
Design and Implementation of Performance Policies
for SMS Systems

Alberto Gonzalez Prieto, Rolf Stadler

KTH Royal Institute of Technology, Sweden
{gonzalez, stadler}@imit.kth.se

Abstract. We present a design for policy-based performance management of
SMS Systems. The design takes as input the operator’s performance goals,
which are expressed as policies that can be adjusted at run-time. In our specific
design, an SMS administrator can specify the maximum delay for a message
and the maximum percentage of messages that can be postponed during periods
of congestion. The system attempts to maximize the overall throughput while
adhering to the performance policies. It does so by periodically solving a linear
optimization problem that takes as input the policies and traffic statistics and
computes a new configuration. We show that the computational cost for solving
this problem is low, even for large system configurations. We have evaluated
the design through extensive simulations in various scenarios. It has proved ef-
fective in achieving the administrator’s performance goals and fast in adapting
to changing network conditions. A prototype has been developed on a commer-
cial SMS platform, which proves the validity of our design.

1 Introduction

The Short Message Service (SMS) is based on out-of-band message delivery,
which permits subscribers to send and receive text messages to/from their mobile
phones. SMS was introduced in 1992 and, since then, has experienced a remarkable
success: 45 billion messages are sent per month [1], which makes SMS to represent
about 10% of the revenue of mobile operators [4].

Controlling a SMS system’s performance, especially during congestion periods, is
a key management task. This work focuses on a design for performance management
of SMS systems that (i) dynamically reconfigures, following the manager’s policy, a
messaging gateway in response to load changes and network conditions, and (ii) al-
lows a manager to dynamically change management policies if needed.

We apply our design to one specific SMS component: the SMS Gateway (SMSG).
The SMSG is a key functional block in the SMS architecture. It is responsible for
routing messages between different networks and domains.

We take a policy-based approach to performance management for two main rea-
sons. First, the use of policies permits us to raise the level of abstraction of the inter-
action with the managed device[2][9][10]. This is particularly relevant due to the lack

of specialists in SMSGs . Second, policies can be used to specify the operation of
automated management systems. In this paper, we aim at automating a system that
controls the performance of an SMSG.

We consider both single-class, as well as multi-class SMS services. A multi-class
service provides different performance guarantees to different customers or applica-
tions. While service providers currently offer only a single class of service, they are
considering the introduction of service differentiation. The rationale for service dif-
ferentiation comes from new uses of SMS messaging such as emergency alarms and
promotional messages, which differ in performance requirements. For instance,
alarms require low delays, while promotional messages tolerate higher delays or even
losses.

The design in this paper supports two classes of SMS services. The first is the pri-
ority service; it guarantees delivery with a maximum delay on the gateway. The sec-
ond is the non-priority service. Messages using this service may be postponed during
congestion: they are stored and will be forwarded when congestion is over. The de-
sign in this paper dynamically reconfigures an SMS gateway to provide maximum
throughput, while observing the quality of service objectives of maximum delays and
maximum percentage of postponed messages for the above classes.

Adapting this design to a single-class or more than two classes is straightforward.
The paper extends our previous work on SMS management [17][18] as follows.

First, an earlier design has been extended to support additional quality of service pa-
rameters, such as the maximum delay. Second, we studied the computational cost of
policy re-evaluation. Third, we present results on the trade-off between postponed
messages and system throughput. Fourth, we benchmark the performance of our de-
sign against that of an ideal system. Finally, we include our experience with imple-
menting our design on a commercial SMS gateway.

The rest of the paper is organized as follows: section 2 discusses performance poli-
cies; section 3 describes the SMS architecture; section 4 describes our design for per-
formance management; in section 5, we evaluate our design through simulations in
different scenarios; section 6 discusses our prototype implementation; section 7 pre-
sents related work; section 8 contains the conclusions the paper.

2 Performance Policies

Administrators want to specify their performance goals in form of performance
policies. In general, performance policies are derived from business objectives and
SLAs. Such policies include performance goals in form of metrical bounds and utility
functions that must be maximized. In the general case, performance policies assume a
multi-class service system.

Some examples of performance policies are: (i) maximize the numb er of processed
messages, (ii) maximize the number of served customers, (iii) provide low delays for
premium customers, (iv) limit the number of postponed messages for customer A to
X%, and (v) provide a minimum throughput to customer B of Y messages/second.

