
On Fully Distributed Adaptive Load Balancing

David Breitgand1, Rami Cohen2, Amir Nahir1, Danny Raz2

1 IBM Haifa Research Lab, Israel.
2 CS Department, Technion, Haifa

Abstract. Monitoring is an inherent part of the management loop. This
paper studies the problem of quantifying utility of monitoring in a fully
distributed load balancing setting. We consider a system where job re-
quests arrive to a collection of n identical servers. The goal is to provide
the service with the lowest possible average waiting time in a fully dis-
tributed manner (to increase scalability and robustness).
We present a novel adaptive load balancing heuristic that maximizes
utility of information sharing between the servers. The main idea is to
forward the job request to a randomly chosen server and to collect load
information on the request packet as it moves on. Each server decides,
based on that information, whether to forward the job request packet to
another server, or to execute it locally. Our results show that in many
practical scenarios this self-adaptive scheme, which does not require dedi-
cated resources for propagating of load information and decision making,
performs extremely well with respect to best known practice.

1 Introduction

To maximize value of Information Technology (IT), its low level management
policies have to be aligned with the high level business goals, which in many
cases impel systematic reduction of management overheads. In this paper, we
concern ourselves with the monitoring overhead present in any management loop.
Consequently, it is important to maximize the utility of monitoring in order to
improve the utility of the overall management process.

Consider for example a service that is being provided by a set of servers over
the network. The goal of the service provider is to provide the best service (say,
minimizing the response time) given the amount of available resources (e.g., the
number of servers). The provider can add a load sharing system (for example as
suggested in RFC 2391 [1]) and improve the response time. However, the same
resources (budget) can be used to add additional servers to the system and thus
provide better service to end customers. The dilemma here is between adding
more computational power and adding management abilities, where the goal is
to achieve the best improvement in the overall system performance.

Simple load balancing schemes, such as random selection or Round Robin are
oblivious to actual server load when making job assignment decisions. This may
work well for workloads with low variability. However, load-oblivious algorithms
lack adaptiveness and therefore may perform poorly for workloads exhibiting



medium to high variability. In order to considerably improve expected response
time in such cases, load-aware algorithms are required. These algorithms need
updated load information from the servers. Handling such load information re-
quests requires small but nonzero resources (e.g., CPU) from each server. Thus,
it is not easy to predict the actual amount of improvement expected from pre-
ferring a specific configuration. It is thus important to identify just the right
amount of resources that should be allocated to management tasks (such as
monitoring) in order to maximize the overall system performance.

Typically, load balancing is implemented via a centralized dedicated entity
that receives all requests and assigns servers to the requests. This option requires
additional resources and limits the system’s scalability and robustness. In [2] we
extensively studied quantifying of monitoring utility in such environment. As
shown in [2], for each service request rate, there exists an optimal number of
servers that should be monitored in order to maximize utility of monitoring or
reducing the total service time. This is a very generic result, which is applicable
to any management scheme that employs explicit monitoring components.

In this paper, we extend these results and develop a very efficient fully dis-
tributed and self-adaptive load balancing scheme. The main idea behind the
scheme is as follows. When a new job request arrives at an idle server, the server
executes it locally. Otherwise, it adds its local load information to the job re-
quest packet and forwards the request to a randomly chosen peer in the cluster.
A peer server that receives the packet with the senders’ load information on it,
compares it to its own load and makes a decision whether to execute the job
locally, or to further forward it to another peer. This way, the load information
on the request packet is collected en-route. When the d-th server receives the
job request packet, the latter contains information about the load of other d− 1
servers. As d grows, this information becomes more out of date and the waiting
time prior to execution grows linearly with d. Thus, there is a tradeoff between
the number of hops a job request may travel before getting executed at the least
loaded server and both the delay it spends and the quality of load information
that is used to determine the least loaded server.

We study several heuristics for optimizing this tradeoff and evaluate their per-
formance using extensive simulations and an implementation on a real testbed.
The primary results are represented by the self-adaptive heuristics, in which the
system adapts to the changing environmental conditions (i.e., load, type of re-
quests and their service time, etc.) in a fully distributed scheme. It turns out that
in many realistic scenarios self-adaptiveness performs extremely well, resulting
in significant performance gains.

