Ontology-Based Knowledge Representation for
Self-Governing Systems

Elyes Lehtihet!3, John Strassner?, Nazim Agoulmine®, and Michedl O Foghlu!

! Telecommunications Software & Systems Group - Waterford Institute of Technology
Waterford, Ireland
{elehtihet, mofoghlu}@tssg.org
2 Autonomic Research Lab - Motorola Labs,
Schaumburg, IL 60010, USA
John.Strassner@motorola.com
3 Networks and Multimedia Systems Group - University of Evry-Val d’Essonne
Evry Courcouronnes, France
Nazim.Agoulmine@iup.univ-evry.fr

Abstract. Self-governing systems need a reliable set of semantics and
a formal theoretic model in order to facilitate automated reasoning. We
present an ontology-based knowledge representation that will use data
from information models while preserving the semantics and the tax-
onomy of existing systems. This will facilitate the decomposition and
validation of high level goals by autonomous, self-governing components.
Our solution reuses principles and standards from the Semantic Web
and the OMG to precisely describe the managed entities and the shared
objectives that these entities are trying to achieve by autonomously cor-
relating their behavior. We describe how we created UML2, MOF, OCL
and QVT ontologies, and we give a case study using the NGOSS Shared
Information and Data model. We also set the requirements for integrat-
ing existing information models and domain ontologies into a unique
knowledge base.

1 Introduction

The representation of knowledge at the autonomic manager level is a critical
issue for designing and deploying self-governing systems. We see an autonomic
manager as a set of software agents that use an expressive and dynamically
updateable knowledge base to represent the relationships between managed en-
tities, the system configuration, the objectives of the administrators (policies)
and the explicit semantics of the goals of the system. For autonomic networks,
this flexible knowledge base enables the system to dynamically adjust to the
changing demands of its users, as well as changing environmental conditions.

Self-governing systems can be described as very reactive systems, with a pre-
cise modeling structure, data description and behavior. The basis for structuring
is hierarchical decomposition and type hierarchies. Data description is based on
data types of values and objects. The basis of behavior description is extended
finite state machines communicating by messages [1].

mailto:elehtihet@tssg.org?subject=Paper accepted in DSOM 2006
mailto:John.Strassner@motorola.com?subject=Paper accepted in DSOM 2006
mailto:Nazim.Agoulmine@iup.univ-evry.fr?subject=Paper accepted in DSOM 2006
mailto:mofoghlu@tssg.org?subject=Paper accepted in DSOM 2006
http://www.tssg.org
http://www.wit.ie
http://www.motorola.com/content/0,,6584-9298,00.html
http://www3.iie.cnam.fr/~lrsm/
http://www.univ-evry.fr

2 Lehtihet, Strassner, Agoulmine and O Foghli

A knowledge base requires an expressive, unique representation. Arguably,
this is best realized using a knowledge representation language with well defined
semantics and a practicable inference algorithm for reasoning on a system speci-
fication. A system specification, in a broad sense, is the specification of both the
behavior and a set of general parameters of the system [1].

The integration of the structural and the dynamic aspects of a self-governing
system is a difficult task that is even harder to achieve because of: 1) the com-
plexity of describing and refining a high level goal into lower level objectives
that can be enforced by autonomous system entities, and 2) the lack of interop-
erability between existing modeling standards. Interoperability is a major issue
for system integrators and tools vendor; several initiatives are trying to solve
the problem by unifying knowledge representation without loosing the associ-
ated semantics of the data. Until this is accomplished, it will be impractical to
effectively share models among heterogeneous (competing) modeling tools.

In this paper, we present an approach for unifying the representation of
the information needed by an autonomic manager, and preserving the inherent
semantics of a domain — this is a crucial step toward automating the reasoning
process and integrating heterogeneous knowledge bases.

