
Conflict Prevention via Model-driven Policy

Refinement

Steven Davy
1
, Brendan Jennings

1
, and John Strassner

2

1 Telecommunication Software & Systems Group,

Waterford Institute of Technology, Cork Road, Waterford, Ireland

{sdavy, bjennings}@tssg.org
2 Motorola Labs, Chicago, IL, USA

john.strassner@motorola.com

Abstract. This paper describes an approach for application specific conflict

prevention based on model-driven refinement of policies prior to deployment.

Central to the approach is an algorithm for the retrieval of application-specific

data from an information model relating to the subject and targets of a given

policy. This algorithm facilitates the linkage of policies loosely defined at a

high level of abstraction to detailed behavioural constraints specified in the

information model. Based on these constraints policies are then modified so that

conflicts with other deployed policies can be readily identified using standard

policy conflict detection techniques. This approach enables policy enforcement

to be cognisant of application specific constraints, thereby resulting in a more

trustworthy and dependable policy based management system.

1 Introduction

This paper presents an approach for refinement of newly created or modified policies

so that application specific conflicts with already deployed policies can be readily

prevented. We propose the use of a policy analyser that can interrogate an information

model containing detailed information about the system for which policy is being

defined, and use this information to refine the high level policy into a policy

embodying information regarding system constraints its actions may be subject to.

This paper describes the operation of a policy analyser, and a prototype

implementation demonstrating its use in a policy based management system. The

paper is structured as follows. §2 discusses current work on policy conflict detection

and prevention, and on methods for analysing information contained within an

information model. §3 presents an architecture for policy conflict prevention and

specifies the algorithms for retrieval of relevant information and policy refinement.

Our prototype implementation is described in §4, whilst its operation in an

experimental test bed is described in §5. Finally, §6 summaries the paper and outlines

topics for future work.

2 Davy, Jennings, Strassner

2 Related Work

This section discusses published work in the domains of policy conflict analysis and

information model processing.

2.1 Policy Conflict Analysis

Policy conflict detection and resolution is a necessary component of any Policy Based

Management System (PBMS). A PBMS must employ a facility to verify that newly

created or modified policies conform to intended system behaviour before they can be

deployed. From the perspective of our approach, a policy conflict can be seen to be a

potential occurrence of unintended behaviour within the PBMS. This can manifest

itself in many forms. Most have been documented by Charalambides, et al. [1], who

categorise conflicts as domain independent or application specific. Domain

independent conflict analysis can be carried out by offline processes that indicate

whether conflicts will definitely occur or may occur in a specific context. If we can

detect the conditions in which a conflict can occur, then we can resolve the conflict by

either modifying or removing one or more conflicting policies. The issue, of course, is

if we have enough knowledge to detect all conditions in which a conflict can occur.

For example, if conflicts are known at design time, then one can devise strategies to

deal with them. However, in networking, one often encounters conflicts at run-time

which were not envisaged during the design period. Hence, the challenge is to design

a robust conflict detection approach that can deal with unforeseen situations.

Detection of application specific conflicts requires more information about the

system for which policies are being defined. In [2] the authors augment the PBMS

with extra information, expressed as rules relating to the managed entities. These

rules are triggered when an application specific conflict is about to occur; such

conflicts are resolved based on specific resolution policies associated with each of

these rules. This approach depends on the policy author both being able to specify

system constraints that policies must adhere to, and being able to translate these

constraints into the appropriate custom rule format. In [13] Shankar and Campbell use

pre-conditions and post conditions to describe the effects specific actions will have on

a system, they use this axiomatised rule-actions to help in the conflict prediction

process. These again have to be encoded into the policies to be effective.

2.2 Information model processing

An Information Model is a representation of managed entities, concepts and their

relationships independent of platform, language, and protocol. Information models

play a central role in network management and considerable efforts have been

expended on the specification of standard information models. One of the more

mature standards is the TM-Forum’s Shared Information and Data Model, which is

closely related to DEN-ng [3]. One of the main advantages of DEN-ng is its extensive

use of patterns and abstractions (such as roles) to allow behaviour to be defined and

 Conflict Prevention via Model-driven Policy Refinement 3

orchestrated over the associated components of the system being described. Use of an

information model of a system to aid in policy based management is also described in

[4], aimed at managing specifically IP networks, and more recently towards

autonomic communication networks [5].