Performance policies are given as input to a management system, which maps
them into executable functions to achieve the adminis trator’s goals [10][11].

The design for a management system presented in this paper considers an SMS
gateway that supports two service classes, priority and non-priority. It supports the
following policies: (1) Maximize the system’s throughput in messages per second. (2)
Limit the postponement of non-priority messages to a configurable maximum percent-
age. (3) Limit the maximum delay of priority messages to a configurable value.

Note that an alternative to postponing a message is to drop it. This is not an option
for emergency alarms. However, this might be an attractive solution for handling
promotional messaging. Our design supports both alternatives and the results we pre-
sent hold for both of them.

3. SMS Architecture

Figure 1 positions our work within the network architecture for SMS deployment in
the GSM context.

The SMSC acts as a store-and-forward system for short messages. Upon receiving
an SMS, it queries the HLR database to get the location of the addressee of the mes-
sage. With this information, the SMSC determines the servicing base station for the
addressee and delivers the message to the terminal of the receiver. The SMSC re-
ceives messages from two different parties: mobile terminals and SMS gateways.

The SMS Gateway (SMSG) is the functional block in the SMS architecture that in-
terconnects the wireless network to others, such as other mobile operator's network or
TCP/IP networks. The gateway’s administrator agrees to a traffic profile with the op-
erators of its neighboring SMSCs/SMSGs , typically in the form of a maximum rate.

We use a model for an SMSG that is similar to an IP router. It consists of incoming
ports, a routing engine and outgoing ports. Incoming ports receive the messages the
gateway has to deliver. On reception, the message is routed to the appropriate outgo-
ing port. After that, the message may need to be converted to a protocol understood
by the receiving network. This conversion phase is not considered in this work.

Each outgoing port of the gateway has an associated queue. This permits the gate-
way to cope with brief periods of congestion. However, longer periods of congestion
require control mechanisms.

SMSC

Operator A Network Operator B Network

The Internet

SMS
Application

HLR

SMSC

HLR

SMSC SMSC

SMSG

Figure 1: Functional Architecture for SMS. This work focuses on the SMS
Gateway Performance Management.

The SMSCs and SMSGs form an overlay network on top of an IP network. The
overlay links are created on top of TCP connections. Therefore, ports in a SMSG are
software ports, not hardware ones.

A typical port configuration for a large operator has a small number of ports (< 10)
with message rates in the order of some tens messages per second. For small opera-
tors, configurations often consist of a large number of ports (~20) and lower message
rates (< 10 msg/sec).

4. System Design

Functional Architecture for Performance Management: Figure 2 presents the
functional architecture of our design. It permits the SMS system to achieve the admin-
istrator’s performance goals, while adapting dynamically to changes in the load pat-
tern.

The throttles in the incoming ports are responsible for limiting the acceptance
rates. The traffic estimators estimate (i) the traffic matrix, and (ii) the percentage of
priority messages. These estimations are used for re-computing the gateway configu-
ration. The routing engine decides the outgoing port for each message. It takes this
decision based on the information stored in the routing table . The postponer is re-
sponsible for postponing messages, if needed.

The administrator specifies her performance policies for the gateway through the
management interface depicted on the upper part of figure 2. In this paper, we con-
sider the policy of maximizing the overall throughput, while observing a maximum

ßmax Maximum percentage of non-
priority messages that can be
postponed

δmax Maximum allowable delay for
priority messages

αi Acceptance rate at port i
ßj Percentage of postponed non-

priority messages on outgoing
port j

Ii Traffic offered to port i
Tij Traffic matrix
O j Traffic rate sent to outgoing

port j
Outj Traffic rate sent by outgoing

port j
µ j Service rate of port j
σ Percentage of priority mes-

sages
qj Occupancy of outgoing port j

queue
Q j Capacity of outgoing port j

queue
τ Policy Reevaluation interval

Figure 2: Functional Architecture for SMS Gateway Management.
The management interface is on top. The PDP block is responsible for the dy-
namic configuration of the gateway. The bottom block represents the gateway.

delay in seconds for priority messages (δmax) and a maximum percentage of non-
priority messages that can be postponed (ßmax).

