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Abstract. The discovery of dependencies between components of a net-
work can reveal relationships among components of multi-tier applica-
tions and the underlying I'T infrastructure, such as servers and databases.
Knowledge of these dependencies is thus important for the management
of large distributed, heterogeneous and virtualized systems, where it is
difficult to maintain an accurate view of how network assets are func-
tionally connected. In this paper we present a passive method that uses
attributes of traffic flow records and derives traffic dependencies among
network components using a flexible fuzzy inference mechanism. Simula-
tions and evaluation with real traffic traces show the applicability of the
approach for flow-based dependency detection.

1 Introduction

In the past several years, a result of the rapid growth of the Internet is the
development of distributed, heterogeneous and virtualized networks. Monitor-
ing and management of such systems have become a critical issue. The purpose
of a management system is to monitor vital attributes of network in an auto-
matic manner and to take action whenever needed. Furthermore, with the rapid
evolution of enterprise networks, many different applications and services are
being developed. Most of them are distributed and consist of different compo-
nents. Availability and performance of these services are important for revenue-
generating business processes, so enterprises enter service level agreement (SLA)
with Internet service providers (ISPs). The monitoring of the performance of the
services, according to the SLA, is a crucial issue of network management.

Due to the financial impact of SLAs, there is great research interest in service
management and integrated management tools that automatically monitor the
performance of multi-tier applications and that can also autonomously handle
arising problems. A functional and structural model of a service or application is
a powerful tool for the maintenance, expansion and performance analysis of the
service. It helps administrators to detect which component of a service is respon-
sible for a possible failure and which other business processes will be affected.
These two problems are known as root cause analysis and business impact anal-
ysis, respectively. The first step in building an operational model of a service is
to completely understand the interaction of the network components that com-
prise an integrated application. Because of the complexity and the heterogeneity



of enterprise networks, there are many types of relationships and dependencies
between the parts of multi-tier applications. In [1], Keller et al. presents a good
definition and classification of the different types of dependencies among service
components. This classification is based on many characteristics, such as locality,
domain, component type and activity as well as dependency detection method
and strength.

Our work focuses on the problem of detecting dependencies between IT com-
ponents by examining attributes of flow records in enterprise networks. This is
particularly useful for administrators in order to predict the impact of low service
performance and to detect which network component is at the root of a problem.
It potentially reduces recovery time and is useful to predict the impact of main-
tenance operations on the performance of the entire system. Furthermore, it is
a powerful designing tool for expanding the IT infrastructure, reducing opera-
tional costs and complexity as well as decoupling the various parts of different
services and business processes.

This work investigates the problem of detecting dependencies between net-
work components in order to reveal relationships between parts of multi-tier ap-
plications and, more generally, of business processes. We present a novel method
of discovery using attributes of traffic records and a fuzzy inference engine. A
fuzzy inference mechanism is appropriate for dependency detection for two ma-
jor reasons. First, there are many quantitative features so that it is more natural
to use a modelling approach in terms of fuzziness than based on sharp boundary
intervals. Second, the fuzziness employed in representing these features helps to
smooth the strict separation of dependency versus non-dependency.

The remainder of the paper is structured as follows. The next section dis-
cusses related work. Section 3 contains an analytical description of our algorithm,
which is based on collecting traffic attributes of network and analyzing them with
the help of a fuzzy system. Section 4 describes the implementation and evalua-
tion of the approach using real data as well as some simulations. In Section 5, we
discuss the limitations of our method. The paper finishes with the conclusions
and an outlook in Section 6.

2 Related Work

Kind et al. [2] present an ad hoc passive method that uses NetFlow records and
the start and end timestamps to discover relationships between network assets.
A similar approach is presented in [3], which uses the start and end timestamps
of a flow record to produce dependency graphs between network components.
Chen et al. provide a framework in [4] to identify which components are used to
satisfy each individual request by instrumenting the middleware and the commu-
nication layer between network components. Brown et al. [5] present an active
dependency discovery method to determine the dynamic relationships between
parts of a service. Kar et al. [6] use data collected from system information
repositories, such as the IBM AIX Object Data Manager (ODM), which keeps
track of the installed software package, file sets and their versions to enable a de-



pendency analysis for managing application services. Another ad hoc technique
is proposed in [7], the authors use Leslie graphs to represent the relationships
between components of IT systems. A passive statistical approach based on the
timestamps of flow records is presented in [8]. It provides a direct dependency
estimation method that calculates the probability with which a transaction of
a flow is contained in at least one other transaction. Kashima et al. propose a
concrete modelling method for discovering direct dependencies by calculating
the service call frequency matrix and the service call ratio (SCR) matrix, which
reveal dependency values regardless of the work load intensity. In [9], a neural
network approach is used for automated generation of service dependency mod-
els. The behaviour of hosts was monitored repeatedly by collecting time series of
their activities, such as CPU activity of a host, communication bandwidth used
by a system. The neural networks are fed with these time series to determine
whether there is a dependency. Finally a data-mining technique exists that can
be used to discover correlation between data of databases. In [10], the author
proposes a method of detecting time correlations in time-series data streams in
order to discover service relationships and analyze the business impact analysis.

