
Fast Extraction of Adaptive Change Point Based
Patterns for Problem Resolution in Enterprise Systems

Manoj K. Agarwal, Narendran Sachindran, Manish Gupta, Vijay Mann

IBM India Research Labs, Block 1, IIT campus,

Hauz Khas, New Delhi - 110016, India
{ manojkag,nsachind,gmanish,vijamann }@in.ibm.com

Abstract. Enterprise middleware systems typically consist of a large cluster of
machines with stringent performance requirements. Hence, when a performance
problem occurs in such environments, it is critical that the health monitoring
software identifies the root cause with minimal delay. A technique commonly
used for isolating root causes is rule definition, which involves specifying
combinations of events that cause particular problems. However, such
predefined rules (or problem signatures) tend to be inflexible, and crucially
depend on domain experts for their definition. We present in this paper a
method that automatically generates change point based problem signatures
using administrator feedback, thereby removing the dependence on domain
experts. The problem signatures generated by our method are flexible, in that
they do not require exact matches for triggering, and adapt as more information
becomes available. Unlike traditional data mining techniques, where one
requires a large number of problem instances to extract meaningful patterns, our
method requires few fault instances to learn problem signatures. We
demonstrate the efficacy of our approach by learning problem signatures for
five common problems that occur in enterprise systems and reliably recognizing
these problems with a small number of learning instances.

Keywords: fault localization, patterns, problem signatures, change point
detection, adaptive learning.

1 Introduction

Modern enterprise systems are often required to provide services based on service
level agreement (SLA) specifications at minimum cost. SLA breaches typically result
in a significant penalty. Performance problems in these systems usually manifest
themselves as high response times, low throughput, or a high rejection rate of
requests. However, the root cause of these problems may be due to subtle reasons
hidden in the complex stack of this execution environment. For example, badly
written application code may cause an application to hang. Network problems like
non availability of a connection between an application server and a database server
can cause critical transactions to fail. Backup processes on a machine could cause
performance degradation of servers running on that machine. Further, various
components in such systems could have inter-dependencies which may be temporal or

non-deterministic as they may change with changes in topology, application or
workload. This further complicates root cause localization.

A commonly used event correlation technique for localizing the root cause of
performance problems is rule definition 4. In rule definition, all possible root causes
are represented by rules specified as condition-action pairs. Conditions are typically
specified as logical combinations of events, and are defined by domain experts. A rule
is satisfied when a combination of events raised by the management system exactly
matches the rule condition. Rule based systems while popular, suffer from two major
drawbacks. First, they need domain experts to define rules. Second, rules are
inflexible - they require exact matches and do not adapt as the environment changes.

Automatic learning of rules has been studied earlier by Hellerstein et al. 1. They
discover patterns using association rule mining based techniques 14. They observe
that when a fault occurs, it is usually accompanied by a burst of events. Additionally,
each fault is usually associated with an event pattern. To corroborate these findings,
we performed experiments on a multi-tier application running in a cluster. We
employed change point based monitoring of performance metrics to generate alarms.
The experiments consisted of several repetitions of different faults and resulted in the
following observations:
• Certain alarms always occur when a fault occurs, resulting in a pattern that is

very indicative of the underlying fault. This core set of alarms is repeated for
every occurrence of a particular fault under different operating conditions.

• A few alarms occur repeatedly. These alarms represent innocuous events that
occur during normal operation, and will probably not help in root cause analysis.
In this paper we present a method that exploits these properties to automatically

associate patterns of change point based alarms with a given fault. Unlike earlier
approaches 1, we can learn the problem signature for a fault with a very small number
of fault instances. Our method also adaptively updates problem signatures as new
information becomes available. Additionally, our method does not assume any prior
domain-expert knowledge, and it learns effective problem signatures based only on
feedback from the system administrator. Further, the problem signatures learned by
our method are flexible and do not require exact matches to locate a root cause.

 The layout of this paper is as follows. Section 2 presents related work. Section 3
describes our learning method. Section 4 describes our system design. Section 5
presents experimental results. Section 6 discusses future work and conclusions.