We use three mechanisms to achieve the administrator’s performance goals for the
SMS system. The first controls the acceptance rate in the incoming port. In our de-
sign, the acceptance rate can be set per port. Note that reducing the acceptance rate on
a specific incoming port results in reducing the load on all outgoing ports. The spe-
cific values depend on the traffic matrix.

The second mechanism postpones, if needed, some of the non-priority messages
routed to congested ports. This mechanism permits having a higher overall throughput
at the cost of postponing messages.

These two mechanisms allow the system’s administrator to control a trade-off:
achieving high system throughput vs. postponing a low percentage of messages. ßmax
is the management parameter that controls this trade-off. It defines the maximum per-
centage of non-priority messages that can be postponed and takes values from 0% (no
messages postponed) to 100% (highest throughput).

The third mechanism sets the buffer capacity in the outgoing ports, which controls
the maximum queuing delay. In practice, the queuing delay dominates the overall de-
lay of a message passing through the gateway (up to several seconds during conges-
tion periods), while other sources of delay are comparatively small (well below one
second).

The PDP (Policy Decision Point): This is the main block of the architecture: it is

responsible for dynamically adapting the gateway configuration to achieve the per-
formance goals. The PDP evaluates the performance policies and periodically re-
calculates the optimal configuration for the gateway.

The PDP calculates the values for αi (acceptance rates) and βj (fraction of non-
priority postponed messages). This computation maximizes, for the steady state, the
overall throughput, while keeping the postponed non-priority messages below ßmax
and the maximum delay for priority messages below δmax.

Maximize:

∑

j
jO (Eq. 1)

Subject to:

j
i

ijiT µβσα ≤−−∑))1(1(max

 ∀j (Eq. 2) ∑≤
i

ijij TO α

∀j (Eq. 4)

0max ≥≥≥ iiI αα ∀i (Eq. 3)

jjO µ≤

∀j (Eq. 5)

The decision variables are αi.

The values for β j are determined by:

















−

−
=

∑
∑

0,
)1(

max

i
iji

j
i

iji

j T

T

ασ

µα
β

∀j (Eq. 6)

Figure 3: Optimization Problem to determine the gateway configuration

This computation re-
evaluates the performance
policies every τ seconds as fol-
lows. If the occupancy of any
queue j is larger that δmax * µj,
which means that the maxi-
mum delay policy is being
broken, then αi will be set to 0
for all i’s. Otherwise, the PDP
predicts for each queue the fu-
ture occupancy after the next τ
seconds, based on the traffic
estimates. If any queue is ex-
pected to overflow, then the
PDP computes a new gateway

configuration by solving the linear optimization problem discussed below. Otherwise,
if no queue is expected to overflow, the gateway will be configured to αi=αmax for all
i’s and βj=0 for all j’s. This means that incoming traffic will be accepted at the maxi-
mum rate and no messages will be postponed.

Figure 3 shows the optimization problem that the PDP solves. The objective func-
tion (eq. 1) refers to the overall throughput that is to be maximized. The first con-
straint (eq. 2) states that traffic sent to an outgoing port is limited by the port’s service
rate. The second constraint (eq. 3) indicates that an incoming port cannot receive
more traffic than what it is offered. Equation 6 implies that βj = βmax. For a detailed
discussion, see [16]. This problem is solved using the well-known Simplex algorithm
[5]. Simplex will always find the global solution for all instances of our problem [16].

We have evaluated the computational cost of the Simplex algorithm for re-
computing the gateway configuration on the PDP in function of the problem size,
which is the number of incoming and outgoing ports. The PDP has been written in
C++ and uses the COIN library implementation of the Simplex algorithm [6]. The ex-
periments have been run on an Intel Pentium 1.6 Ghz with 512 MB of RAM with
Windows XP Professional 2002 and Cygwin [7]. For a detailed description of the ex-
periments see [16].

Figure 4 shows the results of our evaluation. As expected, the execution times in-
crease with the problem size. However, the algorithm is very efficient in computa-
tional terms: it determines the global maximum within a few milliseconds of CPU
time, permitting hundreds of policy evaluations per second, even for large configura-
tions. We conclude that performance wise, our design is feasible to realize using cur-
rent technology.