1.1 Using Software Engineering Principles to Specify Self-Governing
Systems

An autonomic manager is a software agent, which must be developed by apply-
ing technologies and best practices from computer science, applications domains
and other fields. Due to the complexity of describing a high level goal and its
refinement into low level objectives, we argue that an agile (adaptive) develop-
ment framework, as opposite to a plan-driven (predictive) framework, is the most
appropriate methodology for designing, deploying and testing self-governing sys-
tems. The Agile methodology is quite simple to understand: Instead of creating
extensive models before writing source code, you start by developing and testing
agile models with a concise and a precise kernel.

Another approach for defining IT system specification is the OMG Model
Driven Architecture (MDA). The aim of MDA is not to replace the existing
system with something completely different; the objective is to make that system
more efficient by incrementally automating the parts of it that can easily be
automated, so it will accelerate the integration of new technologies and automate
their integration into the existing solution.

Many would argue that principles of Agile Modeling and OMG Model Driven
Architecture are disjointed (not compatible), but we see the two methodologies
as complementary: First, to accelerate the (agile) development, the behavior of
a system must be derived from the specification. It is only this way that we will
ensure that the business goals (desired behavior) meet the implementation (effec-
tive behavior). Second, as software architectures grow in size and complexity, the
need to subsequently incorporate software models into the system development
automation stream grows even faster.

Ontology-Based Knowledge Representation for Self-Governing Systems 3

In the white paper comparing the OMG-MDA and the TMForum Next Gen-
eration Operation Support System (NGOSS) [2], the authors argue that: “While
following an approach similar to MDA, NGOSS has chosen to focus on build-
g a framework for identifying and specifying well-defined business and system
views on a modeled OSS/BSS solution”. NGOSS principles and standards will
be discussed more in detail in section 4 and 5. Note that our work extends the
work of NGOSS.

The OMG Unified Modeling Language (UML) is the software industry’s dom-
inant modeling language. The current standard is UML 2.0., a major rewrite on
the previous 1.5 version. This 1.5 version, used by the NGOSS Shared Infor-
mation and Data model (SID), will continue to be the official current version
until all four components of UML2 (Infrastructure, Superstructure, Diagram
Interchange and Object Constraint Language) are completed and ratified.

In section 8.2 of the OMG Ontology Definition Metamodel (ODM) specifi-
cation [3], it is mentioned that: “The lack of reliable set semantics and model
theory for UML prevents the use of automated reasoners on UML models. Such
a capability is important to applying Model Driven Architecture to systems inte-
gration ... UML lacks a formal model theoretic semantics, OCL also has neither
a formal model theory nor a formal proof theory, and thus cannot be used for
automated reasoning (today)”.

The same arguments can be used against the OMG Meta Object Facility
(MOF), and since every modeling language used in MDA “must be” described
in terms of the MOF language, the OMG Vision is missing a formal, explicit
specification of concepts and relationships for its modeling languages (UML2,
MOF, OCL and QVT). Thus, any information model that “only” relies on UML
would not fulfill the requirements of a decidable knowledge base and will prevent
the use of automated reasoning.

Reasoning on a precise and computer-processable semantic is the ultimate
objective of the Semantic Web vision. The essential principles, standards and
technologies are discussed in the following section.

1.2 Semantic Web Technologies

While trying to ensure the long term growth of the web, the World Wide Web
Consortium (W3C) issued the Web Ontology Language (OWL) — a markup
language for publishing and sharing data using ontologies on the Internet. On-
tologies are agreements about shared conceptualization [4], and hence a basis
for information exchange by putting documents with machine-readable meaning
(semantics) on the Web. OWL permits varying degrees of reasoning depending
on the expressivity of the Description Logic subset that is used. Description Log-
ics, sometimes called terminological systems or concept languages, are a family
of knowledge representation languages which can be used to represent the ter-
minological knowledge of an application domain in a structured and formally
well-understood way [5].

