
A WSDM-based Architecture for Global Usage
Characterization of Grid Computing Infrastructures

Glauco Antonio Ludwig1, Luciano Paschoal Gaspary2,
Gerson Geraldo Homrich Cavalheiro1, and Walfredo Cirne1

1Universidade do Vale do Rio dos Sinos (UNISINOS), Brazil

{glaucol, gersonc}@unisinos.br
2Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

paschoal@inf.ufrgs.br
3Universidade Federal de Campina Grande (UFCG), Brazil

walfredo@dsc.ufcg.edu.br

Abstract. Current solutions to characterize grid computing usage are limited in
three important aspects. First, they do not provide a global, uniform view of the
use of infrastructures comprised of heterogeneous grid middleware. Second,
they do not allow the specification of policies to publicize the collected
information. Third, they do not generate statistics about the applications that are
executed on the grid. To fill this gap, we propose an architecture based on the
Web Services Distributed Management standard and on access control policies
to characterize global usage of grid computing infrastructures, even when such
grids are formed by heterogeneous middleware packages. We introduce this
architecture and present preliminary results obtained with a prototype.

1 Introduction

The lack of solutions to manage complex systems such as grid computing infrastruc-
tures has hampered the widespread use of this technology, specially in the corporate
arena. When used in large scale, involving many institutions and participants, it is
necessary – in addition to managing faults, configuration, performance, and security –
to characterize the use of the grid infrastructure. The objective is sixfold: (i) obtain
detailed information about the applications executed on the grid (i.e. where they were
executed, execution duration, resources consumed, and users who submitted them);
(ii) identify the execution of malicious applications (an application executing for a
very long time could indicate the intention of only consuming grid resources,
impeding their legitimate use); (iii) determine users who contribute resources for the
grid and those who consume most of the computing power available; (iv) guarantee a
fair scheduling of jobs on the grid, denying or allowing users to execute new
applications based on their usage history (users that exceed a usage quota should not
have access to the resources of the grid); (v) identify stations of the grid which are not
contributing in a productive way (a certain station receives jobs to compute and ends
up failing to process them very often); and (vi) follow the evolution of the grid
computing infrastructure (allowing the recognition of usage patterns and trends).

Currently, there are several solutions [2, 4, 9, 11, 12, 14, 17] that provide the
administrator with statistics about the use of grid systems. Most of them are limited to
monitor the status of environment resources, neglecting statistical and historical data
about the execution of applications on the grid. For example, with the existing
solutions it is possible to observe that a certain station had its CPU highly loaded for
the past twelve hours. However, one cannot precisely infer the reason for that. In
short, these solutions do not relate in a proper way information about the resources
and the applications running on top of them.

It is usual to have heterogeneous grid middleware being employed in a large scale,
inter-institutional grid computing infrastructure. Each of them (e.g. Globus [7], Con-
dor [3], and OurGrid [13]) uses its own indicators to report job execution. In this
context, a problem to be overcome by a characterization and accounting solution is
the use of a common format to represent basic accounting and usage data. Existing
tools do not handle well such heterogeneity and, therefore, are unable to provide the
grid administrator with a uniform, integrated view of the usage of a heterogeneous
grid setup.

While institutions involved in a grid computing infrastructure are willing to share
usage information with its collaborating sites, each institution has a different security
policy to be applied. Some of the data gathered by a characterization and accounting
tool can be classified (e.g. details of the station that executed a job) and, therefore,
their distribution conflicts with the security policy in place. Here, again, there is no
support in current solutions to define and enforce a policy for the distribution of data
to the sites comprising the grid.

Considering the above limitations, we propose an architecture to support global
usage characterization of grid computing infrastructures composed of different mid-
dleware packages such as Globus, Condor, and OurGrid. Our architecture allows the
grid administrator to obtain long-term statistics and real-time notifications about ma-
jor events generated by both the grid resources and applications. Currently, we are
focusing on managing the grid applications, filling a not yet explored gap. In addi-
tion, we propose a mechanism to allow each institution participating of the grid infra-
structure to specify and enforce policies for the publication of usage information
generated inside the institution.

In line with current grid technologies, whose components have been organized as
web services, the architecture relies on the recent OASIS Web Services Distributed
Management (WSDM) standard [15]. Despite the fact this work focuses on the issue
of accounting, we regard it as a building block to achieve a more scalable and
autonomous management solution, based on the composition/choreography of com-
plementary WSDM-compliant grid management services.