3 Dependency Discovery

We consider the problem of detecting dependencies between IT elements by ex-
amining attributes of flow records in enterprise networks. These relationships
can be classified into intra-system and inter-system dependencies. Intra-system
dependencies are the dependencies between components of an enterprise network
located within a single site. Inter-system dependencies describe the relationships
between components of an enterprise network that are distributed across more
than one site. The existing approaches for identifying relationships can be classi-
fied into active and passive methods. The basic idea of active discovery methods
is to generate traffic flows from a starting point and use an iterative algorithm
to explore the entire network up to an end point. Passive mapping performs
the collection and analysis of traffic characteristics without generating any kind
of traffic. The collection of the necessary information can be done by any traf-
fic meter that exports NetFlow/IPFIX flow information, such as many routers
and switches (see [11]). NetFlow provides flow-based traffic information, such as
source/destination IP address, protocol and source and destination ports. Apart
from the tuple that defines a flow, we can collect other attributes such as packet
and octet volumes. In our approach, we are interested in detecting dependencies
by examining the attributes of flow records. The most important characteristics
are the start and end timestamps of flows. By examining these time stamps we
would like to decide whether a flow triggers the start of another flow. This trigger
can be interpreted on the functional level of a service as the connection of two
different components to execute a specific task that is part of the same service
or business process. By identifying all these relationships between network com-
ponents of a service, we can obtain a clear overview in terms of which elements
of network infrastructure are responsible for the provision of a particular ser-



vice and business process. Before we formalize what a flow dependency is, it is
essential for our algorithm to introduce a formal definition of the flow concept.

3.1 Flows and Events

We define a flow f as a 3-tuple of the following basic traffic attributes
f = (srclP,dstIP,dstPort) € F,

where srcIP and dstIP are the IP address of source and destination host, respec-
tively, and dstPort is the TCP/UDP service port of destination host. The set of
all flows is denoted by F. We only use dstPort because it can be assumed that
in most TCP-based server environments the destination port is identical to the
service port. The source port is, however, randomly chosen and thus not useful
for further analysis. If we had used source port for flow definition, then two dif-
ferent requests from the same source host to the same destination would create
two different flows. This is not desirable because these two flows are related with
the same task. An event—typically a NetFlow record—is defined as

e = (f,ts, te, octs, pkts) € E,

where f is the flow as defined and s and t. are the start and end timestamps of
a flow event respectively, octs and pkts are the number of bytes and packets of
a flow respectively. The set of all events is denoted as E. Finally we denote the
set of all events of a given flow f as

E(f)={ecElfe=[}

The dstPort cannot be assigned to an application but it can be only an indica-
tion of it, because nowadays many applications use unpublished or dynamically
assigned ports. By the definitions of flow and event and analyzing the event
attributes, we can easily distinguish whether a specific host acts as server or
client. As a server always accepts requests in a specific port, all requests from
the same source host are represented by the same flow. This fact can be exploited
for focusing our attention on some entities, such as server and databases, which
are integral components of multi-tier distributed services and applications. Run-
ning our algorithm for extended time periods many dependencies that are not
so obvious will reveal such as the use of a secondary or backup server.

3.2 Flow Pair and Event Pair

An event can present the attributes of a connection between two hosts, but
it cannot reveal any relationship among many hosts that are integral parts of a
process or service. Nowadays, most of the applications and services are multi-tier.
This means that they are based on different individual components, which are
distributed and strongly depended one on the other. Hence, the main goal of our
algorithm is to identify network assets that are parts of a multi-tier application



and to measure the strength of their dependency. The basic principle of our
approach is to identify which flow pairs (or chains of flows) occur more often
than other pairs do. The existence of specific frequent flow pairs can show a
functional dependency between specific hosts. For the aforementioned reason we
must define what a flow pair is. We consider that any two flows in F' define a
flow pair if the following two conditions are satisfied:

- the destination IP address of the first flow is identical to the source IP address
of the second flow.

- the destination of the second flow is not identical to the source of the first
flow.

