
On the Impact of Management on the Performance of a
Managed System: A JMX-Based Management Case

Study

Abdelkader Lahmadi, Laurent Andrey, and Olivier Festor

LORIA - INRIA Lorraine - Université de Nancy 2
615 rue du Jardin Botanique

F-54602 Villers-lès-Nancy, France
{Abdelkader.Lahmadi,Laurent.Andrey,Olivier.Festor}@loria.fr

Abstract. Studying the performance of a distributed system without taking care
on the impact of its management system will falsify the understanding of its over-
all performance, especially its productivity. We propose ametric calledMIM
(Management Impact Metric)to evaluate this impact by varying one or several
impact factors related to the management system within a management strategy
of the managed system. We show the accuracy and interest of our metric on a
managed J2EE application server that uses a management architecture based on
the JMX standard.

Managed systems performance, productivity, manageability.

1 Introduction

The essence of modern networks and services (home gateways,sensor networks, appli-
cation servers, grids) lies in the optimal utilization of resources within a dynamic and
large working environment. A key component required in thisrespect is the manage-
ment framework that monitors these systems and orchestrates their activities to improve
and maintain their performance. The goal of management is toensure that the managed
systems operate with the efficiency and effectiveness predefined in the quality of ser-
vice parameters. Since current network management architectures are often integrated
in the service activities, it is essential to be able to know the overhead of these manage-
ment activities and their impact on the overall performanceof the managed systems. A
basic question we are trying to answer here is:How do management activities impact
the overall managed system performance ?andHow can we minimize this impact ?

Management architectures and their associated activitiesare becoming very com-
plex and diverse. Over the last 20 years, new and enhanced management architectures
appeared, varying from OSI and SNMP(v1,v2,v3) to Web Sservices-based management
including Java specific approaches like the JMX standard which became very popular.
Such management architectures have the following characteristics:(1) their activities
are essential to manage the system;(2) they offers a set of management strategies that
operate differently on the managed system (e.g., polling vsnotification); (3) they can
severely impair the performance of the user’s work (referred to asproductivity ) if their



overhead cost per management strategy is not well defined andstudied. In the litera-
ture, many studies [1,2] evaluate the performance of these management architectures,
and they focus especially on comparing their performance. However, the question of
how management activities impacts the performance of managed systems has not been
studied so far. The variability of performance captures theimpact of management on
the performance of a managed system.

A metric that quantifies this impact should be defined. It mustput in relation the
performance of management and managed systems. To address this issue, we propose
an analytical model of this impact that combines the performance of the management
and the managed systems over varying management profiles andunder an impact factor.

The paper is structured as follows: Section 2 reviews related works. Section 3
presents the set of the impact modifiers and factors of a management system that impact
the performance of a managed system. Section 4 introduces the analytical model of our
impact function. Section 5 presents an example of using the impact metric on a JMX
based management activity of the JBoss application server.Section 6 contains a brief
summary of this contribution as well as an outlook.

2 Related Work

Several papers separate investigations on the performanceof distributed systems and the
performance of management systems. Woodside and al. [3] define the performance re-
ferred asproductivity of a system as the relation between the rate of providing valuable
services, the quality of those services and the cost of providing those services. Another
definition is proposed in [4], where performance is viewed asthe response time, seen by
a user under normal working conditions, coupled with the cost of the system - hardware
requirements - per user. We will adopt the performance metric proposed for distributed
systems to assess the performance of the managed and management systems. In fact, we
will use the same productivity definition as defined in [3] to quantify the performance
of the managed system under an impact factor.

Several studies are related to the performance evaluation of specific management
systems. The focus of most of these studies has been to model the performance of man-
agement architectures and their associated cost. Their performance models quantify re-
sponse time of agents [1,5], the volume of management traffic[2] and resources usage
[6,7]. Nevertheless, all performance studies related to management architectures that
take as elementary performance metrics : response time, management requests rate and
resource usage will benefit from our management impact metric. Our proposed metric is
based on the efficiency [8] of the managed system. This function is defined as the useful
work of the managed system divided by the total work (productivity+manageability).
By continuously computing the impact metric, a management system will regulate its
activities to minimize its impact or adapt the management profile (strategy) parameters
within the managed system. This metric provides an auto-tuning criterion for the man-
agement system [9], which allows the managed system to be more self-managing and
more efficient.



