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Abstract. Enterprise middleware systems typically consist of a large cluster of 
machines with stringent performance requirements. Hence, when a performance 
problem occurs in such environments, it is critical that the health monitoring 
software identifies the root cause with minimal delay. A technique commonly 
used for isolating root causes is rule definition, which involves specifying 
combinations of events that cause particular problems. However, such 
predefined rules (or problem signatures) tend to be inflexible, and crucially 
depend on domain experts for their definition. We present in this paper a 
method that automatically generates change point based problem signatures 
using administrator feedback, thereby removing the dependence on domain 
experts. The problem signatures generated by our method are flexible, in that 
they do not require exact matches for triggering, and adapt as more information 
becomes available. Unlike traditional data mining techniques, where one 
requires a large number of problem instances to extract meaningful patterns, our 
method requires few fault instances to learn problem signatures. We 
demonstrate the efficacy of our approach by learning problem signatures for 
five common problems that occur in enterprise systems and reliably recognizing 
these problems with a small number of learning instances.  

Keywords: fault localization, patterns, problem signatures, change point 
detection, adaptive learning. 

1   Introduction 

Modern enterprise systems are often required to provide services based on service 
level agreement (SLA) specifications at minimum cost. SLA breaches typically result 
in a significant penalty. Performance problems in these systems usually manifest 
themselves as high response times, low throughput, or a high rejection rate of 
requests. However, the root cause of these problems may be due to subtle reasons 
hidden in the complex stack of this execution environment. For example, badly 
written application code may cause an application to hang. Network problems like 
non availability of a connection between an application server and a database server 
can cause critical transactions to fail. Backup processes on a machine could cause 
performance degradation of servers running on that machine. Further, various 
components in such systems could have inter-dependencies which may be temporal or 



non-deterministic as they may change with changes in topology, application or 
workload. This further complicates root cause localization.  

A commonly used event correlation technique for localizing the root cause of 
performance problems is rule definition 4. In rule definition, all possible root causes 
are represented by rules specified as condition-action pairs. Conditions are typically 
specified as logical combinations of events, and are defined by domain experts. A rule 
is satisfied when a combination of events raised by the management system exactly 
matches the rule condition. Rule based systems while popular, suffer from two major 
drawbacks. First, they need domain experts to define rules. Second, rules are 
inflexible - they require exact matches and do not adapt as the environment changes.  

Automatic learning of rules has been studied earlier by Hellerstein et al. 1. They 
discover patterns using association rule mining based techniques 14. They observe 
that when a fault occurs, it is usually accompanied by a burst of events. Additionally, 
each fault is usually associated with an event pattern. To corroborate these findings, 
we performed experiments on a multi-tier application running in a cluster. We 
employed change point based monitoring of performance metrics to generate alarms. 
The experiments consisted of several repetitions of different faults and resulted in the 
following observations: 
• Certain alarms always occur when a fault occurs, resulting in a pattern that is 

very indicative of the underlying fault. This core set of alarms is repeated for 
every occurrence of a particular fault under different operating conditions.  

• A few alarms occur repeatedly. These alarms represent innocuous events that 
occur during normal operation, and will probably not help in root cause analysis. 
In this paper we present a method that exploits these properties to automatically 

associate patterns of change point based alarms with a given fault. Unlike earlier 
approaches 1, we can learn the problem signature for a fault with a very small number 
of fault instances. Our method also adaptively updates problem signatures as new 
information becomes available. Additionally, our method does not assume any prior 
domain-expert knowledge, and it learns effective problem signatures based only on 
feedback from the system administrator. Further, the problem signatures learned by 
our method are flexible and do not require exact matches to locate a root cause.  

 The layout of this paper is as follows. Section 2 presents related work. Section 3 
describes our learning method. Section 4 describes our system design. Section 5 
presents experimental results. Section 6 discusses future work and conclusions. 

2 Related Work 

The most common approaches to fault localization include AI techniques 3 such as 
rule-based techniques, model-based techniques, neural networks, decision trees, 
model traversing techniques such as dependency graphs 511 and fault propagation 
techniques  9 such as Bayesian networks and causality graphs. 