We exclude the case that the destination IP of second flow is identical to the
source IP of the first flow, because this reveal a client-server relationships. Since
we are interested in detecting relationship between more than two hosts that are
components of multi-tier services, client-server relationships cannot reveal such
kind of dependencies. Assuming any two different flows f; and f; in F, where

fi = (srcl P;,dstIP;,dstPort;)
fj = (srel Py, dstIP;,dstPort;)
the flow pair function is defined as

Lif dstIP; = srel Py A

fo(fi, f5) = srcl P # dstIP;
0 otherwise.

After the definition of the flow-pair function, we define the set of all event pairs
for any two different flows f; and f; in F. Assuming any two different events
er,e; in F,

ex = (fi,tsk,tek, octsy, pkts) € E(f3).

et = (fj, tsi, ter, octs;, pkts;) € E(f;).
the set of all event pairs P for any two flows f; and f; in F, with f; # f;, is
defined as

P(fi, f5) = {(ex,e1) |0 <ty — top <tmax A fp(fi, f;) =1}

As shown in the above definition, two events are considered an event pair if
they satisfy the flow-pair function and the difference of their start timestamps
is less than t,,.x. The main idea of using this time difference as a criterion of
dependency is that flow events close in time are likely to be really dependent.
The value of ¢, is critical for the success of the algorithm. If it is too small, then
dependencies between heavily-loaded servers can not be identified. On the other
side, if it is too large, then it is possible to identify false dependencies between
hosts that they do not have any operational relationship. Also .« depends
mostly on the time that a server or a database needs to process a request and
reply. This processing time varies and depends on the complexity of the request
and the work-load of the server. From our experience a logical value for ¢,,,x can
be 10 seconds.



3.3 Confidence Variables

The time difference of the start timestamps of two events cannot be a safe metric
of dependency by itself. In heavily-loaded networks there is high probability
of discovering many erroneous event pairs, which were created by chance. To
reduce the erroneously recognized dependencies between hosts, we use a metric to
express how confident we are that an event pair is real. We define two confidence
variables based on the following concepts:

- If a specific event pair occurs many times, then our confidence for this pair
is high.

- Assume that there is a set of event pairs between any two flows f; and fs. If
the ratio between the number of these event pairs and the number of events
e and ey that do not belong to any of these event pairs is high, then we are
more confident that the event pair exhibits a dependency.

We encode the previous considerations in the math expressions of two confidence
variables C1 (fl7 fg) and C2 (fl; fQ)I

- Cl(flafg) = W,
where |P(f1, f2)| is the number of event pairs and p is the average number of

elements of all sets of all event pairs described by the expression:

= Zi:l..m Zj;ll..m P(fivfj)

_ |P(f1.f2)]
- 2 f2) = [ B ) TG

where |P(f1, f2)| is the same as before, |E(f1.,)| and |E(f2w)| are the numbers

of sets E(f1,) and E(fa,), respectively, which are defined, given a P(f1, f2), as

follows:

E(fiw) = {e1 | ereE(f1) ander & P(f1, f2)}
E(f2w) = {62 \ €2€E(f2) and ey ¢ P(flaf?)}~

In other words, |E(f1,)| and |E(f2,)| represent how many events of flows f;
and fs, respectively, do not participate in the creation of an event pair that is
an element of set P(f1, f2). We can also define different confidence variables or
a combination of the variables defined above.

3.4 Fuzzy system

Fuzzy systems have demonstrated their ability to solve different kinds of prob-
lems in various applications. Our method of discovering relationships between
network hosts and service components is based on fuzzy logic. We can build a
fuzzy inference engine that can determine how strong or weak the dependency
of an event pair is. The advantages of a fuzzy inference mechanism are that it
has a simple and flexible structure and can be used in different networks. In
addition, it can describe, in an intuitive and user-friendly manner, the problem
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Fig. 1. Structure of a fuzzy system and membership functions

of detecting relationships without making assumptions about the nature of the
correlated traffic. But, in fact, these assumptions may not be valid or absolutely
correct. Also, fuzzy logic helps to smooth the strict separation of dependency
and non-dependency and the quantitative features (e.g., time and confidence
variables) can be modelled in terms of fuzziness rather than using hard bound-
ary intervals. The fuzzy system is based on the transformation of our knowledge
into a set of fuzzy rules. Input and output of the fuzzy system are expressed by
the linguistic values of the fuzzy variables of the system. A fuzzy system [12]
(Fig. 1) is composed of the following four elements:

- A fuzzification interface, which converts the inputs into fuzzy information
that the inference mechanism can easily use to activate and apply rules.

- A rule base (a set of If-Then rules), which contains a fuzzy logic quantifica-
tion of the linguistic description of our knowledge.

