

Towards Automated Deployment

of Built-to-Order Systems

Akhil Sahai
1
, Calton Pu

2
, Gueyoung Jung

2
,

Qinyi Wu
2
, Wenchang Yan

2
, and Galen S. Swint

2

1HP Laboratories, Palo-Alto, CA
akhil.sahai@hp.com

 2Center for Experimental Research in Computer Systems,

College of Computing, Georgia Institute of Technology,

801 Atlantic Drive, Atlanta, GA 30332
{calton, helcyon1, qxw, wyan, galen.swint}@cc.gatech.edu

Abstract. End-to-end automated application design and deployment poses a signifi-

cant technical challenge. With increasing scale and complexity of IT systems and the

manual handling of existing scripts and configuration files for application deploy-

ment that makes them increasingly error-prone and brittle, this problem has become

more acute. Even though design tools have been used to automate system design, it

is usually difficult to translate these designs to deployed systems in an automated

manner due to both syntactic obstacles and the synchronization of multiple activities

involved in such a deployment. We describe a generic process of automated de-

ployment from design documents and evaluate this process for 1, 2, and 3-tier dis-

tributed applications.

1 Introduction

New paradigms, such as autonomic computing, grid computing and adaptive enterprises,

reflect recent developments in industry [1, 2, 3] and research [4]. Our goal is to create

“Built-to-Order” systems that operate in these new computing environments. This requires

easy and automated application design, deployment, and management tools to address

their inherent complexity. We must support creating detailed designs from which we can

deploy systems. These designs, in turn, are necessarily based on user requirements that

take into account both operator and technical capability constraints. Creating design in an

automated manner is a hard problem in itself. Quartermaster Cauldron [5], addresses the

challenge by modeling system components with an object-oriented class hierarchy, the

CIM (Common Information Model) metamodel, and embedding constraints on composi-

tion within the models as policies. Then, Cauldron uses a constraint satisfaction approach

to create system designs and deployment workflows. However, these workflows and de-

signs are expressed in system-neutral Managed Object Format (MOF).

MOF workflows typically involve multiple systems and formats that have to be dealt

with in order to deploy a complex system. For example, deploying a three-tier e-

commerce solution in a virtualized environment may involve interactions with blade serv-

ers, VMWare/Virtual Servers, multiple operating systems, service containers for web

servers, application servers, databases, before, finally, executing clients scripts. This prob-

lem of translating generic design in a system independent format (e.g., MOF) to the mul-

tiple languages/interfaces demanded by the system environment is thus nontrivial.

The main contribution of the paper is a generic mechanism for translating design speci-

fications written in a system independent format into multiple and varied deployment en-

vironments. To achieve this generic translation, we use an XML based intermediate repre-

sentation and a flexible code generation method [6, 7] to build an extensible translator, the

Automated Composable Code Translator (ACCT). Translation between the two models is

non-trivial and significant result for two reasons. First, the models are quite dissimilar in

some aspects; the translation is not a straightforward one-to-one mapping. For example,

we describe the translation between significantly different workflow models in Section

2.3. Second, the ACCT design is deliberately generic to accommodate the multiple input

and output formats encountered in multiple design and d environments. ACCT accepts

MOF-based design specifications of CIM instance models and converts them into input

specifications for SmartFrog, a high-level deployment tool [8]. SmartFrog uses on a high-

level specification language and Java code to install, execute, monitor, and terminate ap-

plications. The generic architecture supporting multiple input/output formats is described

elsewhere [6, 7].

2 Automated Design and Automated Deployment

2.1 Automated Design Environment

At the highest level of abstraction, automated design tools offer streamlined and verified

application creation. Quartermaster is an integrated tool suite built around MOF to support

automated design of distributed applications at this high level of abstraction [9, 10]. Caul-

dron, one of its key components, supports applying policies and rules at design-time to

govern composition of resources. Cauldron’s constraint satisfaction engine can generate

system descriptions that satisfy these administrative and technical constraints. In this pa-

per, we concentrate on deployment constraints for distributed applications. Since each

component of an application often depends on prior deployment of other components or

completion of other components’ work, deployment is non-trivial.

