Reconfiguring Self-Stabilizing
Publish /Subscribe Systems

Michael A. Jaeger* Gero Miihl**
Matthias Werner Helge Parzyjegla***

{michael. jaeger,g-muehl,m_werner,parzyjegla}@acm.org

Communication and Operating Systems Group
Berlin University of Technology
Einsteinufer 17, 10587 Berlin, Germany

Abstract. Recent work on self-stabilizing routing in publish/subscribe
systems showed that it is feasible to automate reconfigurations in case of
faults by enabling the system to recover from arbitrary transient faults.
In this paper, we discuss how to incorporate planned reconfigurations of
the broker topology into self-stabilizing publish/subscribe systems with-
out service interruption. We present an algorithm that uses a coloring
mechanism to enable the system to be automatically switched from one
system configuration to another. The colors thereby synchronize the bro-
ker overlay and the publish/subscribe routing layer.

1 Introduction

A publish/subscribe (pub/sub) system consists of brokers and clients. Brokers
connect to other brokers to form an overlay network and to provide the event
notification service. Clients connect to one broker and publish notifications or
subscribe to filters. The broker overlay network routes published notifications to
all brokers with clients that are currently subscribed to a matching filter.
Recent work on fault tolerance in the field of pub/sub middleware has shown
that self-stabilization is feasible on the pub/sub routing layer [6] (for the sake
of readability, we will use “routing” in the following when we actually mean
“pub/sub routing”). Self-stabilization is an elegant mechanism for gaining fault
tolerance. However, the solutions presented for pub/sub routing do not yet ex-
plicitly deal with reconfiguration [8, 10], although managing these systems has to
include reconfiguration of the broker overlay topology. In many self-stabilizing
systems, reconfigurations are treated as faults and the system tries to “recover”
from them. In contrast to this, our approach is to hold a “shadow” broker over-
lay topology that has already implemented the reconfiguration, to subsequently
build up “shadow” routing tables on the pub/sub routing layer, and to finally

* Funded by Deutsche Telekom Stiftung.
** Funded by Deutsche Telekom.
*** Funded by Deutsche Forschungsgemeinschaft (DFG SPP 1183 Organic Computing).

switch the system atomically from one correct configuration to the next one us-
ing a coloring scheme. Thereby, we avoid notification and (un)subscription loss
as well as duplication during reconfiguration.

2 Related Work

There are only a few publications in the area of self-stabilization that deal with
reconfiguration issues explicitly. Most authors treat them as faults that will even-
tually stabilize like Dijkstra did in the initial paper on self-stabilization [1]. The
concept of superstabilization, introduced by Dolev and Herman, has a more differ-
entiated view by explicitly considering a certain class of topological changes [3].
Superstabilizing protocols are self-stabilizing and additionally require that if one
change of this class occurs a passage predicate holds until the system is stable
again. The passage predicate is usually weaker than the correctness predicate but
is supposed to be strong enough to be still useful. In contrast to our approach,
topological reconfigurations are supposed to happen immediately without any
announcement and can thus not be delayed as we assume here. The concept
of fault containment as described by Nelson [9] and applied to self-stabilizing
protocols by Ghosh et al. [5] also tries to maintain service availability by keep-
ing the effects of faults (or reconfigurations) locally bounded. Although fault-
containment can dramatically reduce the effects of reconfiguration on the system
in whole there is still an interruption of the service—at least in those parts of
the system that are directly affected by the reconfiguration.

3 Assumptions and Model

As starting basis, we build on a model for self-stabilizing pub/sub systems devel-
oped in previous work [8]. Basically, we assume a hierarchical routing algorithm
based on an acyclic broker topology with bidirectional FIFO links connecting in-
dividual nodes. Furthermore, there is an upper bound 7 on the number of brokers
as well as a dedicated root broker R, which is globally known within the system.
Considering self-stabilization, we require that the brokers’ routing tables can be
rebuilt from an initial routing configuration, which is empty for many routing
algorithms [7], and that the routing algorithm bases its routing decisions solely
on the contents of the routing table and the notification to forward.