2 Related Work

The most common approaches to fault localization include AI techniques 3 such as
rule-based techniques, model-based techniques, neural networks, decision trees,
model traversing techniques such as dependency graphs 511 and fault propagation
techniques 9 such as Bayesian networks and causality graphs.

As discussed in Section 1, automatic learning of rules has been studied earlier by
Hellerstein et al. 1. They discover patterns using association rule mining based
techniques 14. Additionally, each fault is usually associated with a specific pattern of
events. Association rule based techniques require a large number of sample instances
before discovering “k-itemset” 16 in a large number of events. The method presented
in this paper overcomes this limitation and is able to discover patterns with very few

fault instances. Another drawback of their technique is their reliance on pattern
periodicity. Our method does not make any such assumption.

In another closely related work 9, the authors describe an event driven fault
diagnosis technique that employs incremental learning. The authors propose
techniques to rank a fault according to a “goodness” measure that allows multiple
simultaneous faults to be identified. Fault diagnosis is incrementally improved as
more symptoms become available. Although this technique is promising, it makes an
assumption about the presence of a symptom-fault map as an input. Such a map may
not be available in an enterprise environment. Our method makes no such assumption.

Several earlier approaches have used dependency analysis for fault localization.
In 511 the authors assume that the mechanism to generate events is already in place
and the root cause analysis algorithm analyzes these events in a systematic way using
certain properties of the executing environment such as a dependency tree. Alarms
relying on static dependencies between system components may be analyzed for
problem determination 7. Katker et al. 12 also shows how the dependency graph may
be used to perform systematic analysis of a problem and identify the root cause in the
network fault management domain. In both these approaches, the authors assume the
presence of a dependency tree. These approaches may not work in dynamic enterprise
systems where dependencies are ephemeral.

Other related work 106 has focused on studying the behavior of the various
components and structural changes in the system and looking for anomalies in them.
These approaches usually isolate the problem to one system component. Thus, they
fall short of localizing the actual root cause and can only detect bottlenecks in the path
of transactions. In 10, the incoming requests are traced and the list of the components
used by several succeeded or failed requests are clustered to statistically identify the
set of failed components. In 6, an optimized set of synthetic transactions is used to
probe the system for possible problems. This technique puts additional load on the
system which may not be acceptable to customers in a production environment.
Further, constructing an optimized set of probes is an N-P hard problem.

 In 8, a combination of probing (using fault injection) and dependency analysis is
used for fault localization. Dependency information is generated by Active
Dependency Discovery (ADD). ADD builds the system dependency graph by
individually perturbing the system components during a testing phase, while fault
injection is used at run-time. This technique suffers from similar disadvantages as 6.

Rule based systems such as 4 are used to define rules, and events are generated
based on satisfaction of these rules. In classical rule based systems, rules are
specified manually and they are static in nature i.e. they do not evolve automatically.

3 Learning Methodology

In this section we describe our method for learning patterns (or problem signatures1)
corresponding to faults that occur in enterprise environments. We assume that no two
faults occur simultaneously. The learning method operates on the premise that when a
fault occurs in a system, it is usually associated with a specific pattern of events. In
our system, these events correspond to abrupt changes in performance metrics.

1 We use the terms patterns, signatures and problem signatures interchangeably in this paper.

The input to our learning method comprises of:
a. A sequence of time-stamped events representing change point based alarms that

arise from each application server in a clustered system;
b. Times of occurrence of faults at a given application server;
c. Input from a system administrator who correctly labels a fault when it occurs for

the first time, or when the method fails to detect it altogether;
d. Feedback from a system administrator to verify the correctness of our output.

The mechanism to provide the first two inputs is described in Section 4. We first
define two scores computed by our learner - co-occurrence score and relevance score,
and then describe our learning and matching algorithm.