To model deployment, we use a MOF Activity comprised of a number of sub-activities.

Each of these activities has a set of constraints to meet before execution and also parame-

ters that must receive values. At design time, Cauldron generates configuration templates

and also pairwise deployment dependencies between deployment activities. Between any

pair of activities, there are four possible synchronization dependencies.

SS (Start-Start) – activities must start together; a symmetric, transitive dependency.

FF (Finish-Finish) –activities must finish together (synchronized); also a symmetric,

transitive dependency.

FS (Finish-Start) – predecessor activity must complete before the successor activity

is started, i.e., sequential execution. This dependency implies a strict ordering,

and the MOF must assign either the antecedent or the dependant role to each ac-

tivity component.

SF (Start-Finish) – predecessor activity is started before the successor activity is fin-

ished. Similar observations on its properties follow as from FS. (As an SF ex-

ample, consider producer-consumer relationships in which the producer must

create a communication endpoint before the consumer attempts attachment.)

Cauldron, however, is solely a design tool and provides no deployment tools, which re-

quire software that initiate, monitor, and kill components in a distributed environment.

2.2 Automated Deployment Environment

Automated deployment tools serve to ameliorate the laborious process of preparing, start-

ing, monitoring, stopping, and even post-execution clean-up of distributed, complex ap-

plications. SmartFrog is an open-source, LGPL framework that supports such service de-

ployment and lifecycle management for distributed Java applications [11, 12]; it has been

used on the Utility Computing model for deploying rendering code on demand and has

been ported to PlanetLab [13]. Expertise gained applying SmartFrog to grid deployment

[14] is being used in the CDDLM standardization effort currently underway

Conceptually, SmartFrog comprises 1) a component model supporting application-

lifecycle operations and workflow facilities, 2) a specification language and validator for

these specifications, and 3) tools for distribution, lifecycle monitoring, and control. The

main functionalities of SmartFrog are as follows:

Lifecycle operations – SmartFrog wraps deployable components and transitions them

through their life phases: initiate, deploy, start, terminate, and fail.

Workflow facilities – Allows flexible control over configuration dependencies between

components to create workflows. Examples: Parallel, Sequence, and Repeat.

SmartFrog runtime – Instantiates and monitors components; provides security. The

runtime manages interactions between daemons running on remote hosts. It pro-

vides an event framework to send and receive events without disclosing compo-

nent locations.

SmartFrog’s specification language features data encapsulation, inheritance, and com-

position which allows system configurations to be incrementally declared and customized.

In practice, SmartFrog needs three types of files to deploy an application:

1. Java interface definitions for components. These serve analogously to the

interface exposure role of the C++ header file and class construct.

2. Java source files that implement components as objects. These files correspond

one-to-one with the above SmartFrog component descriptions.

3. A single instantiation and deployment file, in a SmartFrog specific language, de-

fining the parameters and proper global deployment order for components.

2.3 Translating Between Design Specifications and Deployment Specifications

This section describes ACCT, our extensible, XML-based tool that translates generic de-

sign specifications into fully parameterized, executable deployment specifications. First,

we describe ACCT’s design and the implementation and then the mapping approach

needed to resolve mismatches between the design tool output (MOF) and deployment tool

input (SmartFrog).

There are several obstacles to translating Cauldron to SmartFrog. First, there is the syn-

tax problem; Cauldron generates MOF, but SmartFrog requires a document in its own

language syntax as well as two more types supporting of Java source code. Obviously, this

single MOF specification must be mapped to three kinds of output files, but neither

SmartFrog nor Quartermaster supports deriving Java source from the design documents.

Finally, Cauldron only produces pairwise dependencies between deployment activities;

SmartFrog, on the other hand, needs dependencies over the entire set of deployment ac-

tivities to generate a deployment workflow for the system.