The rest of this paper is organized as follows. In Section 2 we formally define
the model for the framework. In Section 3 we describe two advanced heuristics,
that are self-adaptable to the load conditions and compare them to the optimally
configured Centralized Monitoring (CM scheme). In Section 4 we describe the
implementation of the scheme and present its performance evaluation on a real
set of servers. Section 5 describes related work. We conclude in Section 6 with a
short discussion of our results.



2 Model

In this section we describe our model and provide intuitive motivation for se-
lecting the main factors that influence the total performance of any distributed
load balancing mechanism.

As described in the previous section, we consider a fully distributed server
system in which client requests arrive in a set of Poisson streams of traffic in-
tencity (load) λ to a set of n identical servers. The total load in the system
is n · λ. We assume a non preemptive load sharing model, in which a job that
started executing at a server cannot move to another server. For the sake of
simplicity we assume a single FCFS queue for job requests at each server. When
such a request arrives at a server, the server has to decide whether to serve the
job request locally or forward it to another server. The information available
to the server when making this decision includes local information and infor-
mation attached to the job request. The local information contains the server
current queue length and statistics describing the workload parameters com-
puted from the local execution history. These statistic information include job
request frequency and average job service time. The information provided by
the job request itself contains client based information, an estimation of service
time, and information added by other servers in the system if the request was
forwarded from another server and not directly received from a client.

In order to make the algorithmic decision of whether to accept the request
or forward it and to which server to forward it, the server has to stop serving
the current job (if the server is not idle), and to allocate resources (CPU) to the
management process. It has to examine local data and data provided with the
request, run the decision algorithm, and, if needed, forward the request. This
delays the execution of the current job and of all jobs that wait for execution
in the local queue. Note that in case of a multi-CPU server, the situation is
essentially the same, since dedicating a full separate CPU just to serve control
requests is wasteful. Thus, preemption of client requests will be unavoidable
under high load conditions. To verify this point, we implemented a CPU intense
server as described in Section 4. This multithreaded server was executed on a a
blade server containing Dual PowerPC machines, each having a 2.2GHz 64-bit
CPU, with 4GB of RAM. Figure 1 depicts the average normalized execution time
(from the time the job started to be executed until it terminated) as a function
of the number load queries per job. The net service time (measured in a setting
without load) was about 165 milliseconds, but as can be seen clearly from the
figure, the actual time increases linearly with the number of monitoring requests.
This shows that even in an advanced architectures, the monitoring overhead is
not negligible.

Therefore, the ratio between the time it takes a server to handle such job
request and the expected mean service time is a critical factor that affects the
overall performance of the system. This overhead efficiency ratio, denoted by
C, reflects the amount of impact the distributed management task has on the
actual service. In this intense CPU setting, where a user request takes about 165



0 5 10 15 20 25
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

d − the number of Peers

A
ve

ra
ge

 N
et

 S
er

vi
ce

 T
im

e

Lambda=0.74
Lambda=0.78
Lambda=0.83

Fig. 1. Execution time as a function of the number peers‘ load requests

milliseconds, each load request takes about 0.33-0.5 milliseconds so C is between
0.002 and 0.004.

When a job request is forwarded, it takes time until it arrives to the next
server, and this time is added to the overall response time. Thus, another im-
portant factor is the ratio between the communication time between servers and
the mean expected service time of a job, called communication ratio. This ratio
is denoted by CT . When a server examines a job request, the load information
piggybacked in it may be staled due to communication delay. If the delay is
small relatively to the service time, the affect of the delay may be negligible,
but otherwise it may have a detrimental affect on the total performance. As an
example of the former case consider servers communicating over a Gbit Ethernet
and an average service time of 300 milliseconds. As an example of the latter case
consider servers distributed throughout the Internet and an average service time
of about 100 milliseconds; in this case communication time is in the same order
as service time and the load information piggybacked on the job request may be
totally out of date.

Both the communication ratio and the overhead efficiency ratio depend on
physical aspects of the system such as the communication delay and the CPU and
memory abilities, and on the service provided that determines the distribution
of jobs’ service time.

Let d be the number of hops (the number of servers) an incoming job re-
quest travels before it is being admitted to a local FCFS queue of some server.
Effectively, this is the number of servers being implicitly monitored by this job
request. Let 1

µ denote the mean service time. Then the expected mean response



time in the system E(R) is given by Equation 1, where L̄ is the average queue
length.