As discussed in Section 1, automatic learning of rules has been studied earlier by 
Hellerstein et al. 1. They discover patterns using association rule mining based 
techniques 14. Additionally, each fault is usually associated with a specific pattern of 
events.  Association rule based techniques require a large number of sample instances 
before discovering “k-itemset” 16 in a large number of events.  The method presented 
in this paper overcomes this limitation and is able to discover patterns with very few 



fault instances. Another drawback of their technique is their reliance on pattern 
periodicity. Our method does not make any such assumption.  

In another closely related work 9, the authors describe an event driven fault 
diagnosis technique that employs incremental learning. The authors propose 
techniques to rank a fault according to a “goodness” measure that allows multiple 
simultaneous faults to be identified. Fault diagnosis is incrementally improved as 
more symptoms become available. Although this technique is promising, it makes an 
assumption about the presence of a symptom-fault map as an input.  Such a map may 
not be available in an enterprise environment. Our method makes no such assumption.  

Several earlier approaches have used dependency analysis for fault localization. 
In 511 the authors assume that the mechanism to generate events is already in place 
and the root cause analysis algorithm analyzes these events in a systematic way using 
certain properties of the executing environment such as a dependency tree. Alarms 
relying on static dependencies between system components may be analyzed for 
problem determination 7. Katker et al. 12 also shows how the dependency graph may 
be used to perform systematic analysis of a problem and identify the root cause in the 
network fault management domain. In both these approaches, the authors assume the 
presence of a dependency tree. These approaches may not work in dynamic enterprise 
systems where dependencies are ephemeral.  

Other related work 106 has focused on studying the behavior of the various 
components and structural changes in the system and looking for anomalies in them. 
These approaches usually isolate the problem to one system component. Thus, they 
fall short of localizing the actual root cause and can only detect bottlenecks in the path 
of transactions. In 10, the incoming requests are traced and the list of the components 
used by several succeeded or failed requests are clustered to statistically identify the 
set of failed components. In 6, an optimized set of synthetic transactions is used to 
probe the system for possible problems. This technique puts additional load on the 
system which may not be acceptable to customers in a production environment. 
Further, constructing an optimized set of probes is an N-P hard problem.  

 In 8,  a combination of probing (using fault injection) and dependency analysis is 
used for fault localization. Dependency information is generated by Active 
Dependency Discovery (ADD). ADD builds the system dependency graph by 
individually perturbing the system components during a testing phase, while fault 
injection is used at run-time. This technique suffers from similar disadvantages as 6.  

Rule based systems such as 4 are used to define rules, and events are generated 
based on satisfaction of these rules.  In classical rule based systems, rules are 
specified manually and they are static in nature i.e. they do not evolve automatically.  

3 Learning Methodology 

In this section we describe our method for learning patterns (or problem signatures1) 
corresponding to faults that occur in enterprise environments. We assume that no two 
faults occur simultaneously. The learning method operates on the premise that when a 
fault occurs in a system, it is usually associated with a specific pattern of events. In 
our system, these events correspond to abrupt changes in performance metrics.   

                                                            
1 We use the terms patterns, signatures and problem signatures interchangeably in this paper.   



The input to our learning method comprises of: 
a. A sequence of time-stamped events representing change point based alarms that 

arise from each application server in a clustered system; 
b. Times of occurrence of faults at a given application server; 
c. Input from a system administrator who correctly labels a fault when it occurs for 

the first time, or when the method fails to detect it altogether; 
d. Feedback from a system administrator to verify the correctness of our output. 

The mechanism to provide the first two inputs is described in Section 4. We first 
define two scores computed by our learner - co-occurrence score and relevance score, 
and then describe our learning and matching algorithm. 

3.1 Co-occurrence Score 

Our learning method computes a co-occurrence score, or c-score, for every alarm that 
is ever raised within a fixed time window around the occurrence of a fault. For a fault 
F, the c-score measures the probability of an alarm A being triggered when F occurs. 
The c-score is computed as follows 
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Here )&(# FA  is the number of times A is raised when F occurs and F# is the 
total number of occurrences of F.  The c-score for an alarm-fault pair ranges from 0 to 
1. A high c-score indicates a high probability of A occurring when F occurs.  