In ACCT, code generation is built around an XML document which is compiled from a

high-level human-friendly specification language (MOF) and then transformed using

XSLT. So far, this approach has been applied to a code generation system for information

flow architectures and has shown several benefits including support for rapid develop-

ment, extensibility to both new input and output languages, and support for advanced fea-

tures such as source-level aspect weaving. These advantages mesh well with ACCT’s

goals of multiple input languages and multiple output languages, and SmartFrog deploy-

ments, in fact, require ACCT to generate two different output formats.

The code translation process consists of three phases which are illustrated in Fig. 1. In

the first phase, MOF-to-XML, ACCT reads MOF files and compiles them into a single

XML specification, XMOF, using our modification of the publicly available WBEM Ser-

vices’ CIM-to-XML converter [15].

In phase two, XML-to-XACCT, XMOF is translated into a set of XACCT documents,

the intermediate XML format of the ACCT tool. During this transformation, ACCT proc-

esses XMOF in-memory as a DOM tree and extracts three types of Cauldron-embedded

information: components, instances, and deployment workflow. Each data sets is proc-

essed by a dedicated code generator written in Java. The component generator creates an

XML component description, the instance generator produces a set of attributes and val-

ues, as XML, for deployed components, and the workflow generator computes a com-

Fig. 1. The ACCT code generator.

plete, globally-ordered workflow expressed in XML. (We will describe the workflow con-

struction in more detail later.) These generated structures are passed to an XML composer

which performs rudimentary type checking (to ensure instances are only present if there is

also a class), and re-aggregates the XML fragments back into a whole XML documents.

This may result in multiple XACCT component description documents, but there is only

one instantiation+workflow document which contains the needed data for a single de-

ployment.

Finally, in the third phase ACCT forwards each XACCT component description, in-

stantiation, and workflow document to the XSLT processor. The XSLT templates detect

the XACCT document type and generate the appropriate files (SmartFrog or Java) which

are written to disk.

XACCT allows components, configurations, constraints, and workflows from input

languages of any resource management tool to be described in an intermediate representa-

tion. Once an input language is mapped to XACCT, the user merely creates an XSLT

template for the XML-to-XACCT phase to perform the final mapping of the XACCT to a

specific target language. Conversely, one need only add a new template to support new

target languages from an existing XACCT document.

Purely syntactic differences between MOF and SmartFrog’s language can be resolved

using solely XSLT, and the first version of ACCT was developed on XSLT alone. How-

ever, because the XSLT specification version used for ACCT had certain limitations, we

incorporated Java pre- and post- processing stages. This allowed us to compute the neces-

sary global SmartFrog workflows from the MOF partial workflows and to create multiple

output files from a single ACCT execution.

Overall system ordering derives from the Cauldron computed partial synchronizations

encoded in the input MOF. As mentioned in Section 2.1, MOF defines four types of par-

tial synchronization dependencies: SS, FF, SF, and FS. To describe the sequential and

parallel ordering of components which SmartFrog requires, these partial dependencies are

mapped via an event queue model with an algorithm that synchronizes activities correctly.

It is helpful to consider the process as that of building a graph in which each component is

a node and each dependency is an edge. Each activity component has one associated

EventQueue containing list of actions:

Execute – execute a specific sub-component.

EventSend – send a specific event to other components. This may accept a list of

destination components.

OnEvent – the action to wait for an incoming event. This may wait on events from

multiple source components. It is the dual of EventSend.

Terminate – the action to remove the EventQueue.
Table 1. Possible event dependencies between components

Given this model, any two

components may have one of

three synchronization relations,

as shown in Table 1. Fig. 2 ap-

plies these synchronization se-

C A component, C.

Ca → Cb Component Ca sends event to Cb.

Ca ← Cb Component Ca waits for event from Cb.

Ca — Cb Components must perform action together

mantics to the pairwise MOF

relationships. In SS, two ac-

tivity components are blocked

until each event receives a

“start” event from the other.