For model-driven policy refinement we are specifically interested in efficient

retrieval of relevant information from a system model. For UML-based models like

SID/DEN-ng a number of approaches for information retrieval exist. One such

method described in [11] details how the UML artefacts used to build a class diagram

describing an information model can be translated to an ontology where it is

represented in OWL (Web Ontology Language). This ontology can then be reasoned

over and queried using semantic web technologies. A benefit of this approach is the

ability to use existing ontologies to expand the information model such as linking to

user profiles.

 Another approach would be to translate the UML into an XML format such as

XMI (XML Metadata Interchange) [8] where it can be efficiently queried over using

XQuery. XQuery provides an efficient method of querying repositories of XML

documents within an XML database. Meier [9] describes the performance of such an

XML database called eXist, where test documents of about 40 Megabytes can be

efficiently queried. Information model repositories generated from UML to XMI are

not expected to reach this size.

3 Description of Approach

Model-driven policy conflict prevention is the process of refining newly created or

modified policies so that conflicts with already deployed policies can be readily

detected using standard policy conflict detection approaches. Policy refinement in this

context involves the specification of additional condition clauses within the policy,

which subsequently allows the detection of conflicts with other policies that would

otherwise have gone undetected by standard policy conflict detection algorithms.

More specifically, in cases where system information models describe constraints

relating to the operation of managed entities, relevant policies can be augmented with

conditions reflecting these constraints, so that they will not be enforced in a manner

that results in these constraints being violated. System constraints in the information

model are defined by the system architect who has expert knowledge in the

functionality of the system being modelled. These system constraints may come in the

form of action pre-conditions, invariants, or post-conditions. However the policy

authors, be they business analysts or network administrators, have vastly differently

views of the system for which they are defining policy. Therefore they have an

incomplete view of the system as a whole. System constraints defined within the

information model can help bridge this gap by supplying implicit knowledge not

usually available to the policy authoring process. Our approach is to introduce an

automated policy refinement process which obviates the need for policy authors to be

cognisant of the detailed constraints on system operation, but which outputs policies

that are sufficiently well specified that policy conflict detection processes can be

4 Davy, Jennings, Strassner

effective and efficient. Our approach is primarily concerned with action

pre-conditions or action constraints.

3.1 PBMS Architecture Incorporating Policy Conflict Prevention

Fig. 1. illustrates a PBMS architecture incorporating model-driven conflict

prevention. We now briefly describe the role of the Policy GUI, the information

model and the Policy Analyser. The Policy GUI is the interface used by policy

authors who are primarily concerned with ensuring that services and resources are

managed in a manner consistent with business objectives and goals. Policy authors

are likely to be business analysts who define or modify policies relating to particular

customers and their access to the services provided by the network. They are unlikely

to have the detailed knowledge of the network required to specify policies at the level

of detail required for easy detection of conflicts with other deployed policies.

The information model describes, in a platform independent manner, the

characteristics and behaviour of the different managed entities comprising the

managed environment, as a set of related model elements. Model elements include

classes, attributes, relationships, constraints, and other artefacts. For example, the

information model will describe which customers can use which services where and

how. Constraints within the information model can be described using a constraint

language like the Object Constraint Language (OCL) [7]. OCL specifies constraints

using invariants, pre-conditions and post conditions associated with all attributes,

associations and operations on each modelled class.

Policies created or modified by policy authors are expressed in strict accordance

with the terms used in the information model, since the policy GUI is tightly coupled

to the information model, as described in [5]. Once created/modified policies are

passed to the Policy Analyser, which takes their subjects and/or targets and queries

the information model for relationships (and constraints on these relationships) for

these subjects/targets. Using relationship and constraint information it is possible to

assess more precisely those circumstances in which the policy actions should be

invoked. To achieve this, the Policy Analyser employs an algorithm that retrieves the

relevant relationships and constraints from the information model given an arbitrary

Fig. 1. PBMS Architecture incorporating model-driven conflict prevention.