OWLDL is based on the description logic category known as SHOIN (D). Its
subset OWL Lite is based on the less expressive logic category SHIF (D). OWL

4 Lehtihet, Strassner, Agoulmine and O Foghli

Full is the most expressive level but, because of that, can lead to infinite loops —
not recommended for automated reasoning. The Semantic Web Rule Language
(SWRL) extends the set of OWL axioms in order to include conditional rules
(Horn clauses).

As noted by Ushold and Menzel in [4], the strength of the W3C standard
for representing ontologies, in addition to its soundness and unique implementa-
tion, is the ability to express logical equivalence and other relationships between
concepts, properties and individuals in different ontologies. One main weakness
is the lack of support for procedural functions (e.g. arithmetic, string manipu-
lation/comparison) that are, in our opinion too, essential for mapping between
real-world ontologies.

The following section will give a summary of existing approaches for repre-
senting knowledge for Autonomic systems. In section 3, we describe the method-
ology that we have used to create a precise modeling language for information
models. Then, we will demonstrate how our solution can be applied to the TMF
NGOSS set of principles. Finally, we will discuss the results of our experiments
and describe the future orientation of our research.

2 Related Works

As stated in [6], Information models alone are not enough to capture the seman-
tic and behavior of managed network entities. The ideal solution is to use an
ontology language to precisely formalize a domain problem. In this section, we
will give a short overview on existing approaches and their use of information
modeling.

2.1 Autonomic Network Management

In 2004, IBM issued a toolkit that includes components, tools and scenarios for
designing and deploying Self-managing systems. In [7], the importance of on-
tologies in the design and the implementation of autonomic computing systems
is described: without an explicit meaning, the resolution of a problem is not pos-
sible. As shown in Figure 1, IBM uses the DMTF Common Information Model
(CIM) as a reference model to infer properties about distributed systems. The
system behavior is expressed using the Simplified Policy Language (SPL). Com-
mon Base Event (CBE) is the IBM standard for exchanging messages between
autonomic management engines (implementation of the autonomic-manager).
The CBE model provides a basis for sounder problem determination and is a
cornerstone of automatic computing system management. This profusion of for-
mats creates a semantic gap between the specification of the system and its
behavior; since they are not expressed in the same language and do not share
the same semantic, how can they be integrated in a unique knowledge base?
Furthermore, as noted in [6], the DMTF, IETF and ITU do not produce UML
compliant models, and thus cannot reuse off-the-shelf UML tools to represent
their concepts.

Ontology-Based Knowledge Representation for Self-Governing Systems 5

Knowledge Representation

Autonomic Manager .+ DMTF CIM (Repository)
« Simplified Policy Language (SPL)

_|.--~Sensors / Effectors:
/"« CIM Object Manager & CIM Client

Knowledge £
49 ~ CIM-XML query language (CQL)
—~ — CIM-XML protocol

Sensors - i ,,Eﬁectcls«}-' '_'_:::::'-ﬂ:"'clM operations over HTTP/RMI

== L
‘ Managed Element ‘ _~"Communication Mechanism
-« Common Base Event (CBE)

Autonomic Manager pbnamic Menag____ L. Classification of Events (CBEs and
Sensed Events) = reasoning

m A = & A and correlation of events
m Exeet N » Ontologies: W3C Web

Eregios TTCBE) Soncors Ontology Language (OWL)

Fig. 1. IBM Autonomic Computing Vision

As shown in Figure 2, the advantage of using UML notations is to capture
the specification of the system and its behavior. We believe that the imple-
mentation of Self-governing systems will rely on a specification of Executable
Models [8] — with a formal model theoretic and a precise semantic, necessary
to implement a reliable model compiler (Reasoner). This model compiler will
allow automated reasoning and help in discovering hidden inconsistencies in the
system specification.