In ACCT, this translates to

entries in the EventQueues to

send and then wait for an

event from the peer compo-

nent. The FF scenario is han-

dled similarly. In SF, since

Cb’s activity must be finished

after Ca starts to deploy, Cb is

blocked in its EventQueue

until Ca’s “start” is received at

Cb. In FS, since Cb may de-

ploy only after Ca completes

its task, Cb blocks until a “fin-

ished” event from Ca is re-

ceived at Cb. (For now, we assume the network delay between two components is negligi-

ble.)

Fig. 3 illustrates the XACCT for the FS dependency. The SS and FF operations are

parallel deployment activities while SF and FS represent sequential deployment activities.

The exact content of each EventQueue depends on its dependencies to all other activity

components. Since each activity component frequently has multiple dependencies, we

devised an algorithm to calculate EventQueue contents.

The algorithm visits each activity component, Ci, in

the XMOF to build a global action list. If a dependency

of the component is a parallel dependency (SS or FF),

then the algorithm transitively checks for dependencies

of the same type on related activity components until it

finds no more parallel. For example, if there is a de-

pendency in which Ci is SS with Cj, and Cj is also SS

with Ck but FF (a different parallel dependency) with

Cm, it records only “Cj and Ck” as SS on its action list

before proceeding to check component Ci+1. If it is a

sequential dependency (FS or SF), the algorithm adds

the dependency to the global action list and proceeds to

component i+1. That is, if Ci has FS with Cj, and Cj has

FS with Ck, only the pairwise relation “Ci and Cj with

FS” is entered into the global action list before proceed-

ing to Ci+1.

Then the algorithm implements deadlock avoidance

Ca {
 Ca -> Cb
 Ca <- Cb
 Deploy Ca
}

a b
SS

a b
FF

a b
SF

a b
FS

Cb {
 Cb -> Ca
 Cb <- Ca
 Deploy Cb
}

Ca {
 Deploy Ca
 Ca -> Cb
 Ca <- Cb
}

Cb {
Deploy Cb

 Cb -> Ca
 Cb <- Ca
}

Ca {
 Ca -> Cb
 Deploy Ca
}

Cb {
Deploy Cb
 Cb <- Ca

}

Ca {
 Deploy Ca
 Ca -> Cb

}

Cb {
Cb <- Ca
Deploy Cb

}

Fig. 2. Diagrams and dependency formulations of SS, FF, SF,

and FS.

<Instance Name="Ca" Class="Activity">

 <Workflow>

 <Work Name="--" Type="Execute">

 </Work>

 <Work Name="--" Type="EventSend">

 <To>Cb</To>

 </Work>

 <Work Name="--" Type="Terminator">

 Ca</Work>

 </Workflow>

</Instance>

<Instance Name="Cb" Class="Activity">

 <Workflow>

 <Work Type="OnEvent">

 <From>Ca</From>

 </Work>

 <Work Name="--" Type="Execute">

 </Work>

 <Work Name="--" Type="Terminator">

 Cb</Work>

 </Workflow>

</Instance>

Fig. 3. XACCT snippet for the FS

dependency.

by enforcing a static order of actions for each activity component Ci based on the compo-

nent’s role, antecedent or dependant, in each relationship. The algorithm checks the six

possible combinations of roles and dependencies as follows:

1. If Ci participates as a dependant in any FS relationship, then it adds one OnEvent

action to the EventQueue per FS-Dependancy.

2. If Ci has any SS dependencies, then it adds all needed EventSend and OnEvent

actions to the EventQueue.

3. If Ci functions as antecedent in SF dependencies, then per dependency it adds an

EventSend action to the EventQueue followed by a single Execute action.

4. If Ci participates as a dependant in an SF dependency, then one OnEvent action

per dependency is added to the EventQueue.

5. If Ci has any FF dependencies, it adds all EventSend and OnEvent actions to the

EventQueue.

6. Finally, if Ci serves as an antecedent roles with FS, then it adds one EventSend

action per FS occurrence.

Finally, the workflow algorithm appends the “Terminate” action to each Ci’s

EventQueue.

