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Abstract. End-to-end automated application design and deployment poses a signifi-

cant technical challenge. With increasing scale and complexity of IT systems and the 

manual handling of existing scripts and configuration files for application deploy-

ment that makes them increasingly error-prone and brittle, this problem has become 

more acute. Even though design tools have been used to automate system design, it 

is usually difficult to translate these designs to deployed systems in an automated 

manner due to both syntactic obstacles and the synchronization of multiple activities 

involved in such a deployment. We describe a generic process of automated de-

ployment from design documents and evaluate this process for 1, 2, and 3-tier dis-

tributed applications. 

1 Introduction 

New paradigms, such as autonomic computing, grid computing and adaptive enterprises, 

reflect recent developments in industry [1, 2, 3] and research [4]. Our goal is to create 

“Built-to-Order” systems that operate in these new computing environments. This requires 

easy and automated application design, deployment, and management tools to address 

their inherent complexity. We must support creating detailed designs from which we can 

deploy systems. These designs, in turn, are necessarily based on user requirements that 

take into account both operator and technical capability constraints. Creating design in an 

automated manner is a hard problem in itself. Quartermaster Cauldron [5], addresses the 

challenge by modeling system components with an object-oriented class hierarchy, the 

CIM (Common Information Model) metamodel, and embedding constraints on composi-

tion within the models as policies. Then, Cauldron uses a constraint satisfaction approach 

to create system designs and deployment workflows. However, these workflows and de-

signs are expressed in system-neutral Managed Object Format (MOF).  



 

MOF workflows typically involve multiple systems and formats that have to be dealt 

with in order to deploy a complex system. For example, deploying a three-tier e-

commerce solution in a virtualized environment may involve interactions with blade serv-

ers, VMWare/Virtual Servers, multiple operating systems, service containers for web 

servers, application servers, databases, before, finally, executing clients scripts. This prob-

lem of translating generic design in a system independent format (e.g., MOF) to the mul-

tiple languages/interfaces demanded by the system environment is thus nontrivial.  

The main contribution of the paper is a generic mechanism for translating design speci-

fications written in a system independent format into multiple and varied deployment en-

vironments. To achieve this generic translation, we use an XML based intermediate repre-

sentation and a flexible code generation method [6, 7] to build an extensible translator, the 

Automated Composable Code Translator (ACCT). Translation between the two models is 

non-trivial and significant result for two reasons. First, the models are quite dissimilar in 

some aspects; the translation is not a straightforward one-to-one mapping. For example, 

we describe the translation between significantly different workflow models in Section 

2.3. Second, the ACCT design is deliberately generic to accommodate the multiple input 

and output formats encountered in multiple design and d environments. ACCT accepts 

MOF-based design specifications of CIM instance models and converts them into input 

specifications for SmartFrog, a high-level deployment tool [8]. SmartFrog uses on a high-

level specification language and Java code to install, execute, monitor, and terminate ap-

plications. The generic architecture supporting multiple input/output formats is described 

elsewhere [6, 7]. 

2 Automated Design and Automated Deployment 

2.1 Automated Design Environment 

At the highest level of abstraction, automated design tools offer streamlined and verified 

application creation. Quartermaster is an integrated tool suite built around MOF to support 

automated design of distributed applications at this high level of abstraction [9, 10]. Caul-

dron, one of its key components, supports applying policies and rules at design-time to 

govern composition of resources. Cauldron’s constraint satisfaction engine can generate 

system descriptions that satisfy these administrative and technical constraints. In this pa-

per, we concentrate on deployment constraints for distributed applications. Since each 

component of an application often depends on prior deployment of other components or 

completion of other components’ work, deployment is non-trivial.  

To model deployment, we use a MOF Activity comprised of a number of sub-activities. 

Each of these activities has a set of constraints to meet before execution and also parame-

ters that must receive values. At design time, Cauldron generates configuration templates 

and also pairwise deployment dependencies between deployment activities. Between any 

pair of activities, there are four possible synchronization dependencies.  

SS (Start-Start) – activities must start together; a symmetric, transitive dependency. 

FF (Finish-Finish) –activities must finish together (synchronized); also a symmetric, 



 

transitive dependency. 