E(R) =
1
µ

(L̄(1 + d · C) + d · CT ) (1)

The first factor is due to the queue and the fact that on the average d job
requests arrive during the service of a job, each consumes C fraction of the job
service time. The second factor is due to the time it takes to move from one
server to another.

3 Self Adaptive Heuristics

In Basic heuristic that is used for baselining, if the server is idle or the server
receives a job request that traveled more than d hops, the server serves the re-
quest. Otherwise, if the job request traveled less than d hops, the server forwards
the request to a random new server. If the job request traveled exactly d hops,
the server finds a server with the shortest queue among these d, according to
information on the request, and forwards the job to this server. This heuristic
basically says that as long as we did not examine d servers we stop only if we
find an idle server. After examining d servers, we execute the job on the least
loaded (the one with the shortest queue) server among these d.

The important factor is, of course the choice of d. The dependency of the
average queue length (and thus the average time in the system) on d is rather
complex. On the one hand, as d increases we have a higher probability of finding
an idle server (or a server with a small queue) and thus reducing the average
queue length. On the other hand, as d increases more and more servers have to
forward the same job request thus “paying” a portion of C resources and slowing
down the actual service.

The optimal value of d depends on the system parameters such as the load,
the overhead efficiency ratio C, and the communication ratio CT . While C and
CT are almost an invariant for a given system, the load of the system may
change often. Thus monitoring a constant number of servers d (explicitly or
via piggybacking) is not optimal. In this section, we present two self adaptive
heuristics in which the number of examined servers dynamically changes with
the system load.

In the centralized model, in which one dispatcher receives all the jobs, the
mean time between jobs arrival together with the mean service time and the
number of servers, determine the load in the system. Updating the load can be
done dynamically by considering the mean time between job arrivals measured
so far and the new time between consecutive job arrivals, every time a new
job arrives. Thus, if two consecutive jobs arrive to the dispatcher at t+ and t−

(t+ > t−), the new mean time between job arrivals, calculated at time t+ is:

mtba(t+) = α ·mtba(t−) + (1− α) · (t+ − t−), (2)



where 0 < α < 1 is a parameter that defines the speed in which the system
adapts to the new settings. When the distributed model is considered, each
server receives only a small part of all the jobs. Thus, the load measured by
computing the mean time between job arrivals locally at each server can be
biased and may not reflect the actual load of the entire system. To overcome this
problem, each server computes the load by considering the mean time between
job arrivals using only the population of jobs that served by this server, but not
those forwarded to other servers. This estimation is much more robust since the
served jobs are distributed more evenly due to the load balancing mechanism
that is used, and the mean time between local job assignments approximates the
actual mean inter-arrival time of the jobs in the system.

The theoretical analysis in [2] provides a way to determine an optimal number
of servers that should be monitored for each set of values of load and C. These
values can be used to estimate the optimal value of d. In our first self adaptive
heuristic, each server maintains a lookup table that contains an optimal value
of d for different values of load and C. When a new job arrives to a server it can
locally determine (based on its local estimation of the load) what the optimal
value of d is. Then, using Basic heuristic, it decides whether to accept the job
or to forward it to a different random server.

Forwarding a job from one server to another can reduce the waiting time of
the job if the queue length in the next server is shorter than the current queue
length. However, there is also a cost associated with this process. This cost
includes the communication cost and the processing time it takes to monitor the
next server. In the second self adaptive heuristic we present, every server that
receives a job, evaluates the cost associated with forwarding the job to another
server and compares it with the expected benefit. If the benefit is greater than
the cost, the server forwards the job, otherwise, the server assigns the job to the
server with the shortest queue among all servers that were visited by this job
request so far.

Forwarding a job to another server increases the response time of that job
by CT . Moreover, the new server has to invest CPU in order to handle this job
request. This increases the service time of all jobs waiting to be served at this
new server by C times the mean service time. Thus, the cost of forwarding a job
in terms of the mean service time is CT + L̄ · C, where L̄ is the average queue
length at the new server.