5. Evaluation through Simulation

We have evaluated our design through extensive simulation. For this purpose, we
have developed a simulator for an SMS gateway that allows us to exercise our design.
For details on the simulator implementation, see [16].

Computational Cost

0

1

2

3

4

5

6

0 25 50 75 100

Problem size (#ports)

C
P

U
 t

im
e

(m
ill

is
ec

on
ds

)

Figure 4: Computation Cost of the Simplex
Algorithm to re-compute the gateway
configuration on the PDP.

We present simulation results for two scenarios: service rate decrease in one port,
and traffic matrix change. The analysis for a third scenario (service rate increase in
one port) can be found in [16]. The scenarios share the following characteristics: (i)
the port configuration of the gateway consists of three incoming and three outgoing
ports; (ii) under normal conditions, the service rate of each outgoing port is 50
msg/sec, and the acceptance rate of each incoming port is 50 msg/sec. The chosen
port configuration and rates correspond to a typical configuration for a large operator.
(iii) 10% of the messages use the priority service; (iv) the PDP re-calculates the opti-
mal configuration every ten seconds.

The offered load used in the scenarios is based on traces from a commercial
SMSG. These traces exhibit low average message rates . To simulate scenarios that are
representative for large operator scenarios, we superimposed several of those traces to
achieve an average offered load of 50 msg/sec.

We used three different traffic matrices in our experiments. For the first one, each
incoming port distributes its traffic roughly evenly among the outgoing ports, each
outgoing port receiving about one third. We call this matrix a uniform matrix. The
second matrix is a non-uniform matrix, where the traffic of an incoming port is split
unevenly among the outgoing ports. None of these matrices causes congestion under
normal conditions. For the third matrix, the congested matrix, each incoming port,
sends 50% of its traffic to outgoing port 1, 40% to port 2, and 10% to port 3. This
causes congestion in outgoing ports 1 and 2.

In the following descriptions, throughput figures refer to 1-second averages; statis-
tics on postponed messages refer to 10-seconds averages; maximum delays are instant
values.

Service Rate Decrease in Port 3: In this scenario, we analyze the behavior of our

system when the service rate of outgoing port 3 slows down. The experiment starts
with all outgoing ports serving at 50 msg/sec. At time=70 sec, outgoing port 3 slows
down to 20 msg/sec following a step function, which causes congestion, since the of-

Maximum Delay

0
10
20
30
40
50

30 60 90 120 150 180 210Time (sec)

se
c

Overall Throughput and Postponed Messages

0

20

40

60

80

100

30 60 90 120 150 180 210Time (sec)

%
 p

o
st

p
o

n
ed

0

40

80

120

160

m
es

sa
ge

s/
s

Postponed at Port #3 (%) Overall Throughput (msg/s)

`

Service
Rate
Decreases

SMSG
Re-configures

Port 1,2
Port 3

Maximum Delay

0

5

10

15

20

30 60 90 120 150 180 210Time (sec)
se

c

Overall Throughput and Postponed Messages

0

20

40

60

80

100

30 60 90 120 150 180 210Time (sec)

%
 p

o
st

p
o

n
ed

0

40

80

120

160

m
es

sa
g

es
/s

Postponed at Port #1 (%) Postponed at Port #2 (%)
Overall Throughput (msg/s)

`

Traffic
Matrix
Changes

SMSG
Re-configures

Port 1

Port 3
Port 2

Figure 5: Evaluation through Simulation. (Left) Service Rate Decrease:
µ3=20msg/sec, βmax = 30%, δmax = 50sec, uniform traffic matrix. (Right) Traffic
Matrix Change: βmax = 30%, δmax = 20sec, non-uniform traffic matrix.

fered load to this port is higher than its service rate. For this experiment, βmax=30%
and δmax=50 secs. The traffic matrix is uniform.

Figure 5 (left) shows that the system re-configures the gateway 30 seconds after
the service rate decreases. This reaction time depends on δmax, µj, and the traffic ma-
trix. The dependency on δmax is linear. Higher values of δmax permit the system to cope
with longer congestion periods without throttling or postponing messages.

After the system re-configures the gateway, there is a short transient period of
about 12 seconds. We consider the system stable again when all the outgoing queues
are empty, except those of the congested ports. The time to empty the queues depends
on βmax and on the traffic matrix. It is longer for higher values of βmax, since more traf-
fic can be sent to the outgoing ports.