3.1 Co-occurrence Score

Our learning method computes a co-occurrence score, or c-score, for every alarm that
is ever raised within a fixed time window around the occurrence of a fault. For a fault
F, the c-score measures the probability of an alarm A being triggered when F occurs.
The c-score is computed as follows

F
FAc

#
)&(#

=

Here)&(# FA is the number of times A is raised when F occurs and F# is the
total number of occurrences of F. The c-score for an alarm-fault pair ranges from 0 to
1. A high c-score indicates a high probability of A occurring when F occurs.

3.2 Relevance score

Our learning method computes a relevance score, or r-score, for every single alarm
that it ever encounters. The r-score for an alarm is a measure of the importance of the
alarm as a fault indicator. An alarm has high relevance if it usually occurs only when
a fault occurs. The r-score for an alarm A is computed as follows

A
FaultA

r
#

)&(#
=

where)&(# FaultA is the number of times A is raised when any fault occurs in the

system, and A# is the total number of times A has been raised so far. The r-score for
an alarm ranges from 0 to 1. Note that the r-score is a global value for an alarm i.e.
there is just one r-score for an alarm unlike the c-score which is per alarm-fault pair.
An assumption here is that the system runs in normal mode more often than it does in
faulty mode. When this is true, alarms raised regularly during normal operation have
low r-scores, while alarms raised only when faults occur have high r-scores.

3.3 Learning and Matching Algorithm

We present here our method for learning and matching fault patterns. The method
uses a pattern repository to store patterns that it learns. It starts with an empty

repository and adds patterns based on administrator feedback. If a fault occurs when
the repository is empty, our method just notifies the administrator that a fault has
occurred. After locating the root cause, the administrator provides a new fault label2.
Our method then records the alarm pattern observed around the fault, along with the
fault label, as a new signature. Each alarm in this signature is assigned a c-score of 1.

For every subsequent fault occurrence, our method uses the following procedure
in order to attempt a match with fault patterns that exist in the repository. Assume that

FS is the set of all the faults currently recorded in the repository. For each

fault FSF ∈ , let AFS represent the set of all the alarms A that form the problem

signature for F. Let each alarm A ∈ AFS have a c-score FAC | , when associated with a

fault F. Also, assume that the set of alarms associated with the currently observed
fault in the system is CS . For each fault FSF ∈ , the learner computes two values, a

degree of match and a mismatch penalty. The degree of match rewards F for every
alarm in CS that also occurs in AFS . The mismatch penalty penalizes F for every

alarm in CS that does not occur in AFS .

To compute the degree of match for a fault FSF ∈ , the learning method first

obtains an intersection set CFS - a set of alarms common to AFS and CS

CFS AFS= CSI .

It then computes the degree of match FD as follows

∑
∑

∈∀

∈∀
=

AFFA

CFFA
F SAC

SAC
D

|

|

The numerator in the above formula is the sum of the c-scores of alarms in the
intersection set CFS , and the denominator is the sum of the c-scores of alarms in AFS .

The ratio is thus a measure of how well CS matches with AFS . When a majority of

alarms (that have a high c-score) in AFS occur in CS , FD is high.

To compute the mismatch penalty for a fault FSF ∈ , the learning method first

obtains a difference set MFS - a set of alarms that are in CS but not in AFS

MFS = CS - AFS

It then computes the mismatch penalty as follows

∑
∑

∈∀

∈∀
−=

CA

MFA
F SAR

SAR
M 1

The numerator in the second term for the FM formula is the sum of the r-scores of

alarms in MFS , and the denominator is the sum of the r-scores of alarms in CS . By

definition, the r-score is high for relevant alarms and low for irrelevant alarms.
Hence, if there are mostly irrelevant alarms in MFS , the ratio in the second term would

be very low and FM would have a high value.

2 Fault labels have a one to one correspondence with problem signatures in the repository.

Using FD and FM we compute a final ranking weight FW for a fault F as,

FFF MDW *=
Once our method computes ranking weights for all faults in the repository, it presents
to the administrator a sorted list of faults with weights above a threshold. If no fault in
the repository has a weight above the threshold, it reports that there is no match.