The remainder of the paper is organized as follows. Section 2 discusses related
work on usage characterization of grid computing infrastructures. Section 3 intro-
duces the architecture and Section 4 details its components. Section 5 presents pre-
liminary results obtained with a prototype. Section 6 closes the paper with concluding
remarks and perspectives for future work.

2 Related Work

Important steps have been taken towards characterization of grid computing infra-
structures, with relevant mechanisms being proposed in the past to address specific
issues such as distributed resource usage monitoring. Nevertheless, they are not fully
prepared to (i) provide a global, uniform view of the use of infrastructures comprised
of heterogeneous grid middleware, (ii) allow the specification of policies to publicize
the collected information, and (iii) generate statistics about the applications executed
on the grid.

Solutions such as Remos [4], visPerf [9], GridRM [2], MonALISA [12], and Gan-
glia [11] are unable to operate over heterogeneous infrastructures, which share re-
sources employing distinct grid computing middleware packages. Since each mid-
dleware tends to adopt a proprietary format to represent statistics about applications
executed and resources consumed, they are not prepared to collect such statistics and
normalize them using a uniform information model. Due to this limitation, it becomes
a challenge to provide the grid administrators with a global view of the grid usage.

Regarding selective dissemination of grid usage information, just a few systems –
such as visPerf and GridRM – provide access control mechanisms. These mecha-
nisms, however, are limited. visPerf, for example, employs only one credential for the
whole grid; users that possess this credential can access all information generated by
the infrastructure. GridRM adopts an access control mechanism based on administra-
tive domains. When an institution decides to make part of a grid infrastructure that
uses GridRM, it starts to publicize – to the domains of interest – all the information
generated by the monitoring agents located within its administrative boundaries. In
this context, we claim that neither of the approaches are flexible enough to handle the
definition and enforcement of information publicization policies.

MonALISA and Usage Record (UR) [10] are the only solutions that provide
statistics related to the execution of applications on the grid. The former does not
relate such statistics with the resources consumed, hampering a precise understanding
of the grid usage. The latter constitutes an information model that merges data from
both applications executed and resources consumed. Since it is not a software
architecture, UR does not define how this data must be collected, processed,
consolidated, and presented to the grid administrator.

3 Architecture Overview

The architecture proposed is composed of four major components: Publishers,
Characterization Service, Authorization Service, and Management Application.
Figure 1 illustrates a general view of the architecture and the relations between its
components.

Publishers are grid-technology-dependent piece of software responsible for
monitoring the occurrence of predefined events generated by the components
comprising the grid (e.g. a log message informing that a certain application has been
submitted). Whenever such an event is observed, the publisher extracts the data of
interest from the event, normalizes and send it to the characterization service.

Publishers are supposed to be developed and distributed across the infrastructure, in
accordance to the needs of every grid middleware taking part of the overall inter-
institutional setup. For example, supposing a scenario composed of two distinct grid
middleware packages, say Globus (domain A) and OurGrid (domain B), specific
Globus and OurGrid publishers should be installed in both domains – exactly in the
location where data about the resources and the running applications is generated.

Management
Application

Publishers

Resources
Schedulers

S1

P1

S2

P2

Domain A

Database

Authorization
Service

GUACS

S2

Domain B

Database

Authorization
Service

GUACS

P2

GUACS: Grid Usage Accounting and Characterization Service
Si: Scheduler for grid middleware i; Pi: Publisher for grid middleware i

Management
Application

Publishers

Resources
Schedulers

S1

P1

S2

P2

Domain A

Database

Authorization
Service

GUACS

S2

Domain B

Database

Authorization
Service

GUACS

P2

GUACS: Grid Usage Accounting and Characterization Service
Si: Scheduler for grid middleware i; Pi: Publisher for grid middleware i

Fig. 1. Conceptual view of the architecture.

The Characterization Service is a software entity, whose purpose is, among other,
to receive data from the publishers and store them in a local, normalized database. By
normalized database we mean that regardless of the grid middleware being monitored,
the database always stores the same data (i.e. the information model is the same). To
address potential scalability problems, the service can be instantiated in several
locations (e.g. per institution, per department, etc.); important is to cover the whole
grid infrastructure.

In addition to receiving and processing data sent by the publishers, the
characterization service also serves a management application (or other management
services), which may request for historical and/or real-time information about the
resources and the applications running on the grid. Two types of requests are
currently supported: publish/subscribe and query/response.

Whenever a request is received by the characterization service, it is first passed to
an Authorization Service, which is responsible for granting or not the former
permission to reply the request. Based on a role-based access control policy [5], it
determines whether or not (and to what extent) a request originated from a certain
institution can be replied.