Such a pub/sub system works correctly, if it meets the following two re-
quirements [8]: (i) every client receives only the published notifications it has
subscribed for (without duplicates) and (ii) every subscription becomes active
after finite time, from which on the client receives every published notification
matching its subscription until it unsubscribes.

A pub/sub system is called self-stabilizing, if started in an arbitrary state, it
eventually begins to satisfy its specified behavior provided that no faults occur
for a sufficient long time. A foult may lead to arbitrary perturbations of any
variable stored in RAM as well as removed, manipulated, and inserted messages.
Links may go down and come up, processes may crash and restart due to faults.

To guarantee persistence in spite of arbitrary memory faults, we assume that
all algorithms used are stored in non-perturbable ROM. Additionally, we treat
the reference to the root broker as well as the initial routing configuration as an
intrinsic part of the respective algorithm itself and include them in ROM, too.
To maintain self-stabilization in case of crashed processes, the root broker R can
be implemented in a self-stabilizing fashion using a root group [4].

While faults happen suddenly and may lead to abrupt changes in the broker
topology, a reconfiguration is a cooperative process that is usually planned in
advance and needs some time to take effect. More precisely, a reconfiguration is
a change of the broker overlay topology, including leaf broker removals, additions,
and link replacements, that can be delayed for a finite time.

Since reconfigurations affect several algorithm layers simultaneously, all ac-
tions carried out must be synchronized to meet the system’s correctness require-
ments and to reach atomicity. A major challenge is to integrate the individual
self-stabilizing algorithms of each layer into the whole reconfiguration process.

4 Layered Self-Stabilization

Systems that are layered can be made self-stabilizing by making all layers in-
dividually self-stabilizing. This transparent stacking of self-stabilizing layers is
a standard technique which is referred to as fair composition [2]. It is easy to
combine self-stabilizing algorithms this way to create a new and more powerful
self-stabilizing mechanism as long as no cyclic dependencies exist among the lay-
ers. Taking this approach, it is sensible to layer self-stabilizing routing in pub/
sub systems on top of a broker topology that employs a self-stabilizing tree algo-
rithm like the ones given in literature. However, this approach has its drawbacks
because a reconfiguration on the broker overlay layer may be handled as a fault
on the pub/sub layer when the routing table entries are not consistent with the
new topology anymore. Additionally, most self-stabilizing tree algorithms impose
a specific structure on the topology that is, for example, dependent on the IDs of
the nodes. As a consequence, a topological reconfiguration of the self-stabilizing
pub/sub system might result in a service interruption like missed notifications
or control messages (subscriptions and unsubscriptions).

Our approach in the following is to realize a self-stabilizing overlay topology
that maintains an arbitrary tree structure and to layer self-stabilizing routing
on top of it in a way, such that reconfigurations of the overlay topology can be
processed without service interruption. Two problems have to be tackled to solve
this problem: (i) designing a self-stabilizing broker overlay topology that does
not necessarily impose a certain structure on the resulting tree and (ii) coupling
the self-stabilizing mechanisms on the overlay and the routing layer to allow for
atomic topology switches without loss of messages.

Coloring Scheme. The coloring scheme synchronizes reconfigurations on the
overlay layer with the routing layer. Therefore, selected data structures are
marked with a color attribute. On the overlay topology layer this concerns the

child and parent broker pointers (C and P, respectively), while on the routing
layer the routing entries are affected. To allow atomic switches between different
colors, every broker maintains data structures for three different colors that can
be accessed on both layers: the color ¢“ that is currently used, the color ¢°'4
that has been used last, and the color ¢"V that will be used when the color
changes for the next time. These colors are rotated regularly. The reason why
we need three different colors is due to the communication and processing delay
in the network. If the value of ¢ becomes the value of ¢4, for example, there
may still be messages on the network that are colored with ¢°'4. To be able to
deliver these messages, the topology for ¢°'d has to be kept long enough. For a
better understanding, we assume in the following that the routing entries are
stored in separate routing tables T for each color although a tag on each entry
suffices in the implementation.