If the queue length of the new server is shorter than the minimum queue
length found so far, then it is beneficial to forward the job to the new server.
Denote by p(i) the probability that the queue length in the new server is equal to
i and by Q(min) the minimum queue length among servers visited so far. The
expected benefit from forwarding a job to a new server in terms of the mean
service time is:

B =
Q(min)∑

i=0

(Q(min)− i) · p(i). (3)



In [3] the author shows that the probability that a queue length is greater

than or equal to i is s(i) = λ
di−1
d−1 . Considering the overhead efficiency ratio C,

the effective load is increased by 1
1−a·C·d , where a is some constant (see [2]),

therefore we use λ = λ′ · 1
1−2C·d for the system load, where λ′ is the incoming

load. Thus,

p(i) = s(i)− s(i + 1) = λ
di−1
d−1 − λ

di+1−1
d−1 . (4)

The current load in the system λ can be estimated using the same technique
discussed in the first heuristic, and d the number of peers is the average number
of peers visited so far. Using the above formulae and these estimations, each
server can compute the expected cost and benefit and forwards the job only if
the expected benefit exceeds the cost.

Figure 2 depicts the average response time vs. the overhead efficiency ratio
C for a different values of load, obtained by simulating the two self adaptive
heuristics over a LAN environment. In most cases, especially when the load is
relatively low, the second heuristic achieves better results compared to the first
heuristic, while in high load their performance is similar. This is due to the fact
that while the first heuristic uses a general model to derive the optimal d, the
second heuristic is more sensitive to the actual queue lengths found so far.

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Overhead efficiency ratio (10    -3 )

load=0.80 Self Adaptive Heuristic II
load=0.90 Self Adaptive Heuristic II
load=0.96 Self Adaptive Heuristic II
load=0.80 Self Adaptive Heuristic I
load=0.90 Self Adaptive Heuristic I
load=0.96 Self Adaptive Heuristic I

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0  2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Overhead efficiency ratio (10    -3 )

load=0.50 Self Adaptive Heuristic II
load=0.60 Self Adaptive Heuristic II
load=0.70 Self Adaptive Heuristic II
load=0.50 Self Adaptive Heuristic I
load=0.60 Self Adaptive Heuristic I
load=0.70 Self Adaptive Heuristic I

Fig. 2. Average service time as a function of the overhead efficiency ratio

Figure 3 demonstrates average response time of the self-adaptive heuristics,
for C = 5 · 10−3 and a very small communication ratio. For comparison we also
plot the average service time of the Basic heuristic, where for each run k is set to
be the optimal value for this load value, and the expected average service time in
the centralized model of [2]. As one can see, the adaptive methods (without any
tuning) perform as good as the algorithms optimally configured for the specific
load level and the basic distributed heuristic.



 1

 1.5

 2

 2.5

 3

 50  55  60  65  70  75  80  85  90  95  100

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Load

Analysis
Basic
Self 1
Self 2

Fig. 3. Performance of the self adaptive heuristic as a function of the system load -
Simulation results.

4 Practical Implementation and Evaluation

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

d − the number of Peers

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Peer Monitoring Lambda=0.83
Peer Monitoring Lambda=0.78
Peer Monitoring Lambda=0.78
Basic Heuristic Lambda=0.83
Basic Heuristic Lambda=0.78
Basic Heuristic Lambda=0.74

0 5 10 15 20 25
1

2

3

4

5

6

7

8

d − the number of Peers

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Peer Monitoring Lambda=0.96
Peer Monitoring Lambda=0.89
Basic Heuristic Lambda=0.96
Basic Heuristic Lambda=0.89

Fig. 4. Performance of the scheme on a testbed

In order to study the practical performance of a distributed load sharing
system as described in this paper and the actual usefulness of the theoretical
results, we implemented such a server based system and tested its performance
on a testbed network.

Each server is comprised of two main components:

1. Service Component: this is the component which performs user requests.
When no user requests exist, this component is idle. When a new user request



arrives (queued by the main component see below), the Service Component
is interrupted, it deques the user request and processes it. Processing of a
request is implemented as a busy-wait loop emulating CPU intensive service,
where the service duration depends on a tunable parameter and the servers
CPU power. Upon completion, a response is sent to the originating user, and
if additional user requests exist, the Service Component proceeds with the
processing of the next request.

2. Main Component: this component listens for job requests (received di-
rectly from the user or forwarded from another server). Whenever a job re-
quest is received, this component determines whether to process the request
locally, or to forward it to another server. If the server is idle the request is
processed locally. Otherwise, the specific logic implementing the heuristic is
deployed and the decision is made.

The load estimation mechanism required for both adaptive heuristics is im-
plemented based on Equation 2. Whenever a server queues a job request, it
calculates the length of the time interval between the previous job request’s
arrival time and the current one’s, and updates its load estimation. For the pur-
pose of testing, α = 0.9 was used. The average queue length, L̄, needed for the
implementing the scond heuristic is estimated locally in a similar manner.