The administrator uses this list to locate the fault causing the current performance
problem. If the actual fault is found on the list, the administrator accepts the fault.
This feedback is used by the learning method to update the c-scores for all alarms in

CS for that particular fault. If list does not contain the actual fault, the administrator

rejects the list and assigns a new label to the fault. The learner then creates a new
entry in the pattern repository, containing the alarms in CS , each with a c-score of 1.

3.4 Matching Algorithm Example

We present here an example that explains the functioning of our method. Assume that

FS is the set of faults currently in the fault repository and =FS { 321 ,, FFF }. These

faults have the following signatures stored as sets of alarm and c-score pairs.
})35.0,(),0.1,(),0.1,{(3211 AAAS AF = ,)}75.0,(),0.1,(),75.0,{(5422 AAAS AF =

)}9.0,(),0.1,(),6.0,{(7653 AAAS AF =

Suppose we now observe a fault with a set of alarms },,,{ 6421 AAAASC = .

Assume that r-scores of these alarms are 4.01 =AR , 0.12 =AR , 9.04 =AR , 45.06 =AR .

The intersection of the alarms in CS with 1AFS , 2AFS and 3AFS yields the sets

},{ 211 AASCF = , },{ 422 AASCF = and }{ 63 ASCF =

The degree of match for each problem signature is computed as

85.0
35.00.10.1

0.10.1
1 =

++

+
=FD , 7.02 =FD and 4.03 =FD

For mismatch penalties, we compute the difference of set CS from 1AFS , 2AFS , 3AFS

to obtain
 },{ 641 AASMF = , },{ 612 AASMF =

and },,{ 4213 AAASMF = .

The mismatch penalties are

51.0
45.09.00.14.0

45.09.0
11 =

+++

+
−=FM , 69.02 =FM and 16.03 =FM

The ranking weights are 43.051.0*85.01 ==FW , 48.02 =FW , 06.03 =FW . With a

weight threshold of 0.4, the output list is 2F , 1F . Note that even though 1F has a higher

degree of match than 2F , 1F is second on the list due to a higher mismatch penalty.

4 System Design

We describe here our system design for providing inputs to the learning method. The
first input required by our method is a sequence of time-stamped alarms for each
server in the cluster. For this, we monitor and sample runtime performance metrics at
each server and use change point detection techniques such as difference of means 2
to generate alarms. A learning component is implemented on each server, and a
pattern repository is shared amongst all learning components. The trigger for the
method comes from an SLA breach predictor (SBP) operating at each server.

The SBP triggers the learning method when it detects an abrupt change in
response time or throughput in the absence of any significant change in the input load
on a server. Once the learning component gets a trigger from the SBP, it fetches all
the alarms in a fixed time window around the current trigger. These alarms are then
fed to the learning method and it operates on them as described in Section 3. The
output from the learning method is a list of faults sorted in order of relevance. This
list of faults is sent to a central controller which takes one of the following actions:
a. If only one server reports a list of faults during a given time interval, a single list

is displayed to the administrator along with the name of the affected server.
b. If all running servers report a list of faults during a given time interval and the

most relevant fault is the same for all servers, it is assumed that the fault is at a
resource shared by all the servers, typically a database system. The controller
chooses the most relevant fault and displays that fault to the administrator.

c. If a subset of running servers report a list of faults during a given time interval,
this could either be caused by multiple independent faults or by a fault that
occurred on one server and has affected the runtime metrics of other servers due
to an “interference effect”. In our current design, the controller treats the two
cases in the same manner and displays the lists for all affected servers.

5 Evaluation

We describe in this section, our test-bed, three-tier application and workload
generator, system implementation, and our experimental results.