The architecture is also composed of a Management Application, from where the
administrator can subscribe for/be notified of relevant events generated by the whole

grid infrastructure. He/she can also gather historical information from the
characterization service instances and plot several graphs in order to characterize grid
usage. Note that, due to the normalized information model employed by the
characterization service, all the data gathered – regardless of the grid system used in
every institution – has the same format. Therefore, it is possible to draw a picture of
the whole grid infrastructure usage in an integrated, uniform way. This complete view
of the grid will may be compromised if the policy to distribute information employed
by the institutions making part of the grid is too restrictive.

It is possible to have several instances of the management application running
simultaneously (e.g. one per domain or department). Each of them will present a more
or less detailed view of the grid infrastructure, depending on the permissions that the
requester has in the characterization services.

4 Components of the Architecture and Implementation

In this section we describe the components of the architecture in more detail, focusing
on design and implementation decisions. Recall that the architecture stands on the
WSDM specification. Therefore, other associated standards such as WS-Notification
[8] and WSRF (Web Services Resource Framework) [6] are also employed.

Table 1. Usage Record format.

Field name Description
Username User’s login name corresponding to user Id in /etc/passwd file.
ProjectNam
e

Name/identifier of the project or charge group associated with
this usage.

JobId Identifier of the job.
Queue Name of the queue from which the job was executed or submitted.
GridId User’s global unique Id. Distinguish Name in the user’s X509

certificate.
FromHost Name of the host from which the job was submitted.
Host Name of the host on which the job ran.
StartTime Date when the job started running in date time format (UTC time zone).
EndTime Date when the job completed in date time format (UTC time zone).
Processors Number of processors either used or requested that each center uses (for

billing purpose).
NumNodes Number of nodes used.
CpuTime CPU time used, summed over all processes in the job.
WallTime Wall clock time elapsed while the job was in the running state.
Memory Maximum amount of virtual memory used by all concurrent processes

in the job.
Disk Disk storage used.
Network Network used (withdrawals) or requested (reservations).
JobName Job or Application name.
Status Number representing completion status of the job.
Charge Total charge of the job in system’s allocation unit.

4.1 Information Model

As already mentioned in the previous section, we have adopted a uniform information
model to be used by all instances of the characterization service. We use the UR
(Usage Record) model [10], proposed by the Usage Record Working Group of the
Global Grid Forum. This model is the result of an effort to define a common usage
record based on those employed in current grid sites.

Table 1 illustrates the fields included in the Usage Record. As one can see, it
merges information related to resource usage (e.g. Processors and NumNodes) and
applications (e.g. JobName and Status).

4.2 Publishers

For every grid middleware there must exist a specific publisher, which is able to
collect data about the resources and the running applications on that particular system.
In our current implementation of Globus and OurGrid publishers, this data is gathered
from the log files generated by both grid systems.

Whenever a new event is detected in the grid system (e.g. job started and job
completed), the publisher executes a SETRESOURCEPROPERTIES request to the
Characterization Service (to where it is virtually attached) updating a resource
property defined within the service (e.g. JOBSTARTED and JOBCOMPLETED). The
content of such a request is illustrated in figure 2a and b. Note that each set operation
comprises the update of several data into the service (through the use of complex
types). A simplified XML document is used to express the updates required by each
possible SETRESOURCEPROPERTIES request. In addition, as it is the case of the
examples presented, the data updated by a set request to a certain property (e.g.
JOBCOMPLETED) is complementary to the data supplied by the set request to other
property (e.g. JOBSTARTED).

<JobStarted>
 <Username> glauco_ludwig </Username>
 < ProjectName> bio_paua </ProjectName>
 <JobId> 1.1.1.node01.unisinos.br </JobId>
 <Queue> node01 </Queue>
 <GridId> glauco_ludwig@unisinos.br </GridId>
 <FromHost> node01.unisinos.br </FromHost>
 <Host> node09.unisinos.br </Host>
 <StartTime> 2005-09-13 17:24:50 </StartTime>
 <JobName> intracel_dynamics </JobName>
</JobStarted>

 <JobCompleted>
 <JobId> 1.1.1.node01.unisinos.br </JobId>
 <EndTime> 2005-09-13 17:30:22 </EndTime>
 <Processors> 2 </Processors>
 <NumNodes> 1 </NumNodes>
 <CpuTime> PT15S </CpuTime>
 <WallTime> PT45M48S </WallTime>
 <Memory> 1234 </Memory>
 <Disk> 560 </Disk>
 <Network> 1.000.000 </Network>
 <Charge> 300 </Charge>
</JobCompleted>

(a) JobStarted (b) JobCompleted

Fig. 2. Format of a SETRESOURCEPROPERTIES request.