3.2 Relevance score 

Our learning method computes a relevance score, or r-score, for every single alarm 
that it ever encounters. The r-score for an alarm is a measure of the importance of the 
alarm as a fault indicator. An alarm has high relevance if it usually occurs only when 
a fault occurs.  The r-score for an alarm A is computed as follows  
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where )&(# FaultA  is the number of times A is raised when any fault occurs in the 

system, and A#  is the total number of times A has been raised so far. The r-score for 
an alarm ranges from 0 to 1. Note that the r-score is a global value for an alarm i.e. 
there is just one r-score for an alarm unlike the c-score which is per alarm-fault pair.  
An assumption here is that the system runs in normal mode more often than it does in 
faulty mode. When this is true, alarms raised regularly during normal operation have 
low r-scores, while alarms raised only when faults occur have high r-scores. 

3.3  Learning and Matching Algorithm 

We present here our method for learning and matching fault patterns. The method 
uses a pattern repository to store patterns that it learns. It starts with an empty 



repository and adds patterns based on administrator feedback. If a fault occurs when 
the repository is empty, our method just notifies the administrator that a fault has 
occurred. After locating the root cause, the administrator provides a new fault label2. 
Our method then records the alarm pattern observed around the fault, along with the 
fault label, as a new signature. Each alarm in this signature is assigned a c-score of 1. 

For every subsequent fault occurrence, our method uses the following procedure 
in order to attempt a match with fault patterns that exist in the repository. Assume that 

FS is the set of all the faults currently recorded in the repository. For each 

fault FSF ∈ , let AFS represent the set of all the alarms A that form the problem 

signature for F. Let each alarm A ∈ AFS  have a c-score FAC | , when associated with a 

fault F.  Also, assume that the set of alarms associated with the currently observed 
fault in the system is CS . For each fault FSF ∈ , the learner computes two values, a 

degree of match and a mismatch penalty. The degree of match rewards F for every 
alarm in CS  that also occurs in AFS . The mismatch penalty penalizes F for every 

alarm in CS  that does not occur in AFS . 

To compute the degree of match for a fault FSF ∈ , the learning method first 

obtains an intersection set CFS  - a set of alarms common to AFS  and CS   

CFS AFS= CSI . 

It then computes the degree of match FD  as follows 
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The numerator in the above formula is the sum of the c-scores of alarms in the 
intersection set CFS , and the denominator is the sum of the c-scores of alarms in AFS . 

The ratio is thus a measure of how well CS  matches with AFS . When a majority of 

alarms (that have a high c-score) in AFS  occur in CS , FD  is high. 

To compute the mismatch penalty for a fault FSF ∈ , the learning method first 

obtains a difference set MFS  -   a set of alarms that are in  CS   but not in AFS  

MFS = CS - AFS  

It then computes the mismatch penalty as follows 
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The numerator in the second term for the FM formula is the sum of the r-scores of 

alarms in MFS , and the denominator is the sum of the r-scores of alarms in CS . By 

definition, the r-score is high for relevant alarms and low for irrelevant alarms. 
Hence, if there are mostly irrelevant alarms in MFS , the ratio in the second term would 

be very low and FM would have a high value.  

                                                            
2 Fault labels have a one to one correspondence with problem signatures in the repository. 



Using FD  and FM  we compute a final ranking weight FW  for a fault F as, 

FFF MDW *=  
Once our method computes ranking weights for all faults in the repository, it presents 
to the administrator a sorted list of faults with weights above a threshold. If no fault in 
the repository has a weight above the threshold, it reports that there is no match. 

The administrator uses this list to locate the fault causing the current performance 
problem. If the actual fault is found on the list, the administrator accepts the fault. 
This feedback is used by the learning method to update the c-scores for all alarms in  

CS  for that particular fault. If list does not contain the actual fault, the administrator 

rejects the list and assigns a new label to the fault. The learner then creates a new 
entry in the pattern repository, containing the alarms in CS , each with a c-score of 1. 