XACCT captures the final workflow in a set of per-component EventQueues, which

ACCT then translates to the input format of the deployment system (i.e., SmartFrog). The

Java source code generated by ACCT is automatically compiled, packaged into a jar
file, and integrated into SmartFrog using its class loader. An HTTP server functions as a

repository to store scripts and application source files. Once a SmartFrog description is

fed to the SmartFrog daemon, it spawns one thread for each activity in the workflow. Sub-

sequent synchronization among activities is controlled by EventQueues.

3 Demo Application and Evaluation

We present in this section how Cauldron-ACCT-SmartFrog toolkit operates from generat-

ing the system configurations and workflow, translating both into the input of SmartFrog,

and then automatically deploying distributed applications of varying complexity. In the

subsection 3.1, we describe 1-, 2-, and 3-tier example applications and system setup em-

ployed for our experiments. Following that, we evaluate our toolkit by comparing the de-

ployment execution time of SmartFrog and automatically generated deployment code to

manually written deployment scripts.

3.1 Experiment Scenario and Setup

We evaluated our translator by employing it on 1-, 2-, and 3-tier applications. The simple

1- and 2-tier applications provide baselines for comparing a generated SmartFrog descrip-

tion to hand-crafted scripts. The 3-tier testbed comprises web, application, and database

servers; it is a small enough size to be easily testable, but also has enough components to

illustrate the power of the toolkit for managing complexity. Table 2, below, lists each sce-

nario’s components.

Table 2. Components of 1-, 2-, and 3-tier applications

Scenario Application Components

1-tier Static web page Web Server : Apache 2.0.49

2-tier Web Page Hit Counter Web Server : Apache 2.0.49

App. Server : Tomcat 5.0.19

Build System: Apache Ant 1.6.1

3-tier iBATIS JPetStore 4.0.0 Web Server : Apache 2.0.49

App. Server : Tomcat 5.0.19

DB Server : MySQL 4.0.18

DB Driver : MySQL Connector to Java 3.0.11

Build System : Apache Ant 1.6.1

Others : DAO, SQLMap, Struts

We installed SmartFrog 3.04.008_beta on four 800 MHz dual-processor Dell Pentium

III machines running RedHat 9.0; one SmartFrog daemon runs on each host.

In the 1-tier application, we deploy Apache as a standalone web server, and confirmed

successful deployment by visiting a static web page. The evaluation used two machines:

the first for the web server and a second to execute the generated SmartFrog workflow.

In the 2-tier Hit Counter application, we used Apache and the Tomcat application

server with Ant. Each tier specified for deployment to a separate host. To verify the 2-tier

deployment, we visited the web page multiple times to ensure it recorded page hits. The

application simply consists of a class and a jsp page. The 2-tier evaluation required three

machines. As in the 1-tier test, we used one machine to run the deployment script; then,

we dedicated one machine to each deployed tier (Apache; Ant and Tomcat).

Finally, the 3-tier application was the iBATIS JPetStore, a ubiquitous introduction to 3-

tier programming. In the 3-tier application evaluation, we used four machines. Again, we

dedicated one machine for each tier (Apache; Tomcat, JPetStore, Ant, MySQL Driver,

Struts; MySQL DB) and used a fourth machine to run the SmartFrog workflow.

Fig. 4 illustrates the dependencies of components in each testbed. We consider three

types of dependencies in the experiment; installation dependency, configuration depend-

ency, and activation dependency. The total number of dependencies in each testbed is

used as the level of the complexity. In Figure 6, 1-, 2-, and 3-tier testbeds are considered

as simple, medium, and complex cases respectively. Intuitively, the installation, configu-

ration, and activation dependencies of each component in each testbed must be sequenced.

For instance, the Apache configuration must start after Apache installation completes, and

Apache activation must start after Apache configuration completes. (For space, we have

omitted these dependencies from the figure.)