3 Management Profiles

Despite the wide variety of management technologies and products, most management
system infrastructures fall into an architecture pattern referred to as Manager-Agent.
There are three basic components in this architecture: managed system, agent and man-
agement applications. The management application is responsible for providing the in-
frastructure and user interfaces to manage a system and it isconducted by a management
profile or strategy that defines manageability tasks and patterns (see figure 3).

Fig. 1. The Management system components

Definition: A management profile is a quantitative characterization of how a
system is managed. The profile summarizes key interaction parameters be-
tween the management system environment and the managed system.

A management profile covers the most important parameters related to the man-
agement system and its interaction with the managed one. It is important to identify
those parameters, which, if varied, will change the management profile within the man-
aged system. Parameters that are changed from a management profile to another are
called impact modifiers. These modifiers, if varied, will have a significant impact on
the performance of the managed system. The impact modifiers might improve, main-
tain or degrade a given managed system performance. Examples of impact modifiers
are the agent deployment patterns within the managed system, management tasks and
their operation patterns (polling-driven or events-driven), the design patterns of man-
agement objects within the managed system. The management profile is controlled by
the management workload that includes management requests. The management work-
load characterization parameters represents the set ofimpact factors.The impact fac-
tors denote a set of impact variables, determined by the management profile within the
managed system. The impact metric is analysed by varying theimpact factor within a
management profile. Table 1 displays a non exhaustive list ofmanagement profiles and
factors that affect the performance of a managed system. Within these profiles, three
parameters are chosen and studied in more details in the paper. For each parameter, the
intuitive impact on the performance of the managed system islisted.

3.1 Management Tasks

As defined in [10], management system tasks are the following:



– Monitoring: the ability to capture runtime and historical events from a particular
component. This task is continuous over the execution time of the managed system
and it is executed concurrently with users on each monitoring cycle.

– Tracking: the ability to observe aspects of a single unit of work or thread of ex-
ecution across multiple components (e.g., tracking messages from senders to re-
ceivers). This task is executed less frequently than the monitoring on a period from
the execution time of multiple components within the managed system.

– Control: the ability to alter the runtime behavior of a managed component (e.g.,
changing the logging level of an application). The execution of this task can result
from the first two ones when problems detected by monitoring or tracking need to
be resolved by controlling the managed system. This task is executed on a precise
period from the execution time of the managed system.

Table 1.The management profile parameters and impact factors.

Thus, it is easy to see that the monitoring task will introduce a periodically impact on
the performance of a managed system. However, the control and tracking tasks do not
permanently affect the performance of the managed system (An example of a manage-
ment profile for the JBoss server is given in section 5).

3.2 Management Agents Deployment Models

The way in which the management agent is deployed within the managed system is an
impoortant profile parameter. In [11], the authors identify3 management agent deploy-
ment models: daemon, component, and driver. In the daemon model, the agent owns its
own process separate from the application. In this case, themanaged component and
the agent do not share the same resources and may running on two different hosts. The
sole overhead introduced by the agent on the managed component is the communica-
tion cost to retrieve management data from the managed resource. In the component



model, the agent runs in the process owned by the applicationand they share the same
resources. Hence, the overhead of the managers interactingwith the agent is added to
the resources used by the managed application. The driver deployment model is sim-
ilar to the component model. Rather than a component, the agent become the core of
the system. In this case, all manageability work is executedconcurrently with the users
work.

3.3 Management Instrumentation Patterns
This management profile parameter specifies the way in which the management object
(e.g.,MBeans for JMX) retrieves the management data from the managed resource. Two
patterns are identified [11]: internal instrumentation andexternal instrumentation. In
the internal instrumentation the management object is partof the managed resource and
management tasks are executed directly on it. External instrumentation is defined and
executed outside the managed resource. From these definitions, internal instrumentation
might affect more significantly the performance of the managed resource rather than the
external one.

We can see clearly that the choice of a management profile or a strategy rather than
another will modify the potential impact of the management system on the performance
of the managed system.

4 The Impact Function

The impact function is designed to capture the performance variability of a managed
system under a management profile at a given impact factor value. We named the impact
metric MIM asManagement Impact Metric. MIM(k) is a function that maps the impact
factor k to a value within the closed interval [0, 1]. It indicate whether a performance
degradation has occurred, and includes an indication of thedegree of that degradation.
TheMIM(k) function distinguishes between an unacceptable impact of amanagement
system (for whichMIM(k) is close to 1) and an acceptable impact (for whichMIM(k)
is close to 0).