FS (Finish-Start) – predecessor activity must complete before the successor activity 

is started, i.e., sequential execution. This dependency implies a strict ordering, 

and the MOF must assign either the antecedent or the dependant role to each ac-

tivity component. 

SF (Start-Finish) – predecessor activity is started before the successor activity is fin-

ished. Similar observations on its properties follow as from FS. (As an SF ex-

ample, consider producer-consumer relationships in which the producer must 

create a communication endpoint before the consumer attempts attachment.) 

Cauldron, however, is solely a design tool and provides no deployment tools, which re-

quire software that initiate, monitor, and kill components in a distributed environment.  

2.2 Automated Deployment Environment 

Automated deployment tools serve to ameliorate the laborious process of preparing, start-

ing, monitoring, stopping, and even post-execution clean-up of distributed, complex ap-

plications. SmartFrog is an open-source, LGPL framework that supports such service de-

ployment and lifecycle management for distributed Java applications [11, 12]; it has been 

used on the Utility Computing model for deploying rendering code on demand and has 

been ported to PlanetLab [13]. Expertise gained applying SmartFrog to grid deployment 

[14] is being used in the CDDLM standardization effort currently underway  

Conceptually, SmartFrog comprises 1) a component model supporting application-

lifecycle operations and workflow facilities, 2) a specification language and validator for 

these specifications, and 3) tools for distribution, lifecycle monitoring, and control. The 

main functionalities of SmartFrog are as follows: 

Lifecycle operations – SmartFrog wraps deployable components and transitions them 

through their life phases: initiate, deploy, start, terminate, and fail.  

Workflow facilities – Allows flexible control over configuration dependencies between 

components to create workflows. Examples: Parallel, Sequence, and Repeat.  

SmartFrog runtime – Instantiates and monitors components; provides security. The 

runtime manages interactions between daemons running on remote hosts. It pro-

vides an event framework to send and receive events without disclosing compo-

nent locations. 

SmartFrog’s specification language features data encapsulation, inheritance, and com-

position which allows system configurations to be incrementally declared and customized. 

In practice, SmartFrog needs three types of files to deploy an application:  

1. Java interface definitions for components. These serve analogously to the 

interface exposure role of the C++ header file and class construct.  

2. Java source files that implement components as objects. These files correspond 

one-to-one with the above SmartFrog component descriptions.  

3. A single instantiation and deployment file, in a SmartFrog specific language, de-

fining the parameters and proper global deployment order for components. 



 

2.3 Translating Between Design Specifications and Deployment Specifications 

This section describes ACCT, our extensible, XML-based tool that translates generic de-

sign specifications into fully parameterized, executable deployment specifications. First, 

we describe ACCT’s design and the implementation and then the mapping approach 

needed to resolve mismatches between the design tool output (MOF) and deployment tool 

input (SmartFrog).  

There are several obstacles to translating Cauldron to SmartFrog. First, there is the syn-

tax problem; Cauldron generates MOF, but SmartFrog requires a document in its own 

language syntax as well as two more types supporting of Java source code. Obviously, this 

single MOF specification must be mapped to three kinds of output files, but neither 

SmartFrog nor Quartermaster supports deriving Java source from the design documents. 

Finally, Cauldron only produces pairwise dependencies between deployment activities; 

SmartFrog, on the other hand, needs dependencies over the entire set of deployment ac-

tivities to generate a deployment workflow for the system. 

In ACCT, code generation is built around an XML document which is compiled from a 

high-level human-friendly specification language (MOF) and then transformed using 

XSLT. So far, this approach has been applied to a code generation system for information 

flow architectures and has shown several benefits including support for rapid develop-

ment, extensibility to both new input and output languages, and support for advanced fea-

tures such as source-level aspect weaving. These advantages mesh well with ACCT’s 

goals of multiple input languages and multiple output languages, and SmartFrog deploy-

ments, in fact, require ACCT to generate two different output formats.  

The code translation process consists of three phases which are illustrated in Fig. 1. In 

the first phase, MOF-to-XML, ACCT reads MOF files and compiles them into a single 

XML specification, XMOF, using our modification of the publicly available WBEM Ser-

vices’ CIM-to-XML converter [15]. 