5.1 Test-bed, Application and Workload

Our test-bed consists of eight machines: one machine hosting two load generators,
two request router machines, three application server machines, a relational database
server machine, and a machine that hosts the cluster management server. The back
end servers form a cluster, and the workload arriving at the routers is distributed to
these servers based on a dynamic routing weight assigned to each server. The
machines running the back end servers have identical configurations. They have a
single 2.66GHz Pentium4 CPU and 1GB RAM. The machine running the workload
generators is identical except that it has 2GB RAM. Each of the routers have one
1.7GHz Intel Xeon CPU and 1GB RAM. The database machine has one 2.8GHz Intel

Xeon CPU and 2GB RAM. All machines run RedHat Linux Enterprise Edition 3,
kernel version 2.4.21-27.0.1.EL. The router and back end servers run the IBM
WebSphere middleware platform, and the database server runs DB2 8.1.

For our experiments, we ran Trade 6 17 on each of the servers. Trade 6 is an end-
to-end benchmark that models a brokerage application. It provides an application mix
of servlets, JSPs, enterprise beans, message-driven beans, JDBC and JMS data access.
It supports operations provided by a typical stock brokerage application.

We used IBM WebSphere Workload Simulator 18 to drive our experiments. The
workload consists of multiple clients concurrently performing a series of operations
on their accounts over multiple sessions. Each of the clients has a think time of 1
second. The actions performed by each client and the corresponding probabilities of
their invocation are: register new user (2%), view account home page (20%), view
account details (10%), update account (4%), view portfolio (12%), browse stock
quotes (40%), stock buy (4%), stock sell (4%), and logoff (4%). These values
correspond to the typical usage pattern of a trading application.

5.2 Experimental Runs

In order to perform a detailed evaluation of our learning method over a number of
parameters and fault instances, we generated traces containing the inputs required by
our method and performed an offline analysis. The only difference from an online
version is that the administrator feedback was provided as part of the experimentation.

We implemented the breach predictor as a component that resides within one of
the routers in our test-bed. It subscribed to router statistics and logged response time
information per server at a 5 second interval. Each server in the cluster also monitored
and logged performance metric information. We ran a total of 60 experiments, each of
duration one hour (45 minutes of normal operation followed by a fault). The five
faults that we randomly inserted in our system were:
• CPU hogging process at a node hosting an application server
• Application server hang (created by causing requests to sleep)
• Application server to database network failure (simulated using Linux iptables)
• Database shutdown
• Database performance problem (created either by a CPU hog or an index drop).

We maintained a constant client load during individual experiments, and varied
the load between 30 and 400 clients across experiments. After obtaining the traces for
60 experiments, the learning and matching phase involved feeding these traces to our
method sequentially. This phase presents a specific sequence of alarms to the learning
method. In order to avoid any bias towards a particular sequence of alarms, we
repeated this phase a 100 times, providing a different random ordering of the traces
each time. For all our experiments we used a c-score threshold of 0.5.

5.3 False Positives and Negatives

We first explore the performance of our learning method in terms of false positives
and negatives. We compute the false negative count as the number of times our
method does not recognize a fault. However, when our method sees a fault for the
first time, it does not count as a false negative. After completing all 100 runs, we
compute the average number of false negatives generated by our method.

False positives occur when a newly introduced fault is recognized as an existing
fault. We use the following methodology to estimate false positives. We randomly
choose a fault F and remove all traces containing F from the learning phase. We then
feed traces containing F to our method and calculate the number of times it is
recognized as an already observed fault. We repeat this procedure for each fault and
compute the average number of false positives.

Figure 1. False positives and negatives Figure 2. Precision

Figure 1 shows the average percent of false positives and false negatives
generated by our method as we vary the ranking weight threshold between 10 and
100. Recall that the ranking weight is our estimate of the confidence that a new fault
pattern matches with a pattern in our repository. Only pattern matches resulting in a
ranking weight above the threshold are displayed to the administrator.

As one would expect, when the threshold is low (20% or lower) we generate a
large number of false positives. This is because at low thresholds even irrelevant
faults are likely to generate a match. As we increase the threshold beyond 20%, the
number of false positives drops steadily, and it is close to zero at high thresholds
(80% or higher). Note that false positives are generated only when a new fault occurs
in the system. Since new faults can be considered to have relatively low occurrence
over a long run of a system, a false positive percent of 20-30% may also be acceptable
after an initial learning period. Our method generates few false negatives for
thresholds under 50%. For thresholds in the 50-70% range, false negatives range from
3-21%. Thresholds over 70% generate a high percent of false negatives.