- An inference mechanism which emulates the expert’s decision making in
interpreting and applying knowledge about how to compute the correct out-
put.

- A defuzzification interface, which converts the conclusions of the inference
mechanism into numerical output.

Note that the fuzzification and defuzzification interfaces of a fuzzy system have
to be described in greater detail. Each input and output of the system is de-
scribed by linguistic values and their membership functions (Fig. 1). Linguistic
values are terms, such as LOW, HIGH, MEDIUM, that intuitively describe the
fuzzy input/output parameters. Membership functions of a linguistic value de-
scribe the degree of certainty of the numeric value of an input or output to be
classified under the specific linguistic value. Typical membership functions can
be triangular, such as that at the right side in Fig. 1, but can also have differ-
ent shapes, like Gaussian or trapezoid. One interesting property of membership
functions is that a numerical input can be converted into two linguistic values
simultaneously. This feature is appropriate for modelling quantitative attributes
that do not use hard boundary intervals like time and confidence variables.

3.5 Fuzzy System for Dependency Detection

In our approach, we build a fuzzy system with three input parameters and one
output parameter. The input parameter are the following
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- The difference between the start timestamps of two event of a event pair,
dt =tgo — ts1.

- The confidence variable ¢1(f1, f2) of an event pair, as defined above, which
represents our confidence to the most frequent event pairs.

- The confidence variable ca(f1, f2) of an event pair, as defined above, which
is used to separate correctly correlated from wrongly identified event pairs.

The output of the fuzzy system is the degree of dependency for every event pair,
dep(f1, f2)€[0,1]. Each of the three input/output parameter are described by
five linguistic values (VERY SMALL, SMALL, MEDIUM, HIGH, VERY HIGH)
with triangular membership functions. We select triangle membership functions
because they are simple and can represent the fuzziness of input and output
parameter in a effective manner. The rule base consisted of 125 rules, which
can describe all possible combinations of the input parameters. Furthermore,
rules can be merged into a smaller set because some of them can be merged
into a single rule. Another interesting feature of fuzzy systems, which illustrates
their ability of describing complex systems, is the control surface. The name
comes from the use of fuzzy system to control complex industrial systems and
processes. In our approach, we can call it dependency surface because it presents
all possible values of a dependency according to input values. Fig. 2 depicts the
dependency surface for ¢1(f1, f2) = 85 and every possible value of time difference
and confidence variable co(f1, f2). This figure reveals that a fuzzy system can
convert our knowledge -expressed in linguistic terms- into a non-linear surface
that represents the inference mechanism of extracting dependencies between
events. We can easily adapt our fuzzy inference engine and its dependency surface
by changing the rule-base and the membership functions of linguistic values. This
feature allows us to change the properties of our fuzzy mechanism and adapt it
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Fig. 3. Dependency using known event pairs, a proxy server and real data

according to the various attributes of enterprise networks. This surface is more
flexible and effective than an assumption that the correlation between flows and
events can be modelled by a specific time distribution.

4 Implementation and Evaluation

The dependency algorithm was tested in three different scenarios. Firstly, we ran
some simulations generating random events and mixed them with a known num-
ber of related events. In the second evaluation test, some hosts were connected
to a network through a proxy server. The hosts generated events by browsing on
the Internet. Our algorithm analyzed these flow events with the aim to discover
the known relationships. We use flow-based network profiling system developed
in the IBM Aurora project [13] for the collection and processing of flow events.
The system can collect, store, and analyze NetFlow/IPFIX records. Finally we
tested our algorithm using real flows from a high-speed enterprise network to dis-
cover relationships between servers. The steps in the algorithm for dependency
detection are the following,

i Parse NetFlow records and sort events by start timestamps.
ii. Walk through events with a time window of ¢,,x and compute confidence
variables for each event pair.
iii Walk through events and compute the output of the fuzzy system (depen-
dency) for each event pair.
iv. Sort event pairs by their dependency.
v Generate a file of event pairs having a high dependency.