In phase two, XML-to-XACCT, XMOF is translated into a set of XACCT documents, 

the intermediate XML format of the ACCT tool. During this transformation, ACCT proc-

esses XMOF in-memory as a DOM tree and extracts three types of Cauldron-embedded 

information: components, instances, and deployment workflow. Each data sets is proc-

essed by a dedicated code generator written in Java. The component generator creates an 

XML component description, the instance generator produces a set of attributes and val-

ues, as XML, for deployed components, and the workflow generator computes a com-

 
Fig. 1. The ACCT code generator. 



 

plete, globally-ordered workflow expressed in XML. (We will describe the workflow con-

struction in more detail later.) These generated structures are passed to an XML composer 

which performs rudimentary type checking (to ensure instances are only present if there is 

also a class), and re-aggregates the XML fragments back into a whole XML documents. 

This may result in multiple XACCT component description documents, but there is only 

one instantiation+workflow document which contains the needed data for a single de-

ployment. 

Finally, in the third phase ACCT forwards each XACCT component description, in-

stantiation, and workflow document to the XSLT processor. The XSLT templates detect 

the XACCT document type and generate the appropriate files (SmartFrog or Java) which 

are written to disk. 

XACCT allows components, configurations, constraints, and workflows from input 

languages of any resource management tool to be described in an intermediate representa-

tion. Once an input language is mapped to XACCT, the user merely creates an XSLT 

template for the XML-to-XACCT phase to perform the final mapping of the XACCT to a 

specific target language. Conversely, one need only add a new template to support new 

target languages from an existing XACCT document. 

Purely syntactic differences between MOF and SmartFrog’s language can be resolved 

using solely XSLT, and the first version of ACCT was developed on XSLT alone. How-

ever, because the XSLT specification version used for ACCT had certain limitations, we 

incorporated Java pre- and post- processing stages. This allowed us to compute the neces-

sary global SmartFrog workflows from the MOF partial workflows and to create multiple 

output files from a single ACCT execution. 

Overall system ordering derives from the Cauldron computed partial synchronizations 

encoded in the input MOF. As mentioned in Section 2.1, MOF defines four types of par-

tial synchronization dependencies: SS, FF, SF, and FS. To describe the sequential and 

parallel ordering of components which SmartFrog requires, these partial dependencies are 

mapped via an event queue model with an algorithm that synchronizes activities correctly. 

It is helpful to consider the process as that of building a graph in which each component is 

a node and each dependency is an edge. Each activity component has one associated 

EventQueue containing list of actions: 

Execute – execute a specific sub-component. 

EventSend – send a specific event to other components. This may accept a list of 

destination components. 

OnEvent – the action to wait for an incoming event. This may wait on events from 

multiple source components. It is the dual of EventSend. 

Terminate – the action to remove the EventQueue. 
Table 1. Possible event dependencies between components 

Given this model, any two 

components may have one of 

three synchronization relations, 

as shown in Table 1. Fig. 2 ap-

plies these synchronization se-

C A component, C. 

Ca → Cb Component Ca sends event to Cb. 

Ca ← Cb Component Ca waits for event from Cb. 

Ca — Cb Components must perform action together 



 

mantics to the pairwise MOF 

relationships. In SS, two ac-

tivity components are blocked 

until each event receives a 

“start” event from the other. 

In ACCT, this translates to 

entries in the EventQueues to 

send and then wait for an 

event from the peer compo-

nent. The FF scenario is han-

dled similarly. In SF, since 

Cb’s activity must be finished 

after Ca starts to deploy, Cb is 

blocked in its EventQueue 

until Ca’s “start” is received at 

Cb. In FS, since Cb may de-

ploy only after Ca completes 

its task, Cb blocks until a “fin-

ished” event from Ca is re-

ceived at Cb. (For now, we assume the network delay between two components is negligi-

ble.) 

Fig. 3 illustrates the XACCT for the FS dependency. The SS and FF operations are 

parallel deployment activities while SF and FS represent sequential deployment activities. 

The exact content of each EventQueue depends on its dependencies to all other activity 

components. Since each activity component frequently has multiple dependencies, we 

devised an algorithm to calculate EventQueue contents. 