Guerrero et al., in [9], proposed the utilization of OWL+SWRL for the defin-
ition of the management behavior. SWRL would replace the conventional policy
language while the CIM-to-OWL mapping will enable system properties to be
inferred. However, we think that this approach has two important limitations:

1. The fundamental difference between Object Oriented (OO) models and On-
tologies is the representation of semantics: Ontologies use a declarative ap-
proach (Constraints, Axioms and Rules), but OO models only represent
imperative semantics (operations). Therefore, it is not possible to map OO
models into OWL without loosing semantics (e.g., for the CIM, as used in
the IBM toolkit, semantics attached to the CIM Methods and Qualifiers are
lost).

2. The DMTF uses their own proprietary Managed Object Format (DMTF-
MOF), which is not compatible with the OMG-MOF. Hence, CIM Models
will not produce valid UML models and, as discussed in section 1.1, it will
not be possible to reuse any software development methodology (e.g., Agile
or MDA) for the design, deployment and testing of a self-governing system.

In [10], Lépez de Vergara proposed to refine and extend the CIM Metaschema by
using the Object Constraint Language (OCL); however, this necessary formal-
ization was not incorporated into the DMTF specification. Recently, the DMTF
realized the advantage of aligning its model with the OMG standards. This key
work will enable the use of off-the-shelf UML tools for CIM development. How-
ever, the first draft will not be available before the 3¢ quarter of 2006 [11].
Until then, we will not consider any CIM-based approach as a possible solution
for representing knowledge for self-governing systems.

6 Lehtihet, Strassner, Agoulmine and o} Foghlu

Statemachines - Dynamic
Model = Behaviour Using
facts

Sub-Goal

Behavioural Pattern to
Refine the global Goal
into
sub-goals = policies

E Resource Description

Refined Goal @— Nested Classifier (Expected Behaviour)
8 Hidden Design Inconsistencies (((®) States = Behaviour
<==> Coordination of behaviour \9‘ Condition / Transition

Fig. 2. Systems specification using UML.

2.2 Ontologies, Information Models and Constraint/Rule
Languages

Ontologies and Information models (Object Oriented Languages) have very simi-
lar approaches for the declaration of static structures, namely classes (concepts),
class hierarchies (using inheritance), attributes, relationships, and instances [12].
However, an ontology only describes concepts and their inter-relationships; it
does not provide support for behavioral features (e.g., operations, parameters,
and state machines). Therefore, trying to represent a UML-based information
model in OWL will lead to major inconsistencies and loss of valuable semantics.

As previously noted, SWRL extends OWL with Horn-like Clauses. SWRL
provides formal semantics and thus allows computation, unlike the OMG-OCL
which does not provide a formal proof theory (see section 1.1). We are working
on a mechanism to map existing OCL Expressions into SWRL axioms, but this
is beyond the scope of this paper and hence, will be developed in future work.

An advantage of using an ontology, in addition to the computation guar-
antee, is the uniqueness of the representation, since the implementation of the
W3C specification guarantees interoperability between different ontology tools
and repositories. On the other hand, for all OMG specifications, the informal
definition of the concrete syntax is not given in the semantics document, but in
the notation guide. There is no mapping between the concrete syntax and the ab-
stract syntax. This lead to an implementation problem: there is no way to check
that the output of a tool conforms to the language specification (UML, MOF,
OCL or QVT). This is because the OMG only produces the specifications —
documents that precisely describe what something should do, and how it should
act. The implementations of the specifications (UML Modeling tools, Transfor-
mation Engine, Model Compiler/Checker) are not, and will never be, produced
by the OMG [13]. Thus, the lack of constraints in the specification of the lan-
guage (metamodel) and the heterogeneous implementations create informal (not
precise) models.

We investigated the work of Cranefield [14] and Knublauch [12], who spec-
ified a mapping from UML models to RDF and OWL, respectively. However,

Ontology-Based Knowledge Representation for Self-Governing Systems 7

these approaches are not appropriate for capturing the semantics attached to
behavioral diagrams, as well as some semantic aspects of the class diagrams.