Instead of productivity, which is the performance metric (production work) related
to the managed system, we name the performance of the management system asman-
ageability (management work) [10]. We denoteF(k) as the productivity of the man-
aged distributed system andG(k) as the manageability of the management system at an
impact factor k. Hence, the efficiency of the managed system at the impact factor k is
given by:

E(k) =
F(k)

F(k)+G(k)
(1)

We adopt the productivity F(k) of the managed system or the manageability G(k) of the
management system defined in [3] as follows:

F(k) = λ1(k).
f (k)
C(k)

,G(k) = λ2(k).
g(k)
C(k)

(2)

Whereλ1(k), λ2(k) are respectively the users work throughput in responses/sec of the
managed system and the management throughput in responses/sec of the management



system at an impact factork. The functionf (k), respectivelyg(k), is an average value
of each response calculated from its quality of service at the impact factork. The value
function f (k) is determined by evaluation of the performance of a system (managed and
management ones), and may be a function of any appropriate system measure including
delay measures (mean, variance or jitter, probability of delay exceeding a threshold). In
this work we will consider only the mean response timeT(k) at the impact factor k,
normalized to a target valuēT (response time quality of service), in the following value
function [12]:

f (k) =
1

1+(T(k)
T̄ )

(3)

The target valuēT is an optional upper bound for the delay that can be specified for
an impact state to be acceptable. If we do not specify the delay target value, the value
function f (k) (respectivelyg(k)) will be the following [3]: f (k) = 1

T(k) . In this case the
productivity is given by:

F(k) =
λ1(k)
T1(k)

.C(k),G(k) =
λ2(k)
T2(k)

.C(k) (4)

C(k) is the cost function at the impact factork, expressed as the running cost per sec-
ond to be uniform withλ1 (respectivelyλ2). The cost may be a function of any ap-
propriate weighted sum of resources utilization metrics such as cpu, memory and net-
work. The weight coefficients imply their importance on the managed system. Then
C(k) = a.CPU(k)+b.Memory(k)+c.Network(k), wherea,b andc are the weights of
the resources consumed either by the managed system or the management one. The
functionE(k) denote the efficiency of the managed system associated with an impact
statek, under a management profile characterized by its manageability G(k). The im-
pact functionMIM(k) relating the efficiency of the managed system at two different
impact states is then defined as:

MIM(k0,k) = 1−
E(k)
E(k0)

∈ [0,1] (5)

This is the impact function that is used through the paper. The intuition behind our func-
tion is to capture the behavior of the performance of the managed system. This behavior
is observed from a baseline configuration and define which cases the performance of the
system is unacceptable under a management impact factor. The efficiencyE(k0) denote
a baseline configuration of the managed system with a valuek0 of the impact factor. A
way to determine the baseline configuration is to suspend allmanagement activities for
a period and measure the performance of the target managed system during that period
as the baseline. In this case, the value of the manageabilityG(0) = 0 andE(0) = 1.
Then, for the baseline configuration of the managed system, the baseline efficiency is
equal to 1 and the impact function is given by :

MIM(k) = 1−E(k) = 1−
F(k)

F(k)+G(k)
; wherek≥ 1 (6)

From the management efficiency aims, a managed system is isoefficiency managed if
its overall efficiency is maintained at a desired value such as 0≤ E(k) ≤ 1 which im-
plies that the useful work performed by the managed system (productivity) should grow



at least at the same rate as the management overhead (manageability) to keep managed
system efficiency constant. Letα denote the value ofG(k) normalized with respect to
F(k). α denotes the fraction from the managed system productivity attributed to the
management activities. Then,G(k) = α.F(k) and we obtainMIM(k) = α

1+α . Figure
2 depicts the behavior of the impact metric according to a linear fashion of manage-
ability work and the managed system productivity. Whenα = 1, the manageability has
the same rate as productivity and in this case we reach the bound of the isoeffective
management. Beyond that value, the management strategy becomes ineffective.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1

productivity=manageability

Isoeffective management Ineffective management

2

Im
pa

ct
fu

nc
tio

n

Fraction of management overheadα

Fig. 2.The impact metric behavior of a linear model between manageability and productivity.