We modeled 1-, 2-, and 3-tier applications in Quartermaster with and Cauldron module

created the configurations and deployment workflows. The resultant MOF files were fed

into ACCT and yielded a set of Java class files, SmartFrog component descriptions, and a

SmartFrog instances+workflow specification for each application tested. Fig. 6 on the

following page illustrates the transformation process as ACCT translates the MOF file of

the 3-tier application to intermediate XACCT and then finally to a SmartFrog description.

For demonstration, we highlight the FS dependency between the Tomcat installation and

MySQLDriver installation and how this information is carried through the transformation

process.

3.2 Experimental Result

The metric we choose for evaluating the 1-, 2-, and 3-tier testbeds is deployment execu-

tion time as compared to manually written scripts. We executed SmartFrog and scripts 30

times each for each tier application and report the average. Fig. 5 shows that for simple

cases (1- and 2-tier) SmartFrog took marginally longer when compared to the scripts

based approach because SmartFrog daemons running in the Java VM impose extra costs

when loading Java classes or engaging in RMI communication. The trend favors Smart-

Frog as the time penalty of the medium case becomes less (in absolute and relative terms)

and for the complex case, Smart-

Frog took less time than the scripts

based approach.

In the complex case, SmartFrog

was able to exploit concurrency

between application components

since it had a computed workflow.

The simple and medium cases

contain fewer concurrent depend-

encies than the 3-tier case.

a) b) c)
Fig. 4. Dependency diagrams of (a) 1-tier, (b) 2-tier, and (c) 3-tier application.

0

100

200

300

400

500

600

700

800

900

1000

Simple(1-tier) Medium(2-tier) Complex(3-tier)

Complexity

T
im
e
 (
s
e
c
)

SmartFrog

Scripts

Fig. 5. Deployment Time using SmartFrog and scripts as a

function of the complexity.

Fig. 6. (a) MOF, (b) Intermediate XML, and (c) SmartFrog code snippets. The solid line box indicates the FS workflow between Tomcat

and MySQLDriver applications. Others indicate configurations. Clearly, MOF offers superior understandability for a deployment sce-

nario as compared to the SmartFrog specification. As Vanish et al showed in [16], automating deployment via SmartFrog, for which we

generate code, is generally superior in performance and more maintainable when compared to manual or ad hoc scripted solutions.

(a) MOF (b) XACCT (c) SmartFrog

instance of LogicalServer {

 Id = "Tomcat_LS1";

 Caption = "Tomcat Logical Server";

 Description = "Logical Server for Tomcat ";

 IpAddress = "130.207.5.228";

 HostName = "artemis.cc.gatech.edu";

};

instance of LogicalServerInLogicalApplication

{

 LogicalApplication = "Tomcat\";

 LogicalServer =Tomcat_LS1\";

};

instance of LogicalApplication {

 Id = "Tomcat";

 Version = "5.0.19";

 Caption = "Tomcat";

 Description = "Tomcat application Server";

};

instance of LogicalApplication {

 Id = "MySQLDriver";

 Version = "3.0.11";

 Caption = "MySQLDriver";

 Description = "MySQL driver";

};

instance of Activity {

 Id = "Tomcat_Installation";

 ActivityType = "script";

};

instance of Activity {

 Id = "Tomcat_Installation";

 ActivityType = "script";

};

Instance of ActivityPredecessorActivity {

 DependenceType=”Finish-Start”;

 AntecedentActivity=”Tomcat_Installation”;

 DependentActiv-

ity=”MySQLDriver_installation”;

};

 <Instance Name="Tomcat" Class="LogicalApplication">

 <Variable Name="Id"Type="string">Tom-

cat</Variable>

 <Variable Name="Version"Type="string">

 5.0.19</Variable>

 <Variable Name="Entity" Type="string">

 Activity_Tomcat_Installation</Variable>

 <Variable Name="Host" Type="string">

 artemis.cc.gatech.edu</Variable>

 </Instance>

 <Workflow>

 <Work Type=”Execution”></Work>

 <Work Type=”EventSend”>

 <To> MySQLDriver_Installation</To></Work>

 <Work Type=”Terminate”>

 Tomcat_Installation </Work>

 </Workflow>

 <Instance Name="MySQLDriver"

