profile Service Specification.
http://project-liberty.org/specs/liberty-idsis-ep-v1.0.pdf (2003)

9. Kellomki, S.: Liberty ID-SIS Personal Profile Service Specification. http://project-
liberty.org/specs/liberty-idsis-pp-v1.0.pdf (2003)

10. Clark, J.: XSL Transformations (XSLT), Version 1.0. W3C Recommendation,
http://www.w3.org/TR/xslt/ (1999)

11. Reagle, J., Cranor, L.F.: The Platform for Privacy Preferences. In: Communica-
tions of the ACM. Volume 42., ACM Press (1999) 48–55

12. Powers, C., Schunter, M.: Enterprise Privacy Authorization Language, W3C mem-
ber submission. http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
(2003)

13. Chadwick, D., Otenko, A.: The PERMIS X.509 Role Based Privilege Management
Infrastructure. In: Proceedings of the 7th ACM Symposium on Access Control
Models and Technologies. SACMAT, ACM Press (2002) 135–140

14. Lepro, R.: Cardea: Dynamic Access Control in Distributed Systems. Technical
Report TR NAS–03–020, NASA Advanced Supercomputing Division, Ames (2003)

15. Lorch, M., Proctor, S., Lepro, R., Kafura, D., Shah, S.: First Experiences Using
XACML for Access Control in Distributed Systems. In: Proceedings of the ACM
Workshop on XML Security, ACM Press (2003)

16. Proctor, S.: Sun’s XACML implementation. http://sunxacml.sf.net/ (2004)
17. Anderson, A.H.: The Relationship Between XACML and P3P Privacy Policies.

http://research.sun.com/projects/xacml/ (2004)
18. Apache Software Foundation: Xalan XSLT Processor.

http://xml.apache.org/xalan-j/ (2005)