4.1 Computing the Impact Function

Calculation of this metric depends on the performance technique used to evaluate both
the performance of the managed system and the management one. Analytical and sim-
ulation techniques are more suitable to calculate it. Thesetwo techniques are more flex-
ible [13] than the measurement technique and they can handlea wide variety of config-
urations of the managed system by varying the impact factor and management profiles.
Their disadvantage is that they need the availability of analytical models both for the
managed system and the management one. It is not easy to obtain them for complex
distributed systems. We define the following steps to calculate the impact function. We
first determine the baseline performance of the target system. The baseline value will
capture the performance of the system under fixed states of user’s work and scalability
values (e.g, a fixed number of users, a fixed number of requestsper unit of time, a fixed
number of servers, etc). By varying the baseline configuration of the managed system
we can capture its performance under different users workload or scalability factors.
Secondly, we define the management profile of the managed distributed system and the
impact factor. The productivity of the managed system and the manageability of the
management one are computed as follows:

1. Fix a management profile which includes management strategy parameters as de-
scribed in section 3.

2. Choose an impact factor and fix other factors.
3. Managed system productivity prediction: the productivity is computed by measur-

ing the average system throughput in number of responses persecond and the
average response time per response. Measure the running cost per second on the



managed system. The cost is the sum of resources utilizationexpressed on a mea-
surement unit (e.g., average percent).

4. Management system manageability prediction : needs measurement of the average
management throughput in number of management responses per second from the
agent and the average response time. The cost represents theoverhead running cost
per second due to management activities.

5. Compute the impact function according to equation 2 in case of use of the value
function f (k) or equation 4 in case of use of only the response timeT(k).

6. Vary the chosen impact factor value and goto the step 3.

Computing the impact metric by varying the impact factor k within an interval allows us
to find its bound value, beyond which the management highly impacts the productivity.
In that case, a stronger justification for its benefit on the overall service delivery is
required. The bound value of the impact factor k correspond to an impact metric value
equal to 0.5.

5 Experimental Assessment

To assess the applicability of our impact metric, we did study it in the context of a JMX
based management of a J2EE application server such as JBoss [14]. The management
profile that we evaluate from the MBean server within the JBoss server is the following
management profile

– Client-Server approach,
– JMX based management,
– Monitoring task,
– Polling based monitoring by usinggetAttributeoperation.
– The JMX agent is deployed as a driver: the MBean server withinthe JBoss server

is implemented as the kernel of the server,
– The management instrumentation is internal and the attribute that we solicit is re-

trieved from the system. ThegetFreeMemoryoperation, at the JMX level, calls the
JVM system functionRuntime.freeMemoryto retrieve the amount of free memory
in the JVM.

We take the management input workload expressed in number ofrequests per sec-
ond as the impact factor. Previous work [15] gives us an idea of a realistic range for
this factor. We vary the management workload from 1 to 400 requests/s. If we go be-
yond this value, the number of lost management requests increase consequently due
to timed-out RMI connections (we keep the default value of 15seconds of the RMI
timeout).

5.1 Testbed Setup

We used a JBoss v3.2.1, running on a Sun JDK v1.4.2 and hosted on a bi-processor PIII
550MHZ with 512MB RAM, with the Slackware 9.1 operating system. The testbed
workstations are connected to a 100Mbps Ethernet switch. The testbed is alone on this
network, and we can assume that network is not a limitation. To emulate users activity
against the JBoss server, we use RUBiS [16] as a benchmarkingtool to evaluate the per-
formance of the JBoss server and to measure its productivity. RUBis is modeled after



an auction site (eBay.com). For our experiments, we chose touse an EJB variant from
RUBiS, which is entirely based on stateless session beans, as it is the best performing
EJB variant according to [17]. For the measurements shown here, we used a steady
users workload. The number of emulated users is kept constant (100 clients) and they
have a meanthinking timeof 7 seconds. To capture the management impact, we de-
veloped an emulator management client that implements onlythe monitoring task. The
management emulator client sends a number of requests per second, that represents the
impact factor, by using thegetAttributeoperation exposed by the MBeanServer within
the JBoss server. We retrieve the value of theFreeMemoryattribute from theServerInfo
MBean. In the current work, all management requests solicited the same MBean and the
same attribute. Each measurement has a duration of 15 minutes and a warm-up period
of 2 minutes both for users emulator client and management emulator client. Our exper-
iments proceed as follows. The set of 100 emulated users wererunning. They execute
browsing-only transactions against the JBoss server. The response time and the average
number of responses per second is measured on the users client emulator side. Con-
currently to users workload, the management client emulator executes a fixed number
of getAttributerequests per second against the MBeanServer within the JBoss server.
On the management client side, we measure the number of management responses per
second and the response time per request. We use thesar [18] tool to measure the re-
source utilization (cpu,memory and network) on the JBoss server side. Response times
measurements are taken using theSystem.currentTimeMillis()method included in the
API of Sun’s JDK.