3.4 Matching Algorithm Example 

We present here an example that explains the functioning of our method. Assume that  

FS  is the set of faults currently in the fault repository and =FS { 321 ,, FFF }. These 

faults have the following signatures stored as sets of alarm and c-score pairs. 
})35.0,(),0.1,(),0.1,{( 3211 AAAS AF = , )}75.0,(),0.1,(),75.0,{( 5422 AAAS AF =

)}9.0,(),0.1,(),6.0,{( 7653 AAAS AF =  

Suppose we now observe a fault with a set of alarms },,,{ 6421 AAAASC = . 

Assume that r-scores of these alarms are 4.01 =AR , 0.12 =AR , 9.04 =AR , 45.06 =AR . 

The intersection of the alarms in CS with 1AFS , 2AFS and 3AFS yields the sets 

},{ 211 AASCF = , },{ 422 AASCF =  and }{ 63 ASCF =  

The degree of match for each problem signature is computed as 
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=FD , 7.02 =FD and 4.03 =FD  

For mismatch penalties, we compute the difference of set CS from 1AFS , 2AFS , 3AFS
 

to obtain
 },{ 641 AASMF = , },{ 612 AASMF =  

and },,{ 4213 AAASMF = .  

The mismatch penalties are 

51.0
45.09.00.14.0

45.09.0
11 =
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+
−=FM , 69.02 =FM  and 16.03 =FM  

The ranking weights are 43.051.0*85.01 ==FW , 48.02 =FW , 06.03 =FW . With a 

weight threshold of 0.4, the output list is 2F , 1F . Note that even though 1F  has a higher 

degree of match than 2F , 1F  is second on the list due to a higher mismatch penalty.  



4 System Design 

We describe here our system design for providing inputs to the learning method. The 
first input required by our method is a sequence of time-stamped alarms for each 
server in the cluster. For this, we monitor and sample runtime performance metrics at 
each server and use change point detection techniques such as difference of means 2 
to generate alarms. A learning component is implemented on each server, and a 
pattern repository is shared amongst all learning components. The trigger for the 
method comes from an SLA breach predictor (SBP) operating at each server.   

The SBP triggers the learning method when it detects an abrupt change in 
response time or throughput in the absence of any significant change in the input load 
on a server.  Once the learning component gets a trigger from the SBP, it fetches all 
the alarms in a fixed time window around the current trigger. These alarms are then 
fed to the learning method and it operates on them as described in Section 3. The 
output from the learning method is a list of faults sorted in order of relevance. This 
list of faults is sent to a central controller which takes one of the following actions: 
a. If only one server reports a list of faults during a given time interval, a single list 

is displayed to the administrator along with the name of the affected server. 
b. If all running servers report a list of faults during a given time interval and the 

most relevant fault is the same for all servers, it is assumed that the fault is at a 
resource shared by all the servers, typically a database system. The controller 
chooses the most relevant fault and displays that fault to the administrator.  

c. If a subset of running servers report a list of faults during a given time interval, 
this could either be caused by multiple independent faults or by a fault that 
occurred on one server and has affected the runtime metrics of other servers due 
to an “interference effect”. In our current design, the controller treats the two 
cases in the same manner and displays the lists for all affected servers. 

5 Evaluation 

We describe in this section, our test-bed, three-tier application and workload 
generator, system implementation, and our experimental results. 

5.1 Test-bed, Application and Workload 

Our test-bed consists of eight machines: one machine hosting two load generators, 
two request router machines, three application server machines, a relational database 
server machine, and a machine that hosts the cluster management server. The back 
end servers form a cluster, and the workload arriving at the routers is distributed to 
these servers based on a dynamic routing weight assigned to each server. The 
machines running the back end servers have identical configurations. They have a 
single 2.66GHz Pentium4 CPU and 1GB RAM. The machine running the workload 
generators is identical except that it has 2GB RAM. Each of the routers have one 
1.7GHz Intel Xeon CPU and 1GB RAM. The database machine has one 2.8GHz Intel 



Xeon CPU and 2GB RAM. All machines run RedHat Linux Enterprise Edition 3, 
kernel version 2.4.21-27.0.1.EL. The router and back end servers run the IBM 
WebSphere middleware platform, and the database server runs DB2 8.1. 