The algorithm visits each activity component, Ci, in 

the XMOF to build a global action list. If a dependency 

of the component is a parallel dependency (SS or FF), 

then the algorithm transitively checks for dependencies 

of the same type on related activity components until it 

finds no more parallel. For example, if there is a de-

pendency in which Ci is SS with Cj, and Cj is also SS 

with Ck but FF (a different parallel dependency) with 

Cm, it records only “Cj and Ck” as SS on its action list 

before proceeding to check component Ci+1. If it is a 

sequential dependency (FS or SF), the algorithm adds 

the dependency to the global action list and proceeds to 

component i+1. That is, if Ci has FS with Cj, and Cj has 

FS with Ck, only the pairwise relation “Ci and Cj with 

FS” is entered into the global action list before proceed-

ing to Ci+1. 

Then the algorithm implements deadlock avoidance 

 

Ca {
  Ca -> Cb
  Ca <- Cb
  Deploy Ca
}

a b
SS

a b
FF

a b
SF

a b
FS

Cb {
  Cb -> Ca
  Cb <- Ca
  Deploy Cb
}

Ca {
  Deploy Ca
  Ca -> Cb
  Ca <- Cb
}

Cb {
Deploy Cb

     Cb -> Ca
     Cb <- Ca
}

Ca {
  Ca -> Cb
  Deploy Ca
}

Cb {
Deploy Cb
 Cb <- Ca

}

Ca {
  Deploy Ca
  Ca -> Cb

}

Cb {
Cb <- Ca
Deploy Cb

}

 
Fig. 2. Diagrams and dependency formulations of SS, FF, SF, 

and  FS. 

<Instance Name="Ca" Class="Activity"> 

   <Workflow> 

      <Work Name="--" Type="Execute"> 

      </Work> 

      <Work Name="--" Type="EventSend"> 

         <To>Cb</To> 

      </Work> 

      <Work Name="--" Type="Terminator"> 

       Ca</Work> 

   </Workflow> 

</Instance> 

<Instance Name="Cb" Class="Activity"> 

   <Workflow> 

      <Work Type="OnEvent"> 

         <From>Ca</From> 

      </Work> 

      <Work Name="--" Type="Execute"> 

      </Work>          

      <Work Name="--" Type="Terminator"> 

       Cb</Work> 

   </Workflow> 

</Instance> 

Fig. 3. XACCT snippet for the FS 

dependency. 



 

by enforcing a static order of actions for each activity component Ci based on the compo-

nent’s role, antecedent or dependant, in each relationship. The algorithm checks the six 

possible combinations of roles and dependencies as follows: 

1. If Ci participates as a dependant in any FS relationship, then it adds one OnEvent 

action to the EventQueue per FS-Dependancy.  

2. If Ci has any SS dependencies, then it adds all needed EventSend and OnEvent 

actions to the EventQueue.  

3. If Ci functions as antecedent in SF dependencies, then per dependency it adds an 

EventSend action to the EventQueue followed by a single Execute action. 

4. If Ci participates as a dependant in an SF dependency, then one OnEvent action 

per dependency is added to the EventQueue.  

5. If Ci has any FF dependencies, it adds all EventSend and OnEvent actions to the 

EventQueue.  

6. Finally, if Ci serves as an antecedent roles with FS, then it adds one EventSend 

action per FS occurrence. 

Finally, the workflow algorithm appends the “Terminate” action to each Ci’s 

EventQueue.  

XACCT captures the final workflow in a set of per-component EventQueues, which 

ACCT then translates to the input format of the deployment system (i.e., SmartFrog). The 

Java source code generated by ACCT is automatically compiled, packaged into a jar 
file, and integrated into SmartFrog using its class loader. An HTTP server functions as a 

repository to store scripts and application source files. Once a SmartFrog description is 

fed to the SmartFrog daemon, it spawns one thread for each activity in the workflow. Sub-

sequent synchronization among activities is controlled by EventQueues. 