 Conflict Prevention via Model-driven Policy Refinement 5

policy defined in accordance with that information model. Such an algorithm is

specified in §3.2 below.

3.2 Policy Action Constraint Retrieval Algorithm

In specifying an algorithm for policy action constraint retrieval we firstly assume that

policies specify the policy subject using the terms used in the information model (e.g.

there must be a one-to-one, or one-to-many, mapping between a policy subject and a

class in a UML based model). The target(s) of the policy, if included, must also be

similarly specified. If the target is not specified explicitly, it must be possible to infer

it from the information model by examining the relationships between the subject and

the actions. Finally, policy actions must map to relationships between those model

artefacts representing the policy subjects/targets.

Given these assumptions the algorithm outlined in Fig.2 provides a means of

discovering the relevant policy action constraints based on model artefacts and their

relationships.

3.3 Policy Refinement Algorithm

Once the associated relationships and constraints have been retrieved, the original

policy needs to be refined. As there may be multiple action constraints to be added

into the policy, they must first be checked against each other so that the resulting

policy action constraints do not logically contradict. An example of this would be if

two constraints were added to a policy specifying that the action may only be

performed during daytime hours, and another constraint specifying that the action

may only be performed during night time hours. This type of rule contradiction will

cause the policy not be enforced at anytime, and so the policy can not be refined and

Inputs [Policy]

Outputs [Relationships and Constraints]

List Subjects defined in Policy

List Targets defined in Policy

List Actions defined in Policy

For every element of Subjects

Subject Managed Entities = Look up the corresponding Class

descriptions from the Information Model

For every element of Targets

Target Managed Entities = Look up the corresponding Class

descriptions from the Information Model

For every element of Target Managed Elements,

If there is an Action requested by the Subject Managed Entity

define within the Target Managed Entity that matches the

Action in the Policy then add the pre-conditions of this

action to the relationships and constraints list.

Return (Relationships and Constraints)

Fig.2. Policy Action Constraint Retrieval Algorithm

6 Davy, Jennings, Strassner

is invalid against the referenced information model. The constraints must also be

checked against existing policy conditions for completeness.

4 Prototype Implementation

The prototype implementation, depicted in Fig.4., will now be described. The Policy

GUI is developed in Java, and enables the policy author to create high level policy

using context sensitive drop down menus. A detailed description of this GUI can be

found in [5]. The options available to the policy author are limited to the entities

describe in the information model, so that subject, targets and actions must be

specified in the information model before they can be used to define policies. The

policies output from the GUI are defined from the view the policy author has of the

managed system. This allows the policy author to only be concerned with authoring

policy appropriate to his level of knowledge, while enabling the policy analyser to

develop more specific instances of this policy.

The Policy Analyser is a Java process that is invoked on every new or modified

policy. Access to the information model is performed by processing a set of XML

files that represent the information model. The information model is initially

described using a UML class diagram editor, and is exported to an XMI [8] format.

XMI is the OMGs (Object Management Group) standard format for describing UML

diagrams, however only the class diagram aspects of the standard are of interest for

the moment. The information model constraints are defined in a separate OCL file.

The OCL constraints are translated from managed entities action pre-conditions into

policy conditions that can be understood by the policy repository and policy analyser

via Kent OCL library [10]. This library provides java class implementation of OCL

constraints that can be evaluated in real-time. The policy repository takes two forms;

policies are stored in an XML format for query and retrieval using eXist XML

database for storage and XQuery for searching; they are also stored in a JBoss rules

engine in working memory, where reasoning over policies is performed. Policies

Inputs [(Relationships and Constraints); Policy Conditions]

Outputs [newPolicy]

For every Relationship select PolicyAction.PreConditionsConstraint

A Pre Condition Constraint is selected from each Relationship
and tested against all previously selected Constraints

 For each Constraint in Constraints and Policy Conditions

If newConstraint AND Constraint

is a Logical Contradiction

 Then

The Condition Clause of the Policy will never be

satisfied and the algorithm is aborted

Else

 Add newConstraint to the list of Constraints

Combine the resulting list of constraints to the Policy Conditions as

new conditions

Return newPolicy

Fig.3. Policy Refinement Algorithm

 Conflict Prevention via Model-driven Policy Refinement 7

stored in the JBoss rules engine [12] are encoded as Java Bean objects, so a simple

policy class hierarchy is used. The JBoss rules engine also holds a runtime

representation of the data defined in the information model, such at router information

and link information which is updated at regular intervals.