3 Ontology Based Metamodel for UML2, MOF, OCL
and QVT

Our approach is to represent the UML, MOF, OCL and QVT metamodels into
OWL models. Therefore, any UML model can be checked against the precise
specification of its metamodel and thus, all the concepts from our system model
(structure and behavior) will be instantiated in a unique format that will surely
comply to the OMG specification previously captured by an ontology.

In this way, we have built a knowledge base using an expressive and unique
language (OWL) with well defined semantics (Description Logic) and practica-
ble inference algorithms (DL Reasoners) for reasoning on a system specification
(UML structural and behavioral models).

Textual Formalize W3C OWL-DL
b pti \M M IXML representation

Non-s ta.nqar d Formal Instantiation
Instantiation Formalize
Heterogeneous ::> W3C OwL-DL
[Ij XML representation

Versions of XMI

Proprietary Query m SPARQL QL
Languages

OowL QL

Proprietary APIS“ () JENAZ Standard API

3 RACER, PELLET
Proprietary Model and FaCT (DL Reasoners)
land Instance Checkers

Fig. 3. Ontology-based knowledge specification of reactive systems.

3.1 Transformation principles

We have implemented transformations from the main OMG specifications (MOF,
UML2, OCL and QVT) to W3C-OWL. UML2, MOF1.4 and MOF-QVT are
available in Rational Rose format on the OMG website. UML and MOF reuse
the InfrastructureLibrary; MOF and OCL are decomposed into two main pack-
ages: Essential and Complete, while QVT extends EssentialMOF and Essen-
tialOCL. However, we were not able to find any reference to CompleteOCL. As
a result, every OMG sublanguage is a distinct package that has dependencies
(import/merge) with other packages.

In Figure 4, we show an example of dependencies between UML top level
packages and the UML subset that the SID Business View employs. In this
paper, we outlined the transformation rules and detail the implemented parser
for the XMI output of the Rational Rose Unisys Add-In. Every package was
transformed into a separate OWL ontology (file).

8 Lehtihet, Strassner, Agoulmine and o} Foghlu

MBIA
ssauisng qIS

+ Inte ities
+ StucturedAdivities

salfojojuQ-qng uaamjaq
(poduwi) sapuapuadag

Fig.4. UML2 top level packages and the SID Business View Subset.

For UML2, we generated 82 ontologies that import each others depending on
their dependencies (import/merge) and the inter-references between elements in
separate packages. Every class, owned by a package, has a unique name and thus
map to an owl:Class. For the range of the attributes (String, Boolean, Integer
and UnlimitedNatural), we did not want to use the predefined xsd datatypes
(used by Protégé), the reason is that they are not supported by the current
version of reasoners — this limitation should be addressed in the next version
of OWL. Therefore, all the data types were represented as an owl:Class; the
attributes were all mapped to owl:0bjectProperty with the following pattern :
<ClassName>.<AttributeName>. The same mechanism was used for the Associ-
ationEnds, where the role name of every navigable association end was mapped
to an object property of the source class. We treated the cardinalities of the
object properties, respectively lower and upper, as follow:

1..1] = FunctionalProperty;

..n] = Default Cardinality;

..n] = minCardinality(x);

..X| = maxCardinality(x);

o

»

ol

valevalre

x| where x#£1 = cardinality(x);
y] where x>0 A x#£y A y#n = minCardinality(x) A maxCardinality(y).

X

The Enumeration Classes (AggregationKind, VisibilityKind, etc.) were map-
ped to an owl:Class. Their possible values, previously represented as attributes,
were mapped to OWL instances of the owning class and explicitly made disjoint.
Example: UML VisibilityKind enumerated attributes {package protected private
public} were made disjoint by applying an owl:allDifferents construct.