4.3 Characterization Service

The characterization service operates as an intermediary component between the
publishers and the management application. The communication of both publishers
and the management application with the service is carried out through a WSDM
interface. Publishers update data into the service through SETRESOURCEPROPERTIES
requests, while a management application can (i) request for the value of a single
property (GETRESOURCEPROPERTY), (ii) request for a filtered set of information –
through an XPath query – of one or more resource properties
(QUERYRESOURCEPROPERTIES), and (iii) subscribe for a resource property, as well as
receive notifications. Figures 3 and 4 illustrate part of the SOAP envelope of both a
subscription to and a notification of change in the resource property JOBFAILED.

<wsnt:Subscribe>
 <wsnt:ConsumerReference>
 <wsa:Address> http://www.unisinos.br:8080 </wsa:Address>
 <wsa:ReferenceProperties/>
 </wsnt:ConsumerReference>
 <wsnt:TopicExpressionDialect=”http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Simple”>
 cs:JobFailed
 </wsnt:TopicExpression>
</wsnt:Subscribe>

Fig. 3. Format of a WSN-based subscription to JOBFAILED resource property.

<wsn:Message>
 <wsrf:ResourcePropertyValueChangeNotification xmlns:wsrf=”http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
 ResourceProperties-1.2-draft-01.xsd”>
 <wsrf:OldValue>
 <cs:JobFailed xmlns:wsrp=”http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.
 Xsd” xmlns=”http://schemas.xmlsoap.org/soap/envelope/” xmlns:fs=”http://ws.apache.org/resource/gaems”>
 …
 </cs:JobFailed>
 </wsrf:OldValue>
 <wsrf:NewValue>
 <cs:JobFailed xmlns:wsrp=”http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.
 Xsd” xmlns=”http://schemas.xmlsoap.org/soap/envelope/” xmlns:fs=”http://ws.apache.org/resource/gaems”>

 <fil:JobId> 2.1.1.node02.unisinos.br </fil:JobId>
 <fil:EndTime> 2005-09-13 15:30:24 </fil:EndTime>
 <fil:Processors> 4 </fil:Processors>
 <fil:NumNodes> 4 </fil:NumNodes>
 <fil:CPUTime> PT15S </fil:CPUTime>
 <fil:WallTime> PT45M48S </fil:WallTime>
 <fil:Memory> 5000 </fil:Memory>
 <fil:Disk> 850 </fil:Disk>
 <fil:Network> 10.000.000 </fil:Network>
 <fil:Charge> 0 </fil:Charge>

 </cs:JobFailed>
 </wsrf:NewValue>
 </wsrf:ResourcePropertyValueChangeNotification>
</wsn:Message>

Fig. 4. Format of a WSN-based notification for the JOBFAILED resource property.

With reference to the resource properties available in the characterization service,
currently six properties are offered: JOBSTARTED, JOBCOMPLETED, JOBABORTED,
JOBFAILED, JOBCANCELED, and JOBHISTORY. These properties are detailed in table 2.
Note that the first fifth properties are expected to be subscribed for. Hence, when a
job is completed, successfully or not, the management application may receive a real-
time notification, which can be used either by the grid system itself (e.g. to reschedule
a failed job) or the administrator. The JOBHISTORY property, on the other hand, stores
multiple instances of the Usage Record, which can be retrieved by a management
application through GETRESOURCEPROPERTY or QUERYRESOURCEPROPERTIES
requests.

The characterization service has been implemented based on the Muse framework
[1] from the Apache Software Foundation.

Table 2. Resource properties available in the characterization service.

Resource property Operations supported Information available
JobStarted Subscribe/publish Username, ProjectName, JobId, Queue,

GridId, FromHost, Host, StartTime,
JobName

JobCompleted,
JobAborted,
JobFailed,
JobCanceled

Subscribe/publish JobId, EndTime, Processors,
NumNodes, CpuTime, WallTime,
Memory, Disk, Network, Charge

JobHistory GetResourceProperty,
QueryResourceProper
ties

Username, ProjectName, JobId, Queue,
GridId, FromHost, Host, StartTime,
EndTime, Processors, NumNodes,
CpuTime, WallTime, Memory, Disk,
Network, JobName, Status, Charge1

1 The information available matches those of the Usage Record. The JobHistory property stores multiple
instances of the record.