Some simple policy types are defined such as permit, obligation, and refrain.

Policies added to the JBoss rule engine can be rapidly reasoned over to discover

whether there are any domain independent conflicts, such as a conflict of modality.

The rule engine can also detect if two policies referring to the same action and target

will potentially cause a conflict when the conditions are satisfied.

The system being managed is simulated with OPNET, allowing for flexibility at

the network level where it is easy to modify the underlying network scenario. PDPs

receive updated policy and enforce it through the simulated PEPs. A more detailed

description of the simulated system is provided in [5].

5 Scenario and Results

This section describes a scenario where there are two customer networks subscribed

to services provided by a single Internet Service Provider (ISP). Our ISP has defined

a simple information model (using a subset of DEN-ng) and policies as follows.

5.1 High Level Policies and Information Model

The policies will describe the conditions as to when a certain customer is permitted to

request provision of RTP (Real Time Protocol) traffic for its usage.

There may be several similar policies defined for other customers of the system

where they too are permitted to request the allocation of bandwidth. There may also

be policies defined not by the business user but by the network administrator that will

also require the allocation of bandwidth. When the defined policy in Fig.5 is enforced,

the core network will modify the PHB (per hop behaviour) of the edge and core

routers to reflect the provision of the requested service. We can see this interaction

Fig. 4. Prototype Implementation

8 Davy, Jennings, Strassner

modelled in the information model in Fig. 6 below. As Fig. 6 shows, a customer can

subscribe to the RTP service which uses resources such as the EdgeRouter and the

CoreRouter.

Focussing on the RouterLink managed entity; there are two operations available

for this scenario – allocation and deallocation of bandwidth. We will now discuss the

former, as the latter is very similar. AllocateBW() will instruct the nested core and

edge routers to configure their PHBs to reflect the request. As there are always

limited resources on the network, we cannot keep calling AllocateBW() and expect

bandwidth to be always available to allocate. OCL is used to define the semantics of

these attributes and the following OCL is attached to the AllocateBW() operation to

constrain its use concerning how bandwidth can be allocated.

context RouterLink::AllocateBW(ToS:Integer, amount:Real)

pre perserveBWLimit: self.currentBW + amount <self.maxBW

When the original policy is run through the policy analyser it is refined with

information describing more accurately when the policy should be actually enforced.

The algorithm defined in Fig.2 is implemented as a set of XQuery functions where the

policy document is input. For example the subjects of the policy can be discovered

using the XQuery terminology, doc(“policy.xml”)/policy/subject/@type, which

will return a type represented by the subject mention in the policy. Similar statements

can retrieve the targets and actions of the policy. XQuery is also used to query the

<policy name=”WITServicePolicy” type=”permit”>

 <subject type=”Customer”>WIT</subject>

 <event type=”From”>09:00</event>

 <event type=”To”>17:00</event>

 <event type=”Trigger”>RequestRTPSession</event>

 <operation>

 <target type=”RouterLink”/>

 <action type=”AllocateBW”>

 <param name=”grade” value=”1”/>

<param name=”amount” value =”5Mbps”/>

 </action>

 </operation>

 <condition/>

</policy>

<policy name=”TSSGServicePolicy” type=”permit”>

 <subject type=”Customer”>TSSG</subject>

 <event type=”From”>08:00</event>

 <event type=”To”>16:00</event>

 <event type=”Trigger”>RequestRTPSession</event>

 <operation>

 <target type=”RouterLink”/>

 <action type=”AllocateBW”>

 <param name=”grade” value=”1”/>

 <param name=”amount” value =”4Mbps”/>

 </action>

 </operation>

 <condition/>

 </policy>

Fig.5. High Level Policies

 Conflict Prevention via Model-driven Policy Refinement 9

XMI representing the information model. To look up a class entity’s id the query

below can be used.

for $x in doc("InfoModel.xmi")//*[@name]

where (compare(name($x),'UML:Class') = 0) and (compare($x/@name,

'Service') = 0)

return string($x/@xmi.id)

Once we have the id of the policy entities we can then discover further

associations, and relationships between other entities using the information model.