 Class="LogicalApplication">

 <Variable Name="Id" Type="string">

 MySQLDriver</Variable>

 <Variable Name="Version" Type="string">

 3.0.11</Variable>

 <Variable Name="Entity" Type="string">

 Activity_MySQLDriver_Installation</Variable>

 <Variable Name="Host" Type="string">

 demeter.cc.gatech.edu</Variable>

 </Instance>

 <Workflow>

 <Work Type=”OnEvent”>

 <From> Tomcat_Installation</From> </Work>

 <Work Type=”Execution”></Work>

 <Work Type=”Terminate”>

 MySQLDriver_Installation</Work>

 </Workflow>

sfProcessComponentName "Tomcat_Installation";

LogicalApplication_Tomcat extends LogicalApplication {

 Id "Tomcat";

 Version "5.0.19";

 Activity LAZY ATTRIB Activity_Tomcat_Installation;

 sfProcessHost "artemis.cc.gatech.edu";

}

Activity_Tomcat_Installation extends Activity {

 Id "Tomcat_Installation";

 Entity LAZY ATTRIB LogicalApplication_Tomcat;

}

-- extends EventSend {

 sendTo eventQueue:queue_Tomcat_Ignition;

 event "Activity_Tomcat_Installation_FS";

}

-- extends Terminator {

 kill eventQueue:queue_Tomcat_Installation;

}

sfProcessComponentName "MySQLDriver_Installation";

-- extends OnEvent {

 registerWith queue_MySQLDriver_Installation ;

 Activity_Tomcat_Installation_FS extends DoNothing

}

LogicalApplication_MySQLDriver extends LogicalApplication {

 Id "MySQLDriver";

 Version "3.0.11";

 ActivityLAZYATTRIBActivity_MySQLDriver_Installation;

 sfProcessHost "demeter.cc.gatech.edu";

}

Activity_MySQLDriver_Installation extends Activity {

 Id "MySQLDriver_Installation";

 Entity LAZY ATTRIB LogicalApplication_MySQLDriver;

}

-- extends Terminator {

 kill eventQueue:queue_MySQLDriver_Installation;

}

Nevertheless, in all cases our toolkit retains the important advantage of an automatically

generated workflow, while in scripts based approach, system administrators must manu-

ally control the order of installing, configuration, and deployment.

4 Related Work

Recent years have seen the advent of wide-ranging resource management systems. For e-

business, OGSA Grid Computing [17] aims to provide services within an on-demand data

center infrastructure. IBM’s Autonomic Computing Toolkit [1], the HP Utility Data Cen-

ter [18] and Microsoft’s DSI initiative [3] are examples of this. The distinction of our

toolkit, however, is that Cauldron logic and a theorem prover to meet resource allocation

constraints. There are several efforts related to specifying conditions and actions for poli-

cies, e.g., CIM [19] and PARLAY [20]. However, to the best of our knowledge, none of

them have used a constraint satisfaction approach for automatic resource construction.

Another trend is deployment automation tools. CFengine [22] provides rich facilities

for system administration and is specifically designed for testing and configuring soft-

ware. It defines a declarative language so that the transparency of a configuration program

is optimal and management is separate from implementation. Nix [21] is another popular

tool used to install, maintain, control, and monitor applications. It is capable of enforcing

reliable specification of component and support for multiple version of a component.

However, since Nixes does not provide automated workflow mechanism, users manually

configure the order of the deployments. For deployment of a large and complicated appli-

cation, it becomes hard to use Nixes. By comparison, SmartFrog provides control flow

structure and event mechanism to support flexible construction of workflow.

The ACCT translator adopts the Clearwater architecture developed for the Infopipe

Stub Generator + AXpect Weaver (ISG) [6, 7]. Both ACCT and ISG utilize an XML in-

termediate format that is translated by XSLT to target source code. Unlike ACCT, how-

ever, ISG is designed for creating information flow system code. There are other commer-

cial and academic translation tools, like MapForce [23] and CodeSmith [24]. Similar to

ISG, they target general code generation and do not support deployment workflows.