3 Demo Application and Evaluation 

We present in this section how Cauldron-ACCT-SmartFrog toolkit operates from generat-

ing the system configurations and workflow, translating both into the input of SmartFrog, 

and then automatically deploying distributed applications of varying complexity. In the 

subsection 3.1, we describe 1-, 2-, and 3-tier example applications and system setup em-

ployed for our experiments. Following that, we evaluate our toolkit by comparing the de-

ployment execution time of SmartFrog and automatically generated deployment code to 

manually written deployment scripts.  

3.1 Experiment Scenario and Setup 

We evaluated our translator by employing it on 1-, 2-, and 3-tier applications. The simple 

1- and 2-tier applications provide baselines for comparing a generated SmartFrog descrip-

tion to hand-crafted scripts. The 3-tier testbed comprises web, application, and database 

servers; it is a small enough size to be easily testable, but also has enough components to 

illustrate the power of the toolkit for managing complexity. Table 2, below, lists each sce-

nario’s components. 



 

 
Table 2. Components of 1-, 2-, and 3-tier applications 

Scenario Application Components 

1-tier Static web page Web Server : Apache 2.0.49 

2-tier Web Page  Hit Counter Web Server : Apache 2.0.49 

App. Server : Tomcat 5.0.19 

Build System: Apache Ant 1.6.1 

3-tier iBATIS JPetStore 4.0.0 Web Server : Apache 2.0.49 

App. Server : Tomcat 5.0.19 

DB Server : MySQL 4.0.18 

DB Driver : MySQL Connector to Java 3.0.11 

Build System : Apache Ant 1.6.1  

Others : DAO, SQLMap, Struts 

We installed SmartFrog 3.04.008_beta on four 800 MHz dual-processor Dell Pentium 

III machines running RedHat 9.0; one SmartFrog daemon runs on each host. 

In the 1-tier application, we deploy Apache as a standalone web server, and confirmed 

successful deployment by visiting a static web page. The evaluation used two machines: 

the first for the web server and a second to execute the generated SmartFrog workflow.  

In the 2-tier Hit Counter application, we used Apache and the Tomcat application 

server with Ant. Each tier specified for deployment to a separate host. To verify the 2-tier 

deployment, we visited the web page multiple times to ensure it recorded page hits. The 

application simply consists of a class and a jsp page. The 2-tier evaluation required three 

machines. As in the 1-tier test, we used one machine to run the deployment script; then, 

we dedicated one machine to each deployed tier (Apache; Ant and Tomcat). 

Finally, the 3-tier application was the iBATIS JPetStore, a ubiquitous introduction to 3-

tier programming. In the 3-tier application evaluation, we used four machines. Again, we 

dedicated one machine for each tier (Apache; Tomcat, JPetStore, Ant, MySQL Driver, 

Struts; MySQL DB) and used a fourth machine to run the SmartFrog workflow. 

Fig. 4 illustrates the dependencies of components in each testbed. We consider three 

types of dependencies in the experiment; installation dependency, configuration depend-

ency, and activation dependency. The total number of dependencies in each testbed is 

used as the level of the complexity.  In Figure 6, 1-, 2-, and 3-tier testbeds are considered 

as simple, medium, and complex cases respectively. Intuitively, the installation, configu-

ration, and activation dependencies of each component in each testbed must be sequenced. 

For instance, the Apache configuration must start after Apache installation completes, and 

Apache activation must start after Apache configuration completes. (For space, we have 

omitted these dependencies from the figure.) 



 

We modeled 1-, 2-, and 3-tier applications in Quartermaster with and Cauldron module 

created the configurations and deployment workflows. The resultant MOF files were fed 

into ACCT and yielded a set of Java class files, SmartFrog component descriptions, and a 

SmartFrog instances+workflow specification for each application tested. Fig. 6 on the 

following page illustrates the transformation process as ACCT translates the MOF file of 

the 3-tier application to intermediate XACCT and then finally to a SmartFrog description. 

For demonstration, we highlight the FS dependency between the Tomcat installation and 

MySQLDriver installation and how this information is carried through the transformation 

process. 