We created our specific URI to identify the ontologies, which is also their
online repository. The results of the transformations can be found at :
http://www.tssg.org/public/ontologies/ org / spec/year /| Package Name.owl; where:
- UML2 : BaseUri + omg/uml/2004/UML2-Super-MDL-041007.owl

http://www.tssg.org/public/ontologies/omg/uml/2004/UML2-Super-MDL-041007.owl

Ontology-Based Knowledge Representation for Self-Governing Systems 9

- QVT : BaseUri + omg/qvt,/2005/QVT.owl

- MOF : BaseUri + omg/mof/2004/MOF.owl

The ontologies (which import their dependent ontologies), can be loaded in
Protégé. When performing the Classification Hierarchy, the Reasoners will re-
move the unnecessary superclasses. For example, Transition and RedefinableEle-
ment are subclasses of NamedElement; and Transition is also a subclass of Re-
definable Element. Therefore, the inheritance between Transition and NamedFEle-
ment is superficial and thus can be removed without altering the consistency of
the model — This should be considered as an optimization of the language.

3.2 Limitation of the transformation

As noted in section 2.2, ontologies do not support behavioral features; thus the
operations (and parameters) present in the UML2 metamodel were mapped into
annotation properties (rdfs:Comment) of the owning class. UML2 encloses 107
private operations. All the operations specify an OCL expression as Text — not
XML constructs. The automated mapping of OCL to SWRL is not supported
by our tool as yet, a solution to this will be proposed in our future work.

OWL does not apply the Unique Name Assumption (UNA) by default: every
concept is not, by default, necessarily distinct from the others. In our case,
this implies that all the constructs of the OMG metamodel are not necessarily
distinct. This in turn implies that an Association is not by default different
from a Class. To precisely describe the metamodel, we implemented an auto-
matic generation of disjointment between classes in the same package; however,
we had to abandon this solution because it created too many inconsistencies
related to multiple inheritances. Example: an AssociationClass is a Class
and an Association at the same time, so if a Class is semantically disjoint
from an Association, it implies that an AssociationClass is disjoint with it-
self. However, this can be solved in the instantiation of the model by explicitly
creating an owl:allDifferents construct between instances or specifying an
owl:disjointWith between subclasses.

There is another issue with the cardinality restrictions. Because ontologies
use the Open World Assumption (OWA) for reasoning, it means that what is
given to the reasoner is not necessarily complete. The reasoner will only gen-
erate an error when there are more than the allowed owl:maxCardinality (or
owl:cardinality) instances associated with an object property. However, if
there are fewer instances than the owl:minCardinality restriction then the
reasoner will assume that it could be defined elsewhere and therefore infer that
the ontology is consistent. The solution is to implement a pre-compiler to check
the cardinalities and corresponding instances before using the reasoner to check
to overall consistency of the model.

Another limitation concerns Package naming. There are only two cases where
the name of the Package is duplicated in the specification. An algorithm can look
for such conflicts and change the name of the package (sub-ontology); we used
the convention <owningNamespace>.<PackageName>. Example:
Infrastructurelibrary. Profiles and UML. Profiles.

http://www.tssg.org/public/ontologies/omg/qvt/2005/QVT.owl
http://www.tssg.org/public/ontologies/omg/mof/2004/MOF.owl

10 Lehtihet, Strassner, Agoulmine and O Foghld

4 Mapping the TMF NGOSS SID to OWL

Once the UML2 ontology was defined, we could check the consistency of any
UML2 model (structure and behavior) against the precise specification of the
language. In this section we will describe how we applied a mapping from the
SID (UML Model) to an Ontology, without loosing the semantics of the modeling
language (behavioral features).

As noted in section 1.1, the SID uses UML version 1.5. After a review of
the UML specifications, we noticed that the main differences between the two
versions concern the behavioral aspect of the language. For the object structure,
with the exception of the NestedClassifier pattern that is not used in the actual
version of the SID Business View, there is no difference between UML 1.5 and 2.0.
Therefore, the UML subset used by the SID is fully compatible with the UML2
ontology since it does not use any behavioral diagram. The transformation rules
are described in the following paragraphs.