In this scenario, the average throughput in steady state is 87 msg/sec, and 29% of
the non-priority messages are postponed.

Traffic Matrix Change: In this scenario, we analyze the behavior of our system,

in reaction to a change of the traffic matrix. All outgoing ports serve at 50 msg/sec.
The experiment starts with the non-uniform traffic matrix. At this stage, there is no
congestion in any outgoing port. At time=70 secs, the traffic matrix changes to the
congestion matrix following a step function. This change causes congestion in outgo-
ing ports 1 and 2. For this experiment, βmax=30% and δmax=20 seconds.

Figure 5 (right) shows that the system re-configures 40 seconds after the traffic
matrix changes.

Note that the gateway re-configuration has a marginal effect on the overall
throughput. The reason is that only limited throttling is applied, and the postponement
mechanism copes with the congestion almost entirely. In outgoing port 1, postponing
βmax of the non-priority messages reduces the traffic so that it is slightly higher than
the service rate. In outgoing port 2, the values for β2 are well below βmax, which is
enough to address congestion in this port.

In this scenario, the average throughput in steady state is 113 msg/sec, and 31%
(8%) of the non-priority messages are postponed in ports 1 (port 2).

Minimizing Postponed Messages vs Maximizing Throughput . As previously

stated, βmax controls the trade-off between (i) minimizing the number of postponed
non-priority messages and (ii) maximizing the overall throughput. Higher values of

Utilization

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Beta Max

serv rate 10
serv rate 20
serv rate 35

Figure 6: Controlling the Tradeoff between Achieving Higher Overall

Throughput vs. Postponing Fewer Me ssages

βmax allow the system to reach higher throughputs. Lower values of βmax result in
lower throughputs. Next, we analyze this trade-off.

We have run a number of ‘service rate decrease’ experiments. Figure 6 shows the
system utilization (overall throughput divided by the sum of the service rates) as a
function of βmax. Each line in the graph represents a different service rate for port 3.
The statistics we present for each experiment are 140-second averages in steady state.

Our results show that the throughput in steady state depends on βmax. This depend-
ency is not linear. The derivative of this function increases with βmax, until the system
is fully utilized.

The throughput also depends on the traffic matrix. The experiments included in
[16] show that the throughput is higher in the case of the non-uniform matrix than for
the uniform matrix. This is because the non-uniform matrix permits the system to dis-
criminate better among the sources of messages routed to the congested port. In other
words, incoming ports with a small traffic contribution to the congested ports do not
need to reduce their acceptance rates significantly.

Benchmarking against an ideal system. An ideal system always achieves the

administrator’s performance goals for a given policy re-evaluation interval: it (i)
keeps the maximum delay at δmax, (ii) never postpones more than βmax non-priority
messages in a given re-evaluation interval, (iii) ensures that the average traffic sent to
an outgoing port never exceeds its service rate in a given re -evaluation interval, and
(iv) always achieves the maximum overall throughput.

In contrast to an ideal system, which has complete knowledge of the traffic statis-
tics at any time, a real system or our simulated system has to estimate or predict them.
Since the estimation/prediction process is prone to errors, a real system generally per-
forms worse than the ideal one. In our case, the system sometimes breaks the per-
formance constraints. As a consequence, the obtained throughput can occasionally be
higher than in the ideal system. For the same achieved performance constraints, the
throughput of an ideal system is higher than that of our system.

We compared our design with the ideal system with respect to the overall through-
put, the rate of postponed messages, and the maximum delay in steady state. For do-
ing this, we have run a number of ‘service rate decrease’ experiments. Each of them
has a different combination of βmax and service rate values. The statistics we present
for each experiment are 140-second averages in steady state.

In all the experiments we conducted with our design, the constraint on maximum
delay has never been broken. We explain this by the fact that, when the arrival of a
new message in the output queue would break the δmax constraint, a non-priority mes-
sage from this buffer is postponed.

Our experiments (included in [16]) show that the simulated system tends to slightly
outperform the ideal one in terms of overall throughput. This is possible since our
system occasionally breaks the constraints , caused by inaccurate predictions of the
traffic matrix. For most of our experiments, the performance of our design is within
1.5 % of that of the ideal system.