Hence, there is a trade off between the number of false positives and negatives.
The curves for the two measures intersect when the ranking weight threshold is about
65%, and the percent of false positives and negatives is each about 13%. A good
region of operation for our method is between a weight threshold of 50-65%, with
more false positives at the lower end, and more false negatives at the higher end. An
approach that we can use to obtain good overall performance is to start our method
using a threshold close to 65%. During this initial phase, it is likely that a fault
occurring in the system will be new, and the high threshold will help in generating

few false positives. As our method learns patterns, and new faults become relatively
rare, the threshold can be lowered to 50% in order to reduce false negatives.

5.4 Precision

If a fault is always detected but usually ends up at the bottom of the list of potential
root causes, the analysis is likely to be of little use. In order to measure how
effectively our method matches new instances of known faults, we define a precision
measure. Each time our method detects a fault, we compute a precision score using

the formula
F

iF

#

)1(# −− , where #F is the number of faults in the repository, and i is the

position of the actual fault in the output list. A false negative is assigned a precision of
0, and our method is not penalized for new faults not present in the repository. We
perform 100 iterations over the traces using the random orderings described above,
and compute the average precision.

Figure 2 shows average precision values for ranking weight thresholds ranging
from 10-100. We can see that our precision score is high for thresholds ranging from
10-60%. For thresholds ranging from 10-30%, the average precision is 98.7%. At a
threshold of 50% the precision is 97%, and at a threshold of 70% the precision is
79%. These numbers correspond well with the false negative numbers presented in
the previous section, and they indicate that when the method detects a fault, it usually
places the correct fault at the top of the list of potential faults.

5.5 Rate of Learning

We demonstrate in this section a key property of our learning method – it can learn a
relevant pattern for a fault given very few instances of the fault. To evaluate the rate
at which our method learns patterns, we perform the following experiments. We first
set a learning threshold which is the maximum number of instances of a fault that our
method can use in order to learn. Any fault instances over the learning threshold are
only used to evaluate the precision of our method, and cannot be used by the learner
to update its scores. We then run our method over each fault using several values of
the learning threshold, and obtain an average precision score for each threshold value.

Figure 3 shows precision scores for three values of the learning threshold, 1, 2,
and 4. The precision values are shown for ranking weight thresholds ranging from 10-
100. We can see that when our method is provided with only a single instance of a
fault, it has precision values of about 90% when the ranking weight is 50%. This is
only about 8% worse than the best possible precision score. At a ranking weight
threshold of 70%, the precision is about 14% lower than the best possible precision.

Figure 3. Rate of Learning

This data clearly shows that our method learns patterns rapidly, with as few as
two instances of each fault required to obtain high precision. This is largely due to
two reasons. First, we use change point detection techniques to generate events and
we have found that they reliably generate unique patterns for different faults. Second,
the c-score and the r-score used by our method help us filter out spurious events.

6 Conclusions and Future work

In this paper, we presented a novel technique for discovering change point based
adaptive patterns for problem resolution in enterprise systems. We demonstrated the
efficacy of our technique by learning the problem signatures for five common faults
that occur in enterprise systems and reliably recognizing these problems with high
precision. One of the main contributions of this paper is that we discover these
patterns quickly, with few fault instances. This is a significant improvement over
traditional data mining techniques which require a large number of fault instances to
discover patterns. The patterns generated by our method are flexible, in that they do
not require exact matches for triggering. Another significant contribution of our work
is that our technique can discover adaptive patterns i.e. if a fault pattern changes over
time due to reasons such as changes in topology, workload, application version, our
method automatically updates the pattern repository with the new pattern over time.