4.4 Authorization Service

The authorization service is invoked by the characterization service whenever it
receives a request from a management application. Depending on the identification of
the requesting institution and the policies defined by the owner of the characterization
service, three situations may occur: a response is not sent; a response with partial
content is sent; or a complete response is sent.

The authorization model employed by the service to specify and enforce
information distribution policies is the RBAC (Role-Based Access Control) [5].
RBAC was chosen because it is widely accepted and simplifies the management of
policies. In this format, policies (e.g. permissions and restrictions) are associated to
roles, and institutions are assigned to the proper roles.

Table 3 illustrates the organization proposed for the policy repository. Institutions
may belong to one or more roles. Each role, on its turn, comprises the set of the Usage
Record fields allowed to be distributed.

Table 3. Example of policies specified for a hypothetical institutional characterization service.

Host/institution Role Policies1
University A University JobStarted, JobCompleted, JobAborted, JobFailed,

JobCanceled, JobHistory
Username, ProjectName, JobId, Queue, GridId,
FromHost, Host, StartTime, EndTime, Processors,
NumNodes, CpuTime, WallTime, Memory, Disk,
Network, JobName, Status, Charge

Company B Enterprise JobHistory
JobId, GridId, FromHost, StartTime, EndTime,
CpuTime, JobName, Status, Charge

Company C Enterprise JobHistory
JobId, GridId, FromHost, StartTime, EndTime,
CpuTime, JobName, Status, Charge

Other Default None
1 Information allowed to be distributed.

4.5 Management Application

In the management application, the grid administrator can configure the
characterization services it is going to interact with, as well as dynamically subscribe
for/be notified of relevant events generated by them. In the case of the notifications
received, they are presented in an event console. As for the historical information
retrieved from one or more characterization service instances, several plots can be
automatically generated, providing an integrated view of the usage of the grid
computing infrastructure (see figure 5 for a simple example).

Our current prototype was implemented in Linux, using the Java programming
language, the HSQLDB database, and the JFreeChart library (for the generation of
plots). We are also working on the design and implementation of a release of the
management application to run integrated to the HP Open View management
platform.

(a) Short-term (b) Long-term

Fig. 5. Plot of job execution statistics.

5 Experimental Evaluation

To prove concept and technical feasibility of the architecture, we have instantiated it
in a real setup, composed by three administrative domains: A, B, and C. In two of
them, A and B, both Globus and OurGrid middleware packages were deployed, while
in domain C only OurGrid was used. One instance of the Characterization Service
was installed and executed in each domain. In this environment, we were able to
evaluate the impact of policy definition on the dissemination of grid usage data
among the domains (explored in a paper being currently prepared by our research
group). In addition, we were able to stress both the publish/subscribe mechanism
(properties JOBSTARTED, JOBCOMPLETED, JOBABORTED, JOBFAILED, and
JOBCANCELED) and the requests for historical data (property JOBHISTORY). Data
retrieved by requesting the latter allowed the management application to draw plots
offering an integrated view of the whole grid infrastructure.

A preliminary performance evaluation of the architecture has also been carried out,
restricting the experiment to one Publisher, one instance of the Characterization
Service, and the Management Application. Each of these components was executed in
a different PC with 2 Pentium4 2.4 GHz processors, 1 GB of RAM memory, and
GNU/Linux Red Hat 8.0 operating system, which were interconnected through a 100
Mbps switch.

To obtain statistically sound results, each experiment was repeated 400 times. The
end-to-end delay, i.e. the time interval measured between the moment when an event
is generated by the grid middleware and the moment when it is reported to the
management application, was in average 245.62 ms. The standard deviation of the
observed measurements was 3 ms. Although this a hardware-dependent result, it
represents a good estimative of what one can expect in terms of the processing
overhead imposed by the management plane. We consider this result acceptable, since
the management application will be almost immediately informed about the
occurrence of important events and will be able to react, in a timely manner, to
interruptions in the execution of applications.

6 Conclusion and Future Work

The use of grid computing infrastructures is consolidated in academic environments,
but in corporate environments their deployment is not as accelerated as originally
expected. We attribute this to the lack of security and, specially, management
mechanisms to provide a reliable, secure, and controllable grid computing
environment. In this paper we proposed an architecture – based on a management
standard highly conformant with the current web services orientation of grid
technologies – to characterize and account, in a uniform and integrated way, usage of
grid computing infrastructures composed of heterogeneous middleware packages.