Our experiments (included in [16]) show that the system tends to slightly break the
constraint on postponed non-priority messages. In most cases, it is not more than 2%
above βmax. The reasons for this are inaccurate predictions of the traffic matrix and
burstiness of the offered load. For a more in-depth discussion, see [16].

6. Prototype Implementation

A prototype of our architecture has been implemented on a commercial SMSG: the
Enterprise Messaging Gateway (EMG), version 3.0 [3]. The prototype runs on an In-
tel Pentium 850 Mhz with 384 Mb of RAM with Linux 2.4 (Debian).

Next, we present our experience with the prototype implementation. Specifically,
we discuss how it differs from the simulated model.

In the prototype, the acceptance rate is enforced by controlling the TCP connection
with the sender. The SMSG rejects or closes TCP connections to enforce the accep-
tance rates in each port .

In the simulated model of the gateway, the acceptance and service rates are en-
forced for control intervals of 0.01 seconds. In a real system, the control interval is
generally larger, permitting small bursts of messages . The effect of such bursts is out-
lined in [16].

In the current version of the prototype, the traffic estimator is the processing bot-
tleneck of the system. The implementation of the traffic estimator is based on analyz-
ing the routing logs generated by the EMG and stored in a database (my sql 4.0 [8]) on
the same machine. Currently, it takes between two to four seconds to retrieve and
process the data required by the estimators. While the performance of this block limits
the time between policy evaluations, an effective re-evaluation period of ten seconds
can be achieved.

The reconfiguration of the EMG is not instantaneous as assumed in the simula-
tions. It takes about one second for the EMG to read the new configuration and to ap-
ply it.

7. Related Work

Performance and congestion management in routing engines has been extensively
studied in the context of IP routers [15]. Our work differs from that work in both the
problem space and the solution space. First, congestion management for IP routers
considers physical networks. In contrast, an SMSG is a node in an overlay network,
where the service rate of outgoing ports can vary, depending on the state of (i)
neighboring SMS systems and (ii) the links that connect them. The overlay links are
created on top of TCP-IP networks. Therefore, the links’ performance is that of a TCP
connection.

 Second, the approaches to congestion management in IP networks often focus on
per-flow end-to-end feedback. Flow-based mechanisms are not relevant in the SMS
context, since an SMS message fits into a single packet. In addition, currently, it is not
possible to provide congestion-related feedback to the SMS sources. Therefore, such
mechanisms are not applicable directly. They would require a major change in the
SMS architecture, which is unlikely in the short or medium term.

Congestion control has also been studied by the ATM community. Two main lines
were studied [12]. One of the lines was rate-based control , which is based on end-to-
end control mechanisms. Such approaches are limited by the lack of support to end-
to-end feedback.

The other line was credit-based control [13], which is based on link by link back-
pressure mechanisms, as our design is. However, there are two main differences with
respect to our work. First, it makes use of per virtual-circuit (VC) control. This allows
reducing selectively the rates of the VCs that traverse the congested port, without af-
fecting others. This is not possible for us due to the lack of flows or VCs. TCP con-
gestion mechanisms as RED [14] also benefit from selective reductions of TCP-flows
rates. A second difference is a consequence of having per-VC control. These ap-
proaches aim at avoiding losses and do not consider postponing/dropping packets.

8. Discussion

In this paper, we presented a policy-based design for congestion management of
SMS systems. The design has been evaluated through extensive simulation studies,
out of which we described in detail two scenarios: service rate decrease and traffic
matrix change.

The results from our experiments are that the system performs remarkably close
the administrator’s performance goals. First, the overall throughput is within 1.5 % of
that of the ideal system. Second, the maximum delay constraint for priority messages
is always met. Third, while the system has a tendency to postpone slightly more mes-
sages than the given objective, the achieved rate is (in absolute terms) 2% above the
given upper bound in most experiments. In addition, our experiments show that the
system adapts fast to variations in service rate and traffic matrix.

The simulation studies in [16] suggest that the system is not very sensitive to the
traffic characteristics of the offered load. In [16], we present the results for the same
scenarios shown in this paper, but using Poisson sources instead of SMS traces. In
both cases, the measured performance values, in terms of throughput, postponement
rates and delays, are within a few percentage points . We explain this by the fact that
the incoming traffic is shaped by the throttles in the incoming ports.