There are a few future directions to the work presented in this paper. One of the
issues that we intend to tackle is the absence of certain alarms during the problematic
phase. The absence of a particular alarm during the problematic phase may be as
indicative of a fault as the presence of other alarms. Our method currently does not
handle cases where significantly different patterns are generated for a single fault. An
extension to our method would associate more than one pattern to a fault if there is a
significant mismatch between the patterns. Another improvement to our technique is
the use of negative feedback from the administrator. In our future research, we also
intend to include events generated by sources other than the currently monitored
performance metrics, such as event logs.

References

1. Hellerstein J. L., Ma S., Perng C.: Discovering Actionable Patterns in Event Data. IBM
Systems Journal, Vol 41, No 3, 2002.

2. Agarwal M., Gupta M., Mann V., Sachindran N., Anerousis N., Mummert L.: Problem
Determination in Enterprise Middleware Systems using Change Point Correlation of Time
Series Data. 9thIEEE/IFIP Network Operations and Management Symposium (NOMS),
Vancouver, Canada, May 2006.

3. Steinder M., Sethi A.:The present and future of event correlation: A need for end-to-end
service fault localization. SCI-2001, 5th World Multiconference on Systemics,
Cybernetics, and Informatics, Orlando, FL (July 2001), pp. 124-129

4. Appleby K., Goldszmidt G., Steinder M.: Yemanja A Layered Fault Localization System
for Multi-domain Computing Utilities. IM 2001

5. Gruschke B.: Integrated Event Management: Event Correlation Using Dependency
Graphs. DSOM 1998.

6. Brodie M., Rish I., Ma S., Odintsova N.: Active Probing Strategies for Problem Diagnosis
in Distributed Systems. IJCAI 2003

7. Gao J., Kar G., Kermani P.: Approaches to Building Self Healing Systems using
Dependency Analysis. IEEE/IFIP Network Operations and Management Symposium
(NOMS), April, 2004.

8. Brown A., Kar G., Keller A.: An Active Approach to Characterizing Dynamic
Dependencies for Problem Determination in a Distributed Environment. IM 2001.

9. Steinder M., Sethi A.: Non-deterministic Event-driven Fault Diagnosis through
Incremental Hypothesis Updating, In Integrated Network Management, VIII} (G.
Goldszmidt and J. Schonwalder (eds.)), pp. 635-648, Boston, MA: Kluwer Academic
Publishers, 2003

10. M. Y. Chen, E. Kıcıman, E. Fratkin, A. Fox, E. Brewer: Pinpoint: PD in Large, Dynamic
Internet Services, International Conference on Dependable Systems and Networks
(DSN'02), 2002.

11. Choi J., Choi M., Lee S.: An Alarm Correlation and Fault Identification Scheme Based on
OSI Managed Object Classes. IEEE International Conference on Communications,
Vancouver, BC, Canada, 1999, pp. 1547–51.

12. Katker S., Paterok M.: Fault Isolation and Event Correlation for Integrated Fault
Management. Integrated Network Management V, Chapman and Hall, May 1997.

13. Aguilera M. et.al.: Performance Debugging for Distributed Systems of Black Boxes. 19th
ACM Symposium on Operating Systems Principles, October 2003.

14. Agarwal R., Imielinski T., and Swami A.: Mining association rules between sets of items
in large databases. ACM SIGMOD Conference on Management of Data, pp. 207-216,
May 1993.

15. Agarwal M., Appleby K., Faik J., Kar G., Neogi A., Sailer A.: Threshold management for
Problem Determination in Transaction Oriented e-Commerce Systems., 9th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2005), May 2005.

16. Fu A., Kwong R., Tang J., "Mining N most interesting Itemsets" 12th International
Symposium on Methodologies for Intelligent Systems (ISMIS), Springer-Verlag, LNCS,
Charlotte, North Carolina, USA, Oct 11-14, 2000

17. IBM Trade Performance Benchmark Sample, http://www-
306.ibm.com/software/webservers/appserv/was/performance.html

18. IBM Websphere Studio Workload Simulator, http://www-
306.ibm.com/software/awdtools/studioworkloadsimulator/