5.2 Experimental Results

Table 2.Results of the baseline productivity of the JBoss server without any ongoing monitoring
activity and under a steady users workload (100 browsing clients).

In a first step, we measure the baseline performance of the JBoss server without
management workload and where only the users steady workload is executed against
the server. Table 2 displays baseline average values of the throughput, response time and
resource utilization and their corresponding baseline productivity of the JBoss server.
In a second step, we vary the management input workload and measure the productiv-
ity, the manageability and the impact metric at each impact factor value. From the
plot of figure 3 we can observe a decrease of the server productivity values due to the
high management input load and the management overhead within the server. The pro-
ductivity degradation from the baseline configuration, where only the users workload
is executed against the JBoss server, varies between 24% for50 management requests
per second and 74% for 400 requests/s. The JBoss server productivity degradation is
caused by the increase of response timesT(k) and the decrease of the throughputλ(k)
as shown in figure 4. From figure 5, we see the increase of manageability. This is trivial,
due to the increase of the management load. Figure 6 shows theincrease of the impact



500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350

P
ro

du
ct

iv
ity

va
lu

es

Input management workload (requests/second)

Baseline productivity = 3688.84

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350

P
ro

du
ct

iv
ity

de
gr

ad
at

io
n

(%
)

Input management workload (requests/second)

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) JBoss server productivity decrease (b) JBoss server productivity degradation in (%)

Fig. 3. Productivity decrease of the JBoss server (a) and the corresponding degradation from the
baseline server state for a steady users workload and under an increasing management work-
load input in number of requests per second using thegetAttributeoperation that retrieves the
FreeMemory attribute from the ServerInfo MBean.

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 50 100 150 200 250 300 350

R
es

po
ns

e
tim

e
(m

s)

Input management workload (requests/second)

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

12

12.5

13

13.5

14

14.5

15

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t

(r
es

po
ns

es
/s

)

Input management workload (requests/second)

rs rs rs rs

rs

rs

rs

rs

rs

rs

rs

(a) JBoss server response times increase (b) JBoss server throughput decrease

Fig. 4. Response times increase (a) and throughput decrease (b) of the JBoss server under an
increasing management workload and a steady users workload(100 browsing clients).

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200 250 300 350

M
an

ag
ea

bi
lit

y
va

lu
es

Input management workload (requests/second)

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

Fig. 5. Manageability growth by increasing the management workload input in requests per sec-
ond by using thegetAttributeoperation that retrieves the FreeMemory attribute from theServer-
Info MBean.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

M
an

ag
em

en
t

Im
pa

ct

Input management workload (requests/second)

0.96

0.965

0.97

0.975

0.98

0.985

0.99

50 100 150 200 250 300 350 400

M
an

ag
em

en
t

Im
pa

ct

Input management workload (requests/second)

(a) Low management workload (b) High management workload

Fig. 6.Management Impact Metric behavior for the JBoss server under a low management work-
load input less than 50 req/s (a) and a high management workload input greater than 50 req/s (b)
by using thegetAttributeoperation that retrieves the FreeMemory attribute from theServerInfo
MBean.

metric. Here we note that the management agent (the MBeanServer from the JMX ter-
minology) of the JBoss server is the core of the application server (driver model). It
is the components container for the server design level (notejb level). Thus, the input
management workload is executed concurrently with user’s workload and the impact is
quickly seen.