70 75 80 85 90 95 100
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

System Load

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Basic Heuristic
Improved Basic Heuristic
PM
Aadaptive Heuristic II
Aadaptive Heuristic I

Fig. 5. Performance of the self adaptive heuristic as a function of the system load

The entire server is implemented in Java. Each component is implemented
as a Java thread. The Main Component acts as the producer in a consumer-
producer relationship between the Main and Service Components. Jobs received
by the Main Component which are queued locally are consumed by the Service
Component. To simplify the implementation, service requests are implemented
using UDP.



In order to test the performances of our scheme, a system containing dis-
tributed copies of the above described server component, 24 copies of this server
were deployed on 12 Dual PowerPC machines, each of which has a 2.2GHz 64-bit
CPU, with 4GB of RAM. These machines are part of a Blade Center. There-
fore CT in our setting is negligible and implicitly accounted by C. A client was
created to generate all requests, to collect all answers from the servers and to
produce logs that were processed to create the system statistics. The average
service time in all test runs was set up to be around 165 milliseconds.

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

clients

n servers 

servers’ queues

d −1 = 2

Fig. 6. A basic distributed scheme with explicit monitoring: Peer Monitoring

In order to compare our method to distributed load balancing alternatives,
which employ dedicated monitoring, we implemented a scheme called Peer Mon-
itoring (PM). This scheme is depicted in Figure 6. In PM, the server actively
queries k peer servers for their load (where k is a parameter of the scheme), using
a dedicated monitoring algorithm, and assigns the job to the least loaded server
among these peers. Essentially, PM is a straightforward distributed version of
CM, in which each server acts in two capacities: a regular server and a central-
ized dedicated monitor for a neighborhood of size k. From testing the service
time for different values of d (number of peers to query) we conclude that the
overhead efficiency ratio C was approximately 0.003 in our setting.

For each d value and each load parameter (load is achieved by tuning the
average inter arrival time at the client) we performed several runs of over 20000
job requests each, and computed the average response time. The average response
time for five load values as a function of d is depicted in Figure 4. One can see
that the basic hop count scheme performs better than the PM scheme. This is
because the Basic heuristic incurs less management overhead on the server, since
the data needed to perform management decision is conveyed via the job request



packet, and not by direct load queries. It is worth noting that the results of the
Basic heuristic are quite similar in the low and medium load (when d ≥ 3), this
is due to the fact that in such loads, the probability of finding an idle server
within a few hops is high.

Figure 5 depicts the performance of the two adaptive heuristics with respect
to Basic PM, where each is assumed to use the best parameters for that load. One
can see that Self Adaptive Heuristic I outperforms both the PM scheme as well
as the basic hop count scheme. The second Adaptive Heuristic does not perform
as well. This indicates that this heuristic is more sensitive to parameter tuning.
Note again that neither of the adaptive heuristics uses any tuning, and the
process is self adaptable to the current load. Also note that even for a relatively
small set of servers, the load balancing performs very well for all load values.

5 Related Work

Load balancing mechanisms were extensively studied in a variety of contexts over
the last twenty years. Proliferation of highly dynamic research and industrial
efforts caused the “load balancing” term to become a somewhat overloaded con-
cept. Load balancing (sometimes referred to as “load sharing”) may have slightly
different meanings when different computer science communities are concerned.
Interested reader are encouraged to read [4] for the load balancing taxonomy
and fully specified positioning of our monitoring overhead-aware approach to
load balancing.

The cost of monitoring is an integral part of the overall cost of the load bal-
ancing algorithm. Clearly, a trade-off exists between the quality of monitoring
and the cost of acquiring the monitoring data. On the one hand, the more up-
dated the monitoring data is, the higher is the total quality of load balancing [5–
7, 2]. On the other hand, since monitoring takes small but non-zero amount of
computational and communication resources, its inherent cost becomes a limit-
ing factor for scalability. Although this trade-off has been long noticed, no formal
study of it was performed until recently [2]. Some insightful empiric studies have
been carried out, though [7, 5].

Our approach is fully distributed and is close in spirit to Direct Neighbor
Repeated (DNR) policy [8] used in diffusive. Our solution is different from the
DNR-like strategies since it does not use explicit monitoring to evaluate the load
distribution in the neighborhood, but rather collect the monitoring information
en-route, while a new job travels a few hops before settling for execution. In
addition, we use a randomly selected dynamic logical neighborhood, while the
DNR-like solutions use a physical static neighborhood.