The algorithm finishes with selecting the appropriate OCL from the OCL files; this is

easily carried out because every OCL statement includes a context mentioning the

<policy name=”WITServicePolicy” type=”permit”>

 <subject type=”Customer”>WIT</subject>

 <event type=”From”>09:00</event>

 <event type=”To”>17:00</event>

 <event type=”Trigger”>RequestRTPSession</event>

 <operation>

 <target type=”RouterLink”/>

 <action type=”AllocateBW”>

 <param name=”grade” value=”1”/>

 <param name=”amount” value =”5Mbps”/>

 </action>

 </operation>

<condition>RouterLink.currentBW + 5 < RouterLink.maxBW</condition>

</policy>

Fig. 7. Modified Policy

CustomerService

Relationship

Customer

Resource Service

CoreToCoreLink

EdgeRouterCoreRouter

EdgeToCoreLink

RouterLink

currentBW : Double

maxBW : Double

AllocateBW()

DeallocateBW()

RTPServiceRouter

ServiceRouter

Relationship

usesResources

modifiesPHBs

subscribesToService

Fig.6. Den-ng Subset Information Model

10 Davy, Jennings, Strassner

reference class and actions it is constraining. The Kent OCL library then processes the

OCL and generates the extra policy conditions required to refine the associated

policy. The policy in Fig.7. is a refined policy from Fig.5.

The policy defined in Fig.7 describes an extra condition of which the original

policy author would not be aware. The clause is evaluated in real-time when the

policies are being processed to see if they apply at the current situation. This new

information will further constrain when the policy will be valid. The Kent OCL

library generates a java bean that will evaluate this condition for the JBoss rule engine

during analysis and at runtime.

5.2 Policy Enforcement

Suppose that the two original policies were deployed to the system, and currently the

currentBW and maxBW of the related RouterLinks are 0.0Mbps and 8.0Mbps

respectively. An event of type Request RTP is initiated by the customer WIT at

approximately 08:15am. This event triggers the enforcement of the relevant policies

allocating 5Mbps of bandwidth over the related RouterLinks (first policy enforcement

in Fig. 8.). An event of type Request RTP is then initiated by the customer TSSG at

approximately 9:40am (second policy enforcement in Fig. 8.). This triggers an

attempt to allocate a further 4Mbps of bandwidth on the related links. However an

application specific conflict occurs that was not detected previously, whereby more

bandwidth is being allocated than is available. The effects of allowing this conflict to

go “untreated” are unpredictable, as the situation is not catered for. From Fig.8 we see

that the allowable capacity of the core link is 8 Mbps, and as the new RTP session

was allowed, it can only be partially met. Also, this will adversely affect other

existing sessions.

Now suppose the original policies were analysed and refined to reflect the

Fig. 8. Application Conflict Illustration

 Conflict Prevention via Model-driven Policy Refinement 11

constraints specified within the information model. The policy information added in

Fig.7 is added to both policies. In this updated scenario, the first event still succeeds,

but the second event does not trigger the permit policy and is discarded, as the policy

will not meet all of its conditions. Specifically, when the condition clause of the

policy is checked, it is evaluated to false because the currentBW plus the requested

bandwidth exceeds the maxBW of the related RouterLinks.