6 Conclusion and Future Work

We defined a metric that captures the impact of a management profile or strategy on the
performance of a managed system. The objective is to providea metric that evaluates a
management strategy and enables it to support its intended target environment. Our ex-
periments confirmed that a management strategy within a managed system is associated
with a degradation of the overall system efficiency, which may not be acceptable in all
cases. Here we should note that our experiments overestimated the manageability, be-
cause we take into account a high management input rates and we use the same value of
the running resource consumption both for computing manageability and productivity
on the server side, which explains the fast growth of the impact metric. A more accu-
rate analysis and estimation of the running resource utilization of manageability should
be done by using complementary techniques such as the profiling component resource
consumption presented in [19]. Our impact metric is computed using the measurement
technique to evaluate the performance of the managed JBoss server. This technique
needs a lot of time to collect measurements to be credible andrequires available sys-
tem prototypes. Other techniques (analytical modeling or simulation) are more flexible
and less time consuming than the measurement technique [13]. They will be used for
evaluating the performance of the managed system under a given management impact
factor and computing the impact metric. In this work, we examine only the case of a
degradation impact of management activities on the performance of a managed system.
We plan to investigate other cases where the impact of management activities, such as
load balancing and admission control, might improve and maintain the performance
of a managed system. In parallel, we continue to setup and runperformance tests of



the mannagemet plane on large sale systems e.g. Grids to massively deploy agents and
evaluate the behavior of both manager and agent systems.

References

1. Pavlou, G., Flegkas, P., Gouveris, S., Liotta, A.: On management technologies and the poten-
tial of web services. Communications Magazine, IEEE42 (2004) 58–66 ISSN: 0163-6804.

2. Neisse, R., Vianna, R.L., Granville, L.Z., Almeida, M.J.B., Tarouco, L.M.R.: Implementation
and bandwidth consumption evaluation of SNMP to web services gateways. In: NOMS
(Network Operations & Managament Symposium). Volume 9. (2004)

3. Jogalekar, P., Woodside, C.: Evaluating the scalabilityof distributed systems. IEEE Trans.
Parallel Distrib. Syst.11 (2000) 589–603

4. Burness, A., Titmuss, R., Lebre, C., Brown, K., Brookland, A.: Scalability evaluation of a
distributed agent system. Distributed Systems Engineering 6 (1999) 129–134

5. Pattinson, C.: A study of the behaviour of the simple network management protocol. In:
12th International Workshop on Distributed Systems: Operations and Management (DSOM).
(2001) 305–314

6. Subramanyan, R., Miguel-Alonso, J., Fortes, J.: A scalable SNMP-based distibuted monitor-
ing system for heterogeneous network computing. In: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing, IEEE Computer Society (2000) 14

7. Pras, A., Drevers, T., de Meent, R.V., Quartel, D.: Comparing the performance of SNMP
and web services-based management. eTransactions on Network and Service Manage-
ment(eTNSM)1 (2004)

8. Mitra, A., Maheswaran, M.: Measuring scalability of resource management systems. Tech-
nical Report SOCS-04.5, School of Computer Science,McGillUniversity (2004)

9. Diao, Y., Hellerstein, J., Parekh, S., Griffith, R., Kaiser, G., Phung, D.: Self-managing sys-
tems: A control theory foundation. In: 12th IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems (ECBS’05), Greenbelt, Maryland (2005)
441–448

10. Murray, J.: Designing manageable applications. WEB Developper’s Journal (2003)
11. Kreger, H., Harold, W., Willamson, L.: Java and JMX: Building Manageable Systems.

Addison-Wesley (2003) ISBN: 0672324083.
12. Grama, A., Gupta, A., Kumar, V.: Isoefficiency function:A scalability metric for parallel

algorithms and architectures. IEEE PDT1 (1993) 12–21
13. Jain, R.: The art of Computer Systems Performance Analysis. John Wiley & Sons, Inc

(1991) ISBN : 0-471-50336-3.
14. JBoss: The professional open source company. http://www.jboss.org (1999)
15. Lahmadi, A., Andrey, L., Festor, O.: Performances et résistance au facteur d’échelle d’un

agent de supervision basé sur jmx : Méthodologie et premiers résultats. In: Colloque GRES
2005 : Gestion de REseaux et de Services, Luchon, France. Volume 6. (2005) 269–282
ISBN : 2-9520326-5-3.

16. ObjectWeb: Rubis: Rice university bidding system. http://rubis.objectweb.org (2002)
17. Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and scalability of ejb applications.

In: Oopsla’02. (2002) http://rubis.objectweb.org/download/perfscalability ejb.pdf.
18. Godart, S.: system performance tools for linux os. http://perso.wanadoo.fr/sebastien.godard/

(2003)
19. Stewart, C., Shen, K.: Performance modeling and system management for multi-component

online services. In: The 2nd Symposium on Networked System Design and Implementation
(NSDI2005),Boston, MA, USENIX (2005)