The SID is the “lingua franca” for all TMF work. It defines a common set
of concepts, in the form of an object-oriented information model, that all other
TMF programs can use. The mapping from the SID to OWL, having a UML2
ontology, is quite straightforward. Every language construct used by the model:
Class, Association, Property, Operation, Attribute, Stereotype, DataType, Asso-
ciationClass, Dependency, etc. has a direct equivalence in the ontology model.
The interrelation between entities, ownedAttributes, ownedOperations, owned-
Parameters, stereotypes, datatypes, etc. is inherently present and constrained
(cardinalities, domain and range) in the imported UML2 sub-ontologies: Kernel,
AssociationClasses, Dependencies and Primitives Type.

There are two different ways of representing a UML model: by instanti-
ating the element of the model from their specification in the ontology (i.e.,
represent the model as a set of individuals), or by subclassing every element
of the model and expressively constraining the values of its object properties
(owl:allValuesFrom). The choice will not make any semantic difference for the
reasoner. However, we preferred the second approach, as it offers a better visu-
alization with the Protégé editor.

If the approach for representing the model is to subclass and constrain the
corresponding language constructs, then all the owl:Class elements in a sub-
ontology must be disjointed. But, if the representation mechanism is to create an
instance of the model, then all the individuals must be distinguished by adding
an owl:allDifferents axiom.

The mapping principles are also quite simple; every SID package will be rep-
resented in a separate file and imports the required UML2 sub-ontologies, in
addition to the other SID packages referenced by its elements (datatype, con-
strainedElement, etc.). Every sub-ontology extend the imported Kernel:Package
to create an owl:Class with the name of the package as an ID. The same mech-
anism is applied to every language construct. The algorithm for naming the
sub-ontologies is similar to the one described in section 3.1.

One minor limitation is the representation of the AssociationEnd and Con-
straint. We implied that every element in the model must be properly named,

Ontology-Based Knowledge Representation for Self-Governing Systems 11

because it is more readable than the zmi:id that distinctively identify the el-
ements. However, it is not the case with all the SID elements, so we had to
manually update the model.

5 Discussion and Future Work

Our approach can be used for any UML2-based model, and the UML2 ontology
could be refined/extended to capture additional artifacts not present in the ac-
tual specification. Two important aspects of the NGOSS Methdology that can
benefit from our solution are the NGOSS Contracts and the NGOSS Metamodel
specifications.

NGOSS Contracts extend the Design by Contract paradigm to ensure that
all information that is exchanged between components is done so in a consistent
way. All NGOSS Contracts have a view-specific portion (NGOSS contains views
that are used to represent the needs of different constituencies, such as business
analysts vs. programmers and architects). The view specific model part contains
various types of models (UML and others) tailored to support the specific view
of the contract, i.e. Business, System, Implementation and Deployment views.
All these views need to be integrated in order to provide a coherent mapping
between NGOSS views: reasoning on Contracts models. Therefore, our solution
could be fully reused to represent the model part of the Contracts expressed at
different level; the Reasoning mechanism would allow their automatic validation.

The NGOSS Metamodel (TMF053D) extends the UML metamodel in order
to introduce specific concepts, building blocks and artifacts that are required
to represent telecom needs. Thus, TMF053D is a necessary reference document
to support the creation of NGOSS-based models of software system solutions.
These models will capture specific aspect of the telecom world and will need
to be stored in a unique and precise knowledge base. Now, for the same reason
described in section 2.2, a solution based on the extension of the UML2 Ontology
with the NGOSS artifacts will ensure the different NGOSS stakeholders that
the semantic of their systems will be fully captured in the model and they will
have a unique, open repository for all their views of the system based on the
“homogeneously” implemented W3C OWL specification.