The architecture allows the grid administrator, in addition to receiving real-time
notifications about major events, to obtain long-term statistics about jobs executed,
resources used, and so on. This information allows one to precisely characterize grid

usage (e.g. in terms of top grid consumers, types of jobs executed, stations most
used). Existing solutions are limited, since they only gather complementary
information such as CPU load and memory use of the grid machines. From a grid
management perspective, the statistics the architecture is able to provide are important
(i) to assess the volume of accesses to the grid infrastructure, the communications
established, (ii) to draw a global grid usage profile, and (iii) to optimize and plan the
capacity of the grid.

Another important aspect of the architecture to be highlighted is its ability to
selectively distribute information taking into account the policies defined by every
institution comprising the grid computing infrastructure. Although a complete view of
the grid may not be offered if the policies are too restrictive, we believe it can be
avoided through negotiation and agreements between the institutions.

A major contribution of this work relies on the usage of WSDM, which consists of
a common approach for managing all components of a grid environment, including
resources and services. As far as we are aware, this is one of the first research papers
to propose (and report a real implementation of) a grid management service compliant
with this recently standardized specification.

As future work we intend to better evaluate the architecture developed, stressing it
under different number of (and simultaneous) publishers, subscriptions, and policies.
Besides, we will extend the architecture with complementary services to support
additional grid management functionality (fault, configuration, performance, and
security), following a plug-and-play design.

Acknowledgments

This work has been developed in collaboration with HP Brazil R&D.

References

1. Apache Web Services – Muse Project Home Page (2006). http://ws.apache.org/muse/.
2. Baker, M. and Smith, G. (2003). GridRM: An Extensible Resource Monitoring System.

IEEE International Conference on Cluster Computing, pp. 207-215.
3. Condor Project Home Page (2005). http://www.cs.wisc.edu/condor.
4. Dinda, P., Gross, T., Karrer, J. et al. (2001). The Architecture of the Remos System. IEEE

International Symposium on High Performance Distributed Computing, pp. 383-394.
5. Ferraiolo, D. F., Sandhu, R., Gavrila, S. et al. (2001). Proposed NIST Standard for Role-

Based Access Control. ACM Transactions on Information and System Security, v. 4, n. 3,
pp. 224-274.

6. Foster, I., Czajkowski, K., Ferguson, D. E. et al. (2005). Modeling and Managing State in
Distributed Systems: the Role of OGSI and WSRF. Proceedings of the IEEE, v. 93, issue 3,
pp. 604-612.

7. Globus Toolkit Home Page (2005). http://www.globus.org.
8. Graham, S., Hull, D., and Murray, B. (2006). Web Services Base Notification 1.3 (WS-

BaseNotification). OASIS Public Review Draft. http://www.oasis-
open.org/committees/download.php/18546/wsn-ws_base_notification-1.3-spec-pr-03.doc.

9. Lee, D., Dongarra, J., and Ramakrishna, R. et al. (2003). VisPerf: Monitoring Tool for Grid
Computing. International Conference on Computational Science, pp. 233-243.

10. Mach, R., Lepro-Metz, R., and Jackson, S. (2005). Usage Record – Format
Recommendation. Global Grid Forum Usage Record Working Group.
http://www.psc.edu/~lfm/PSC/Grid/UR-WG/UR-Spec.v1.pdf.

11. Massie, M. L., Chun, B. N., and Culler, D. E. (2004). The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience. Parallel Computing, v. 30, n. 7, pp. 817-
840.

12. Newman, H. B., Legrand, I. C., Galvez, P. et al. (2003). MonALISA: A Distributed
Monitoring Service Architecture. Computing in High Energy and Nuclear Physics.

13. OurGrid Project Home Page (2005). http://www.ourgrid.org.
14. Tierney, B., Aydt, R., Gunter, D. et al. (2002). A Grid Monitoring Architecture. Global

Grid Forum Performance Working Group. http://www-didc.lbl.gov/GGF-PERF/GMA-
WG/papers/GWD-GP-16-3.pdf.

15. Vambenepe W. (2005). Web Services Distributed Management: Management Using Web
Services (MUWS 1.0) Part 1. OASIS Standard. http://docs.oasis-
open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf.

16. Vinoski, S. (2005). Web Service References. IEEE Internet Computing, v. 9, no. 3, pp. 90-
93.

17. Wolski, R., Spring, N., and Hayes, J. (1999). The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems, v. 15, n. 5-6, pp. 757-768.