In the first evaluation test, we generate files containing a large number of
random events and inject it events that create specific event pairs. We analyze



these data with our algorithm to test whether it can identify and separate the
known event pairs from wrongly identified event pairs. The results show that
the algorithm identifies all correct event pairs and distinguishes them correctly
from the false event pairs produced. The left part of Fig. 3 illustrates the results
of simulation using 5x10* random events mixed with events which create 10
known event pairs. The correlated events are produced by random Gaussian
distributions with a mean value between 0 and t,,,x = 10 and unitary standard
deviation. The dependency for correct event pairs is around 0.9. The dependency
of flow event pairs that were randomly generated ranges between 0 and 0.36.
This means that our algorithm managed to identify successfully all real pairs,
assign them large dependency values and distinguish them from the false pairs
having lower dependency values. Furthermore we compared our method with
the algorithm presented in [2]. We used exactly the same simulation data to
test the two algorithms. The results in Table 3 show that our algorithm is more
accurate. The algorithm in [2] failed to identify event pairs, if the difference of
their start timestamp is large (> 7s). Also the correlation confidence value in [2]
was very low, almost zero, for the pre-known event pairs and it was impossible
to separate them from the erroneously generated. On the contrary the fuzzy
inference engine identified successfully all the real event pairs and assigned them
high dependency value. Table 1 illustrates the comparison of the two methods.

Table 1. Accuracy of Fuzzy Inference Engine and Time Correlation Algorithm

Fuzzy Inference Engine|Time Correlation Algorithm

identified known event pairs 10 7

dependency value of known pairs 0.9 0

In the second test, we used a network setup with client machines in a subnet
that is connected to the Internet using a proxy server. The machines produce ca.
10 events per hour when browsing on the Internet. The algorithm for discovering
dependencies processed the collected events in order to identify the relationship
between individual hosts, proxy server and web server. On the middle of Fig. 3,
the graph shows the highest dependent event pairs (dep € [0.9,0.99]), which cor-
respond to the events that represent the connections between 10 hosts to the
proxy server and the connections between the proxy server and the web server.
Many wrong event pairs were produced, but their dependency was low. Fig. 3
also shows the 10 false event pairs having the highest dependency. It clearly
visible that their dependency is significantly lower than the correct event pairs.
Also another advantage of fuzzy system is that the dependency of false event
pairs continuously decreased as the time passed.

Finally our algorithm was tested with real data, collected from an enterprise
network of 700 hosts. We collect 2.2x10° flow records, which corresponds to
one hour of data traffic in a larger enterprise. We applied the fuzzy inference



mechanism to detect the relationships between network components of multi-tier
services and applications. Most of the event pairs produced (i.e, 96%) were false
pairs having a low and very low dependency value. There are about 20 event pairs
with a dependency value higher than 0.7. Some of them represent relationships
between DNS servers, whereas the remaining event pairs reveal relationships
between servers and databases of specific applications. As we can see on the
right side of Fig. 3, there is a clear distinction of correct and false pairs. Our
algorithm succeeds in identifying real pairs and assigning high dependency value
to them. Moreover, it produces low dependency values for wrongly generated
event pairs. Also it is not surprising that our algorithm identified few (about 20)
event pairs with high dependency value, since correlated flows represent usually
a small percentage of the overall traffic load of an enterprise network.

The results of all tests were successful for our algorithm of relationship dis-
covery. In every case, the fuzzy inference mechanism succeeded in identifying all
correct event pairs and assigned them high dependency values. Additionally it
separated correctly the correct event pairs by assigning low dependency values
to the randomly generated event pairs. For the first two tests, the accuracy of
the detection algorithm was 100%. The accuracy of our algorithm is also high
for the third test. The event pairs with the highest dependency value correspond
to correct dependencies between network assets like DNS servers and servers of
particular applications. It would be useful to define a threshold value of depen-
dency in order to decide if an event pair correctly represent a dependency. This
threshold can vary for different networks, but it should be high (i.e., > 0.7).

5 Limitations

The major limitation of the algorithm is the generation of a large number of false
event pairs(> 95%). Most of them have very low dependency value. However,
there are some pairs with high values, because they represent some network com-
ponents that are used by more than one application or they are not frequently
used. Another limitation is that if the traffic load is very heavy, the number of
flow records we have to process can increase the processing time and the com-
putational resources necessary. To reduce the vast amount of data, we can use
some NetFlow techniques, like flow aggregation or sampling.

6 Conclusion and Future Work

This paper presented an algorithm for discovering relationships between net-
work components using a fuzzy inference engine. Dependencies between certain
network assets can correspond to operational relationships between parts of a
specific service or application. A fuzzy inference mechanism is appropriate for
dependency detection for two major reasons. First, there are many quantitative
features, such as time correlation, for which it is more natural to be modelled
in terms of fuzziness than using sharp boundary intervals. Second, the fuzziness
employed in representing these features helps to smooth the strict separation



between dependency and non-dependency. Another advantage of the proposed
method is that it is passive so that it does not produce any additional traffic
load. To increase the flexibility of our method and reduce the generation of false
dependencies, our future work will focus on using fuzzy adaptive and learning
techniques based on neural networks and genetic algorithms.
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