A novel approach to Load Evaluation and Task Migration sub-policies was
presented in [9]. In this solution a unified cost model for heterogenous resources
was presented. Using this cost model, the “marginal cost” of adding a task
to a given destination is computed. A task is dispatched to the destination
which minimizes the total marginal cost. In a sense, it is a variation of a greedy



algorithm. However, thanks to its sophisticated cost model, it outperforms simple
greedy algorithms.

Another innovative approach that combines a threshold-based approach with
the greedy strategy in an interesting way was presented in [10]. The primary
goal of this work is to achieve an autonomic adaptable strategy for peer-to-peer
overlay maintenance with QoS guarantees in spite of possible server crashes.

In contrast to other load balancing mechanisms, our solution explicitly takes
monitoring costs – which is an integral part of any load balancing solution – into
account following the footsteps of [2]. In contrast to [2], in this work we con-
centrate on a fully distributed setting. The distribution, however, brings about
a problem of staleness of the load data acquired at different points in time as
new job requests travel among different randomly selected servers. It turns out
that closed form solution of the average response time in presence of staleness
is unlikely even for the Poisson traffic model [5, 2]. We, therefore, use mainly
simulations and emulation to study the behavior of our proposed heuristics.

6 Conclusions and Future Work

The ability to quantify the benefits of a system management tool and the over-
head associated with it is an important step toward developing cost effective
self enabled systems. This paper provides one building block in the strive to
rigorously quantify the effectiveness of management systems. We consider a dis-
tributed service setting where the goal is to minimize the total average time
required to provide the service to the customers. Much of the overhead associ-
ated with load balancing systems in such a setting is due to the need to monitor
the load on the different servers in order to assign job requests to sub-utilized
servers.

In order to understand the exact benefit of this explicit monitoring, we com-
pare the benefit of explicit monitoring systems with the best possible “no moni-
toring” solution. Note that a simple random assignments of servers to jobs in our
setting results in an average waiting time of 1

1−λ , which yields a total time of 2.5
times the service time in 80% load. Our schemes reduces this factor considerably
(to 1.2− 1.5).

These results indicate the importance of identifying the exact cost and benefit
associated with system and network management. The same methods could be
used to understand this tradeoff in different networking settings (such as routing)
that involve dissemination of local information through the network.

References

1. P. Srisuresh and D. Gan, “Load Sharing using IP Network Address Translation
(LSNAT),” August 1998.

2. David Breitgand, Rami Cohen, Amir Nahir, and Danny Raz, “Cost aware adaptive
load sharing,” in The 2nd International Workshop on Self-Organizing Systems
(IWSOS 2007), English Lake District, UK, September 2007.



3. M. Mitzenmacher, “The power of two choices in randomized load balancing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 10, pp. 1094 – 1104,
October 2001.

4. David Breitgand, Amir Nahir, and Danny Raz, “To know or not to know: on
the needed amount of management information,” Tech. Rep. H-0242, IBM T.J.
Watson Research Center, 2006.

5. M. Mitzenmacher, “How useful is old information?,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 11, no. 1, pp. 6 – 20, January 2000.

6. Chi-Chung hui and Samuel T. Chanson, “Improved Strategies for Dynamic Load
Balancing,” IEEE Concurrency, vol. 7, no. 3, pp. 58–67, 1999.

7. Ossama Othman, Jaiganesh Balasubramanian, and Douglas C. Schmidt, “Per-
formance Evaluation of an Adaptive Middleware Load Balancing and Monitoring
Service,” in 24th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), Tokyo, Japan, May 2004.

8. Antonio Corradi, Letizia Leonardi, and Franco Zambonelli, “On the Effectiveness
of Different Diffusive Load Balancing Policies in Dynamic Applications,” IEEE
Concurrency, vol. 7, no. 1, pp. 22–31, 1999.

9. Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren, “An Opportu-
nity Cost Approach for Job Assignment in a Scalable Computing Cluster,” IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 7, pp. 760–768, 2000.

10. C. Adam and R. Stadler, “Adaptable Server Clusters with QoS Objectives,” in
9th IFIP/IEEE International Symposium on Integrated Network Management (IM
2005), Nice, France, May 2005.