We showed that the computational cost of the policy evaluation, which is per-
formed periodically, is low, even for large system configurations. Policy evaluations
can be run on standard microprocessors in the order of milliseconds.

The prototype demonstrates the feasibility of implementing our design on a com-
mercial platform.

Our design facilitates the management of messaging gateways. Compared to to-
day’s practices, where administrators often manipulate individual message queues,
our design raises the level of abstraction in that an administrator specifies perform-
ance goals, and the system adapts its configuration to network conditions. This per-
mits any administrator with a basic understanding of performance metrics to control a
gateway, without the need for detailed knowledge of the device internals.

In this paper, we have considered two classes of SMS services. The adaptation of
our design to a single-class or more than two classes is straightforward.

We have studied a specific objective function, the overall throughput. Extending
our design to alternative objective functions involves the modification of the PDP.

Acknowledgments

We thank Roberto Cosenza from Infoflex Connect AB for his information about
SMS systems and their management in commercial environments and for implement-
ing the prototype. We also thank Ulf Brännlund from KTH for his advice on the op-
timization problem in this paper. This work has been supported in part by VINNOVA
under the project Policy-Based Network Management.

References

[1] S. Coulombe and G. Grassel, “Multimedia Adaptation for the Multimedia Messaging Service”, IEEE
Communications, Vol. 42, No.7, July 2004

[2] M. J. Masullo, S. B. Calo, “Policy management: an architecture and approach”. Proc. of IEEE
Workshop on Sys. Management, UCLA, Cal., April 1993

[3] Nordic Messaging, www.nordicmessaging.se, August 2005
[4] GSM Association, www.gsmworld.com, May 2005
[5] G.B. Dantzig, “Maximization of linear function of variables subject to linear inequalities”, in T.C.

Koopmans, editor, “Activity Analysis of Production and Allocation”, pages 339-347, 1951
[6] Computational Infrastructure for Operations Reseach, http://www.coin-or.org/index.html, July 2005
[7] Cygwin, http://cygwin.com, August 2005
[8] MySQL, http://www.mysql.com, May 2005
[9] A. Polirakis, R.Boutaba, “The Meta-Policy Information Base”, IEEE Network, special issue on

Policy-Based Networks, Vol.16, No. 2, pp. 40-48 2002
[10] D. Verma, “Simplifying Network Administration Using Policy-Based Management”, IEEE Network,

special issue on Policy-Based Networks, Vol.16, No. 2, pp. 20-26 2002
[11] J. Moffett, M. Sloman, “Policy Hierarchies for Distributed Systems Management”, IEEE Journal on

Selected Areas in Communications, Vol.11, No. 9, pp 1404-1414, Dec 1993
[12] D. Cavendish, M. Gerla, S. Mascolo, “A Control Theoretic Approach to Congestion Control in Packet

Networks”, IEEE/ACM Transactions on Networking, Vol. 12, No. 5, October 2004
[13] H.T. Kung, R. Morris, “Credit-Based Flow Control for ATM Networks”, IEEE Network Magazine,

pp. 40-48, March-April 1995.
[14] Floyd S., Jacobson, V., “Random Early Detection gateways for Congestion Avoidance”, IEEE/ACM

Transactions on Networking, Vol.1 No.4, pp. 397-413, August 1993.
[15] A. Mankin, K. Ramakrishnan, “RFC 1254- Gateway Congestion Control Survey”
[16] A. Gonzalez Prieto, R.Stadler , “Policy-based Performance Management for SMS gateways”,

Technical Report, KTH Royal Institute of Technology, August 2005
[17] A. Gonzalez Prieto, R.Stadler, "Evaluating a Congestion Management Architecture for SMS

Gateways", 9th IFIP/IEEE International Symposium on Integrated Network Management (IM 2005),
Nice, France, May 15-19, 2005

[18] A. Gonzalez Prieto, R. Cosenza, and R. Stadler, “Policy-based Congestion Management for an SMS
Gateway”, IEEE 5th International Workshop on Policies for Distributed Systems and Networks
(POLICY 2004), Yorktown Heights, New York, June 7-9, 2004