It is the task of the root broker R to regularly recolor all brokers in the
tree. To accomplish this, a timeout runs on every broker that triggers different
actions on R and on each broker B # R. On a timeout, R resets its timer,
rotates its colors and subsequently initializes the child broker pointers ¢ and
the parent broker pointer P¢" with the respective values colored with ¢
(which has been ¢"®" before the timeout). The routing table 7¢"" is initialized
with the initial routing configuration. Then, it disseminates the new color in
a recolor message REC,sg to all child brokers stored in Ce™, if they are still
alive as indicated by a flag that was set when the child broker acknowledged the
previous REC,,s¢. For every other broker B # R a timeout is viewed as a fault
and hence B tries to reconnect to the tree (as part of the self-stabilizing overlay
topology). Reconfigurations are stored in RECy,s¢ and handled as described later
in a separate section. When B receives a recolor message, it resets its timer,
replies with an acknowledge message, rotates its colors, initializes its pointers
like R, and forwards the message to its child brokers. The broker accepts the
recolor message only if it has been sent by the broker P¢™" points to and if the
new color m.c stored in the message is different from the color stored in ¢"°V.
This test is needed to detect cycles that may result from faults.

Self-Stabilizing Broker Overlay Topology. The self-stabilizing mechanism
on the broker overlay network is based on timeouts regarding recolor messages
as described above. Recolor messages are forwarded recursively down the tree,
the last leaf broker receives the message at the latest after time h - dpyax, Where
h is the height of the tree and dy.x is the maximum delay for processing and
sending a message to a child broker. As the tree may degenerate arbitrarily h
can be at most equal to the maximum number of brokers 7 in the system (which
we assume is known and stored in ROM). Given that the timeout on R occurs
every time £, a timeout & = & + h - dmax 18 necessary on every broker B distinct
from R, which is resetted everytime a new recolor message is received from its
parent broker. When B # R runs into a timeout, it took more than & to receive
the next recolor message after the last one. This can only be due to a fault, since
forwarding a message from R to B cannot take more than h-dy,.x. In this case, B

contacts R to rejoin the tree. There are many ways to find a new parent broker
for B depending on the topology requirements. One is to look for an arbitrary
broker that has less than b child brokers down the tree and use it as a new
parent for a requesting broker. This way, the broker is integrated as a leaf into
the tree and the degree of a the broker topology can be maintained. The broker
overlay is in a correct state if the parent and child broker relation between every
broker in the system is consistent for the data structures colored with the values
of ¢ and ¢ at R and the tree that is defined by P and CCOld, and P
and C¢" respectively, is not partitioned. The value of C¢™" and P is treated
differently as explained in the next subsection about reconfiguration.

Reconfiguration. Whenever a leaf broker wants to join or leave the overlay
network or a link has to be replaced by another one, the topology of the broker
network changes. When a reconfiguration should be implemented, the intended
changes are sent to R, which collects them in the set R and disseminates them in
the next recolor message. Every broker that receives a recolor message carrying
reconfiguration data that affects it, implements the change into its P¢ and
C<™™" pointers. The recolor message serves as a synchronizer to prevent race
conditions when switching from one topology to another. Recolor messages are
routed using C¢ of every broker B that receives a recolor message (where ¢
equals ¢V before recoloring). Thus, reconfigurations take two recolor messages
to become active: one to disseminate the reconfiguration and one to activate it.
As mentioned earlier, a change in the topology may imply a change in the
routing tables on the pub/sub routing layer. As the routing tables are regularly
rebuilt from an initial routing configuration the reconfiguration of the overlay
topology can be incorporated by delaying the switch to the new topology in
P and €™ long enough, such that they have been rebuilt completely.

Self-Stabilizing Routing. Recolor messages are used on the topology layer
to trigger timeouts and coordinate reconfigurations. Therefore, three different
topologies are held in form of colored parent/child pointers. On the routing
layer, the color is used for two different purposes: (i) to rebuild the routing
tables periodically and (ii) to avoid notification loss and duplicates.