5 Conclusion

We outlined an approach for Automated Deployment of complex distributed applications.

Concretely, we described in detail the ACCT component (Automated Composable Code

Translator) that translates Cauldron output (in XMOF format) into a SmartFrog specifica-

tion that can be compiled into Java executables for automated deployment. ACCT per-

forms a non-trivial translation, given the differences between the XMOF and SmartFrog

models such as workflow dependencies. A demonstration application (JPetStore) illus-

trates the automated design and implementation process and translation steps, showing the

increasing advantages of such automation as the complexity of the application grows.

Acknowledgement: This work was partially supported by NSF/CISE IIS and CNS divi-

sions through grants IDM-0242397 and ITR-0219902, DARPA ITO and IXO through

contract F33615-00-C-3049 and N66001-00-2-8901, and Hewlett-Packard. We thank our

anonymous reviewers and M. Feridun for their very helpful comments.

References

1. IBM Autonomic Computing. http://www.ibm.com/autonomic.

2. SUN N1. http://www.sun.com/software/n1gridsystem/.

3. Microsoft DSI. http://www.microsoft.com/windowsserversystem/dsi/.

4. Global Grid Forum. http://www.ggf.org.

5. Sahai, A., Singhal, S., Joshi, R., Machiraju, V.: Automated Policy-Based Resource Construc-

tion in Utility Computing Environments. NOMS, 2004.

6. Swint, G. and Pu, C.: Code Generation for WSLAs using AXpect. 2004 IEEE International

Conference on Web Services. San Diego, 2004.

7. Swint, G., Pu, C., Consel, C., Jung, G., Sahai, A., Yan, W., Koh, Y., Wu, Q.: Clearwater - Ex-

tensible, Flexible, Modular Code Generation. 20th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2005.

8. SmartFrog. http://www.hpl.hp.com/research/smartfrog/.

9. Salle, M., Sahai, A., Bartolini, C., Singhal, S.: A Business-Driven Approach to Closed-Loop

Management. HP Labs Technical Report HPL-2004-205, November 2004.

10. Sahai, Akhil, Sharad Singhal, Rajeev Joshi, Vijay Machiraju: Automated Generation of Re-

source Configurations through Policies. IEEE Policy, 2004.

11. Goldsack, Patrick, Julio Guijarro, Antonio Lain, Guillaume Mecheneau, Paul Murray, Peter

Toft.: SmartFrog: Configuration and Automatic Ignition of Distributed Applications. HP Open-

view University Association conference, 2003.

12. Smartfrog open source directory. http://sourceforge.net/projects/smartfrog.

13. Peterson, Larry, Tom Anderson, David Culler, and Timothy Roscoe: A Blueprint for Introduc-

ing Disruptive Technology. PlanetLab Tech Note, PDN-02-001, July 2002.

14. CDDLM Foundation Document.

http://www.ggf.org/Meetings/ggf10/GGF10%20Documents/CDDLM_Foundation_Document_

v12.pdf.

15. WBEM project. http://wbemservices.sourceforge.net.

16. Talwar, Vanish, Dejan Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan, and Guey-

oung Jung: Comparison of Approaches to Service Deployment. ICDCS 2005.
17. Foster, Ian, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke: The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration. Globus Project, 2002.

18. HP Utility Data Center.
http://www.hp.com/products1/promos/adaptive_enterprise/us/utility.html.

19. DMTF-CIM Policy. http://www.dmtf.org/standards/cim/cim_schema_v29.

20. PARLAY Policy Management. http://www.parlay.org/specs/.

21. Dolstra, Eelco, Merijn de Jonge, and Eelco Visser: Nix: A Safe and Policy-free System for

Software Deployment. 18th Large Installation System Administration Conference, 2004.

22. Cfengine. http://www.cfengine.org/.
23. Altova Mapforce. http://www.altova.com/products_mapforce.html.

24. Codesmith. http://www.ericjsmith.net/codesmith.