3.2 Experimental Result 

The metric we choose for evaluating the 1-, 2-, and 3-tier testbeds is deployment execu-

tion time as compared to manually written scripts. We executed SmartFrog and scripts 30 

times each for each tier application and report the average. Fig. 5 shows that for simple 

cases (1- and 2-tier) SmartFrog took marginally longer when compared to the scripts 

based approach because SmartFrog daemons running in the Java VM impose extra costs 

when loading Java classes or engaging in RMI communication. The trend favors Smart-

Frog as the time penalty of the medium case becomes less (in absolute and relative terms) 

and for the complex case, Smart-

Frog took less time than the scripts 

based approach.  

In the complex case, SmartFrog 

was able to exploit concurrency 

between application components 

since it had a computed workflow. 

The simple and medium cases 

contain fewer concurrent depend-

encies than the 3-tier case. 

a)       b)   c)  
Fig. 4. Dependency diagrams of (a) 1-tier, (b) 2-tier, and (c) 3-tier application. 
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Fig. 5. Deployment Time using SmartFrog and scripts as a 

function of the complexity. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. (a) MOF, (b) Intermediate XML, and (c) SmartFrog code snippets. The solid line box indicates the FS workflow between Tomcat 

and MySQLDriver applications. Others indicate configurations. Clearly, MOF offers superior understandability for a deployment sce-

nario as compared to the SmartFrog specification. As Vanish et al showed in [16], automating deployment via SmartFrog, for which we 

generate code, is generally superior in performance and more maintainable when compared to manual or ad hoc scripted solutions. 

(a) MOF (b) XACCT (c) SmartFrog 

instance of LogicalServer { 

   Id = "Tomcat_LS1"; 

   Caption = "Tomcat Logical Server"; 

   Description = "Logical Server for Tomcat "; 

   IpAddress = "130.207.5.228"; 

   HostName = "artemis.cc.gatech.edu"; 

}; 

instance of LogicalServerInLogicalApplication  

{ 

   LogicalApplication = "Tomcat\"; 

   LogicalServer =Tomcat_LS1\"; 

};  

instance of LogicalApplication { 

   Id = "Tomcat"; 

   Version = "5.0.19"; 

   Caption = "Tomcat"; 

   Description = "Tomcat application Server"; 

}; 

instance of LogicalApplication { 

   Id = "MySQLDriver"; 

   Version = "3.0.11"; 

   Caption = "MySQLDriver"; 

   Description = "MySQL driver"; 

}; 

instance of Activity { 

   Id = "Tomcat_Installation"; 

   ActivityType = "script"; 

}; 

instance of Activity { 

   Id = "Tomcat_Installation"; 

   ActivityType = "script"; 

}; 

Instance of ActivityPredecessorActivity { 

   DependenceType=”Finish-Start”; 

   AntecedentActivity=”Tomcat_Installation”; 

   DependentActiv-

ity=”MySQLDriver_installation”; 

}; 

   <Instance Name="Tomcat" Class="LogicalApplication"> 

      <Variable Name="Id"Type="string">Tom-

cat</Variable> 

      <Variable Name="Version"Type="string"> 

         5.0.19</Variable> 

      <Variable Name="Entity" Type="string"> 

         Activity_Tomcat_Installation</Variable> 

      <Variable Name="Host" Type="string"> 

         artemis.cc.gatech.edu</Variable>  

   </Instance> 

      <Workflow> 

         <Work Type=”Execution”></Work> 

         <Work Type=”EventSend”> 

            <To> MySQLDriver_Installation</To></Work> 

         <Work Type=”Terminate”> 

           Tomcat_Installation </Work> 

      </Workflow> 

   <Instance  Name="MySQLDriver"  

                     Class="LogicalApplication"> 

      <Variable Name="Id" Type="string"> 

         MySQLDriver</Variable> 

      <Variable Name="Version" Type="string"> 

         3.0.11</Variable> 

      <Variable Name="Entity" Type="string"> 

         Activity_MySQLDriver_Installation</Variable> 

      <Variable Name="Host" Type="string"> 

         demeter.cc.gatech.edu</Variable>  

   </Instance> 

     <Workflow> 

        <Work Type=”OnEvent”> 

           <From> Tomcat_Installation</From> </Work> 

        <Work Type=”Execution”></Work> 

        <Work Type=”Terminate”> 

           MySQLDriver_Installation</Work> 

     </Workflow> 

 

 

sfProcessComponentName  "Tomcat_Installation"; 