For our experiments, we ran Trade 6 17 on each of the servers. Trade 6 is an end-
to-end benchmark that models a brokerage application. It provides an application mix 
of servlets, JSPs, enterprise beans, message-driven beans, JDBC and JMS data access. 
It supports operations provided by a typical stock brokerage application. 

We used IBM WebSphere Workload Simulator 18 to drive our experiments. The 
workload consists of multiple clients concurrently performing a series of operations 
on their accounts over multiple sessions. Each of the clients has a think time of 1 
second. The actions performed by each client and the corresponding probabilities of 
their invocation are: register new user (2%), view account home page (20%), view 
account details (10%), update account (4%), view portfolio (12%), browse stock 
quotes (40%), stock buy (4%), stock sell (4%), and logoff (4%). These values 
correspond to the typical usage pattern of a trading application. 

5.2 Experimental Runs 

In order to perform a detailed evaluation of our learning method over a number of 
parameters and fault instances, we generated traces containing the inputs required by 
our method and performed an offline analysis. The only difference from an online 
version is that the administrator feedback was provided as part of the experimentation. 

We implemented the breach predictor as a component that resides within one of 
the routers in our test-bed. It subscribed to router statistics and logged response time 
information per server at a 5 second interval. Each server in the cluster also monitored 
and logged performance metric information. We ran a total of 60 experiments, each of 
duration one hour (45 minutes of normal operation followed by a fault). The five 
faults that we randomly inserted in our system were:  
• CPU hogging process at a node hosting an application server 
• Application server hang (created by causing  requests to sleep) 
• Application server to database network failure (simulated using Linux iptables) 
• Database shutdown 
• Database performance problem (created either by a CPU hog or an index drop).   

We maintained a constant client load during individual experiments, and varied 
the load between 30 and 400 clients across experiments. After obtaining the traces for 
60 experiments, the learning and matching phase involved feeding these traces to our 
method sequentially. This phase presents a specific sequence of alarms to the learning 
method. In order to avoid any bias towards a particular sequence of alarms, we 
repeated this phase a 100 times, providing a different random ordering of the traces 
each time. For all our experiments we used a c-score threshold of 0.5. 



5.3 False Positives and Negatives 

We first explore the performance of our learning method in terms of false positives 
and negatives. We compute the false negative count as the number of times our 
method does not recognize a fault. However, when our method sees a fault for the 
first time, it does not count as a false negative. After completing all 100 runs, we 
compute the average number of false negatives generated by our method. 

False positives occur when a newly introduced fault is recognized as an existing 
fault. We use the following methodology to estimate false positives. We randomly 
choose a fault F and remove all traces containing F from the learning phase. We then 
feed traces containing F to our method and calculate the number of times it is 
recognized as an already observed fault. We repeat this procedure for each fault and 
compute the average number of false positives. 

 

Figure 1.  False positives and negatives           Figure 2.  Precision 

Figure 1 shows the average percent of false positives and false negatives 
generated by our method as we vary the ranking weight threshold between 10 and 
100. Recall that the ranking weight is our estimate of the confidence that a new fault 
pattern matches with a pattern in our repository. Only pattern matches resulting in a 
ranking weight above the threshold are displayed to the administrator. 

As one would expect, when the threshold is low (20% or lower) we generate a 
large number of false positives. This is because at low thresholds even irrelevant 
faults are likely to generate a match. As we increase the threshold beyond 20%, the 
number of false positives drops steadily, and it is close to zero at high thresholds 
(80% or higher). Note that false positives are generated only when a new fault occurs 
in the system. Since new faults can be considered to have relatively low occurrence 
over a long run of a system, a false positive percent of 20-30% may also be acceptable 
after an initial learning period. Our method generates few false negatives for 
thresholds under 50%. For thresholds in the 50-70% range, false negatives range from 
3-21%. Thresholds over 70% generate a high percent of false negatives.  