6 Conclusion

Autonomic systems require knowledge from different sources to be represented
in a common way. While conflicting attribute and datatype definitions present
problems, semantic dissonance is a far more difficult problem to solve — one that
requires an extensible, common representation of knowledge that does not lose
its associated semantics. This paper has introduced an ontology-based knowledge
representation to solve this problem. We have used the algorithms described in
this paper to construct an OWL representation of the TMF NGOSS SID, which
we are using in other autonomic computing works. The OWL mapping provides
a machine-readable representation of the SID managed entities and concepts

12 Lehtihet, Strassner, Agoulmine and O Foghld

— this enables semantics to be properly captured and associated with model
elements.

Future work will include mapping OCL into SWRL axioms and building a
reasoner that can use the OWL SID mapping (which includes NGOSS Contracts)
to build a reliable reasoner for contract-based interactions and workflows. These
two work items will then be used to continue our research in semantics for
autonomic computing.

7 Acknowledgement

This research has been funded by SFI “Autonomic Management of Communi-
cations Networks and Services” PI Cluster Award: 04/IN3/1404C.

References

1. International Telecommunication Union (ITU-T): Specification and Description
Language (SDL), Recommendation Z.100, August 2002.

2. Strassner J., Fleck J., Huang J., Faurer C., Richardson T.: TMF White Paper on
NGOSS and MDA, TMForum, April 2004.

3. Object Management Group (OMG): Ontology Definition Metamodel, Fourth Re-
vised Submission, November 2005.

4. Ushold M., Menzel C.: Achieving Semantic Interoperability & Integration Using
RDF and OWL, W3C Draft, January 2006.

5. F. Baader, D. Calvanese, D. L. McGuiness, D. Nardi, P. F. Patel-Schneider: The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge, UK, 2003

6. Strassner J., Agoulmine N., Lehtihet E.: FOCALE A Novel Autonomic Networking
Architecture, in Latin American Autonomic Computing Symposium (LAACS),
July 18-19, 2006, Campo Grande, MS, Brazil.

7. Stojanovic L., Schneider J., Maedche A., Libischer S., Studer R., Lumpp Th.,
Abecker A., Breiter G., Dinger J.: The role of ontologies in autonomic computing,
Published in IBM Systems Journal, Volume 43, Issue 3, 2004.

8. Mellor S. J., Balcer M. J.: Executable UML: A Foundation for Model Driven Ar-
chitecture, Addison-Wesley Longman Publishing Co., Inc., 2002.

9. Guerrero A., Villagrd V. A, Lépez de Vergara J. E; Berrocal J.: Ontology-Based
Integration of Management Behaviour and Information Definitions Using SWRL
and OWL. DSOM 2005, October 24-26, 2005, Barcelona, Spain: pp 12-23.

10. Lépez de Vergara J. E, Villagra V. A, Berrocal J.: On the formalization of the Com-
mon Information Model metaschema. DSOM 2005, October 24-26, 2005, Barcelona,
Spain, pp 24-26.

11. DMTF Newsletter : can be found at http://wuw.dmtf.org/newsroom/
newsletter/2006/05/page4, May 2006.

12. Knublauch H. : An Agile Development Methodology for Knowledge-Based Sys-
tems Including a Java Framework for Knowledge Modeling and Appropriate Tool
Support, Dissertationsschrift (PhD thesis), University of Ulm (2002)

13. Object Management Group - Specifications and Process, can be found at http:
//wwu.omg.org/gettingstarted/specsandprods.htm#SpecProd, May 2006.

14. Cranefield S. : Networked Knowledge Representation and Exchange using UML
and RDF, Journal of Digital Information, Volume 1 Issue 8 Article No. 44, 2001.

http://www.dmtf.org/newsroom/newsletter/2006/05/page4
http://www.dmtf.org/newsroom/newsletter/2006/05/page4
http://www.omg.org/gettingstarted/specsandprods.htm#SpecProd
http://www.omg.org/gettingstarted/specsandprods.htm#SpecProd