LogicalApplication_Tomcat  extends  LogicalApplication { 

      Id   "Tomcat"; 

      Version   "5.0.19"; 

      Activity LAZY ATTRIB   Activity_Tomcat_Installation;  

      sfProcessHost   "artemis.cc.gatech.edu"; 

}    

Activity_Tomcat_Installation  extends  Activity { 

      Id   "Tomcat_Installation"; 

      Entity   LAZY ATTRIB LogicalApplication_Tomcat; 

}    

-- extends EventSend { 

      sendTo eventQueue:queue_Tomcat_Ignition; 

      event "Activity_Tomcat_Installation_FS"; 

} 

-- extends Terminator { 

      kill eventQueue:queue_Tomcat_Installation; 

} 

sfProcessComponentName "MySQLDriver_Installation"; 

-- extends OnEvent { 

     registerWith queue_MySQLDriver_Installation ; 

     Activity_Tomcat_Installation_FS extends DoNothing 

} 

LogicalApplication_MySQLDriver extends LogicalApplication { 

      Id   "MySQLDriver"; 

      Version   "3.0.11"; 

      ActivityLAZYATTRIBActivity_MySQLDriver_Installation; 

      sfProcessHost   "demeter.cc.gatech.edu"; 

}    

Activity_MySQLDriver_Installation extends Activity { 

      Id   "MySQLDriver_Installation"; 

     Entity  LAZY ATTRIB   LogicalApplication_MySQLDriver; 

}    

-- extends Terminator { 

     kill eventQueue:queue_MySQLDriver_Installation; 

} 

 

   

 

 

 

 

 



 

Nevertheless, in all cases our toolkit retains the important advantage of an automatically 

generated workflow, while in scripts based approach, system administrators must manu-

ally control the order of installing, configuration, and deployment. 

4 Related Work 

Recent years have seen the advent of wide-ranging resource management systems. For e-

business, OGSA Grid Computing [17] aims to provide services within an on-demand data 

center infrastructure. IBM’s Autonomic Computing Toolkit [1], the HP Utility Data Cen-

ter [18] and Microsoft’s DSI initiative [3] are examples of this. The distinction of our 

toolkit, however, is that Cauldron logic and a theorem prover to meet resource allocation 

constraints. There are several efforts related to specifying conditions and actions for poli-

cies, e.g., CIM [19] and PARLAY [20]. However, to the best of our knowledge, none of 

them have used a constraint satisfaction approach for automatic resource construction. 

Another trend is deployment automation tools. CFengine [22] provides rich facilities 

for system administration and is specifically designed for testing and configuring soft-

ware. It defines a declarative language so that the transparency of a configuration program 

is optimal and management is separate from implementation. Nix [21] is another popular 

tool used to install, maintain, control, and monitor applications. It is capable of enforcing 

reliable specification of component and support for multiple version of a component. 

However, since Nixes does not provide automated workflow mechanism, users manually 

configure the order of the deployments. For deployment of a large and complicated appli-

cation, it becomes hard to use Nixes. By comparison, SmartFrog provides control flow 

structure and event mechanism to support flexible construction of workflow.  

The ACCT translator adopts the Clearwater architecture developed for the Infopipe 

Stub Generator + AXpect Weaver (ISG) [6, 7]. Both ACCT and ISG utilize an XML in-

termediate format that is translated by XSLT to target source code. Unlike ACCT, how-

ever, ISG is designed for creating information flow system code. There are other commer-

cial and academic translation tools, like MapForce [23] and CodeSmith [24]. Similar to 

ISG, they target general code generation and do not support deployment workflows. 

5 Conclusion 

We outlined an approach for Automated Deployment of complex distributed applications. 

Concretely, we described in detail the ACCT component (Automated Composable Code 

Translator) that translates Cauldron output (in XMOF format) into a SmartFrog specifica-

tion that can be compiled into Java executables for automated deployment. ACCT per-

forms a non-trivial translation, given the differences between the XMOF and SmartFrog 

models such as workflow dependencies.  A demonstration application (JPetStore) illus-

trates the automated design and implementation process and translation steps, showing the 

increasing advantages of such automation as the complexity of the application grows. 
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