Hence, there is a trade off between the number of false positives and negatives. 
The curves for the two measures intersect when the ranking weight threshold is about 
65%, and the percent of false positives and negatives is each about 13%. A good 
region of operation for our method is between a weight threshold of 50-65%, with 
more false positives at the lower end, and more false negatives at the higher end. An 
approach that we can use to obtain good overall performance is to start our method 
using a threshold close to 65%.  During this initial phase, it is likely that a fault 
occurring in the system will be new, and the high threshold will help in generating 



few false positives. As our method learns patterns, and new faults become relatively 
rare, the threshold can be lowered to 50% in order to reduce false negatives.  

5.4 Precision 

If a fault is always detected but usually ends up at the bottom of the list of potential 
root causes, the analysis is likely to be of little use.  In order to measure how 
effectively our method matches new instances of known faults, we define a precision 
measure. Each time our method detects a fault, we compute a precision score using 

the formula
F

iF

#

)1(# −− , where #F is the number of faults in the repository, and i is the 

position of the actual fault in the output list. A false negative is assigned a precision of 
0, and our method is not penalized for new faults not present in the repository. We 
perform 100 iterations over the traces using the random orderings described above, 
and compute the average precision.  

Figure 2 shows average precision values for ranking weight thresholds ranging 
from 10-100. We can see that our precision score is high for thresholds ranging from 
10-60%. For thresholds ranging from 10-30%, the average precision is 98.7%. At a 
threshold of 50% the precision is 97%, and at a threshold of 70% the precision is 
79%. These numbers correspond well with the false negative numbers presented in 
the previous section, and they indicate that when the method detects a fault, it usually 
places the correct fault at the top of the list of potential faults. 

5.5 Rate of Learning 

We demonstrate in this section a key property of our learning method – it can learn a 
relevant pattern for a fault given very few instances of the fault. To evaluate the rate 
at which our method learns patterns, we perform the following experiments. We first 
set a learning threshold which is the maximum number of instances of a fault that our 
method can use in order to learn. Any fault instances over the learning threshold are 
only used to evaluate the precision of our method, and cannot be used by the learner 
to update its scores. We then run our method over each fault using several values of 
the learning threshold, and obtain an average precision score for each threshold value. 

Figure 3 shows precision scores for three values of the learning threshold, 1, 2, 
and 4. The precision values are shown for ranking weight thresholds ranging from 10-
100. We can see that when our method is provided with only a single instance of a 
fault, it has precision values of about 90% when the ranking weight is 50%. This is 
only about 8% worse than the best possible precision score. At a ranking weight 
threshold of 70%, the precision is about 14% lower than the best possible precision.  

 



 

Figure 3.  Rate of Learning 

This data clearly shows that our method learns patterns rapidly, with as few as 
two instances of each fault required to obtain high precision. This is largely due to 
two reasons. First, we use change point detection techniques to generate events and 
we have found that they reliably generate unique patterns for different faults. Second, 
the c-score and the r-score used by our method help us filter out spurious events. 

6 Conclusions and Future work 

In this paper, we presented a novel technique for discovering change point based 
adaptive patterns for problem resolution in enterprise systems. We demonstrated the 
efficacy of our technique by learning the problem signatures for five common faults 
that occur in enterprise systems and reliably recognizing these problems with high 
precision. One of the main contributions of this paper is that we discover these 
patterns quickly, with few fault instances. This is a significant improvement over 
traditional data mining techniques which require a large number of fault instances to 
discover patterns. The patterns generated by our method are flexible, in that they do 
not require exact matches for triggering.  Another significant contribution of our work 
is that our technique can discover adaptive patterns i.e. if a fault pattern changes over 
time due to  reasons such as changes in topology, workload, application version, our 
method automatically updates the pattern repository with the new pattern over time.  

There are a few future directions to the work presented in this paper.  One of the 
issues that we intend to tackle is the absence of certain alarms during the problematic 
phase. The absence of a particular alarm during the problematic phase may be as 
indicative of a fault as the presence of other alarms. Our method currently does not 
handle cases where significantly different patterns are generated for a single fault.  An 
extension to our method would associate more than one pattern to a fault if there is a 
significant mismatch between the patterns. Another improvement to our technique is 
the use of negative feedback from the administrator. In our future research, we also 
intend to include events generated by sources other than the currently monitored 
performance metrics, such as event logs.  
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