It is necessary to periodically rebuild the routing tables as we assume that
they can be perturbed arbitrarily. Therefore, we rely on the leasing mechanism
described earlier [8]: clients regularly refresh their subscriptions and brokers use
a second chance algorithm to remove stale entries from their routing tables.
To incorporate reconfigurations into this mechanism, we demand that control
messages are colored with ¢"%, while notifications are colored with ¢“"*. Noti-
fications and control messages are then forwarded and applied to the routing
tables 7¢"" and T, respectively. Thereby, we ensure that notifications will
be routed over the topology, the publishing broker belonged to at publishing
time. This way, we prevent duplicates, i.e., notifications sent multiple times to
the same broker. The second chance algorithm is implemented through rotating
the colors and initializing 7¢"" with a legal initial routing configuration.

5 Summary

We presented an algorithm that allows self-stabilizing pub/sub systems to be
reconfigured while maintaining service availability. To achieve this, we use the
color attribute to synchronize the self-stabilizing broker overlay and the self-
stabilizing pub/sub routing layer. We connect the different layers such that it
is possible to switch the topology atomically without losing or duplicating mes-
sages. The presumption is that reconfigurations can be delayed a bounded time
before becoming active (e.g., before a broker is removed). We consider this “co-
operative” behavior as the main difference between a fault and a reconfiguration.
Our work is a necessary prerequisite to combine the self-stabilizing routing layer
with an adaptive reconfiguration mechanism that runs on top of the pub/sub
layer and issues reconfiguration stimuli that are implemented by the lower layers
as described in this paper. Hence we come one step closer to fault-tolerant and
adaptive publish/subscribe systems. However, the mechanism we described is
not limited to self-stabilizing pub/sub. It is a general principle that can be used
to realize reconfigurations in arbitrary layered self-stabilizing systems.

References

1. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643-644, 1974.

2. S. Dolev. Self-Stabilization. MIT Press, 2000.

3. S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed sys-
tems. Chicago Journal of Theoretical Computer Science, 4, Dec. 1997. Special
Issue on Self-Stabilization.

4. S. Dolev and R. I. Kat. Hypertree for self-stabilizing peer-to-peer systems. In
Network Computing and Applications (NCA 2004). Proceedings. Third IEEE In-
ternational Symposium on, pages 25-32, Washington, DC, USA, 2004. IEEE.

5. S. Ghosh, A. Gupta, T. Herman, and S. Pemmaraju. Fault-containing self-
stabilizing algorithms. In Proceedings of the Fifteenth Annual ACM Symposium of
Distributed Computing (PODC96), pages 45-54. ACM, ACM, 1996.

6. M. A. Jaeger and G. Miihl. Stochastic analysis and comparison of self-stabilizing
routing algorithms for publish/subscribe systems. In G. F. Riley, R. Fujimoto, and
H. Karatza, editors, The 13th IEEE/ACM International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS 2005), pages 471-479, Atlanta, Georgia, USA, Sept. 2005. IEEE Press.

7. G. Mihl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, Sept. 2002.

8. G. Mihl, M. A. Jaeger, K. Herrmann, T. Weis, L. Fiege, and A. Ulbrich. Self-
stabilizing publish/subscribe systems: Algorithms and evaluation. In J. C. Cunha
and P. D. Medeiros, editors, Proceedings of the 11th European Conference on Paral-
lel Processing (Euro-Par 2005), volume 3648 of Lecture Notes in Computer Science
(LNCS), pages 664-674, Lisboa, Portugal, Aug. 2005. Springer.

9. V. P. Nelson. Fault-tolerant computing: Fundamental concepts. Computer,
23(7):19-25, 1990.

10. Z. Shen and S. Tirthapura. Self-stabilizing routing in publish-subscribe systems.
In 8rd International Workshop on Distributed Event-Based Systems (DEBS’04),
pages 92-97, Edinburgh, Scotland, UK, May 2004. IEE.