6 Conclusions and Future Work

Policy conflict situations, when not catered for, will allow the system being managed

to produce unpredictable behaviour. This is an undesirable scenario for potential ISPs

looking to employ policy based management to control the behaviour of their

network. This paper introduces an architecture and prototype implementation that

refines high level business policies with application specific information so that

conflicts can be readily detected. This form of conflict prevention is made possible

using an information model defined over the services and resources of the system,

where the constraints of the system are defined by a domain expert. Algorithms that

process a policy in order to retrieve constraint information and subsequently refine the

policy are defined and implemented. A model-driven approach to refining policies

towards conflict prevention frees the business user from being concerned with the

behavioural details of the core network, and introduces a level of safety and

dependability into the system. One potential downside is that certain business policies

may not be enforced as originally described, thus provision of appropriate feedback to

the policy author would be desirable.

Future work will be focused on developing our algorithm to be used with existing

policy languages and policy based management systems such as Ponder [6]. We also

intend on developing a richer information model along with a set of obligation, permit

and refrain policies to investigate what other information can be used from the

information model to aid in conflict prevention. We also intend on exploring other

aspects of Information Models that define system behaviour such as flow charts and

finite state machines.

Acknowledgements

The authors would like to take this opportunity to thank the anonymous reviewers for

their useful comments and feedback on the paper. This work has received support

from the Science Foundation Ireland under the Autonomic Management of

Communications Networks and Services programme (grant no. 04/IN3/I404C)

12 Davy, Jennings, Strassner

References

1. Charalambides, M. et al., “Policy Conflict Analysis for Quality of Service Management,” in

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems

and Networks POLICY'05, Stockholm, Sweden (2005) 99-108

2. Charalambides, M. et al., “Dynamic Policy Analysis and Conflict Resolution for DiffServ

Quality of Service Management” in Proceedings of the IEEE/IFIP Network Operations and

Management Symposium 2006, Vancouver, Canada (2006) 294-304

3. Strassner, J., “Policy-based Network Management: Solutions for the Next Generation”,

Morgan-Kaufman Publishers. ISBN 1-55860-859-1 (2004)

4. Strassner, J., “Directory Enabled Networks”, Macmillan Technical Publishing, ISBN 1-

57870-140-6, (1999)

5. van der Meer, S., Davy, A., Davy, S., Carroll, R., Jennings, B., Strassner, S. 2006,

"Automonic Networking: Prototype Implementation of the Policy Continuum", in Proc.

Workshop in Broadband Converged Networks at IEEE/IFIP Network Operations &

Management Symposium, Vancouver, Canada (2006)

6. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M., “The Ponder Specification Language,”

presented at 2nd IEEE Workshop on Policies for Networks and Distributed Systems, Bristol,

UK (2001)

7. OMG, UML 2.0 OCL Specification v2.0, Object Management Group Specification,

Available at http://www.omg.org/docs/formal/06-05-01.pdf: accessed July (2006)

8. OMG, Meta Object Facility (MOF) 2.0 XMI Mapping Specification, v2.1, Object

Management Group Specification, Available at http://www.omg.org/docs/formal/05-09-

01.pdf accessed July (2006)

9. Meier, W., eXist: An Open Source Native XML Database, In Web, Web-Services, and

Database Systems. NODe 2002 Web- and Database-Related Workshops, Erfurt, Germany

(2003) 169-183

10. Akehurst, D., Patrascoiu, O., OCL 2.0 – Implementation the Standard for Multiple

Metamodels”, Workshop Proceedings, 6th International Conference on the Unified

Modeling Language and its Applications, UML2003, Electronic Notes in Theoretical

Computer Science (2003)

11. Lehtihet, E., Strassner, J., Agoulmine, N., O Foghlu, M., Ontology-Based Knowledge

Representation for Self-Governing Systems, accepted for publication in 17th IFIP/IEEE

International Workshop on Distributed Systems: Operations and Management, DSOM

2006, Dublin, Ireland, October (2006)

12. JBoss Rules, JBoss, Available at http://labs.jboss.com/portal/jbossrules/ accessed August

(2006)

13. Shankar, C., and Campbell, R., A Policy Based Management Framework for Pervasive

Systems using Axiomatized Rule-Actions in Proceedings of the 2005 Fourth International

Symposium on Network Computing and Application (NCA’05), Cambridge,

Massachusetts, July (2005) 255-258

