

Bottleneck Detection Using

Statistical Intervention Analysis

Simon Malkowski1, Markus Hedwig1, Jason Parekh1, Calton Pu1, and Akhil Sahai2

1CERCS, Georgia Institute of Technology,

266 Ferst Drive, Atlanta, GA 30332

{simon.malkowski, markus.hedwig, jason.parekh, calton}@cc.gatech.edu
2HP Laboratories, Palo-Alto, CA

akhil.sahai@hp.com

Abstract. The complexity of today’s large-scale enterprise applications

demands system administrators to monitor enormous amounts of metrics, and

reconfigure their hardware as well as software at run-time without thorough

understanding of monitoring results. The Elba project is designed to achieve an

automated iterative staging to mitigate the risk of violating Service Level

Objectives (SLOs). As part of Elba we undertake performance characterization

of system to detect bottlenecks in their configurations. In this paper, we

introduce our concrete bottleneck detection approach used in Elba, and then

show its robustness and accuracy in various configurations scenarios. We

utilize a well-known benchmark application, RUBiS (Rice University Bidding

System), to evaluate the classifier with respect to successful identification of

different bottlenecks.

Keywords: Bottleneck detection, statistical analysis, enterprise systems,

perforance analysis

1 Introduction

Pre-production configuration testing of complex n-tier enterprise application

deployment, or staging, can be as demanding and complex as the production system

itself. System analysts and administrators monitor and analyze a large number of

application-specific metrics such as the number of active threads and the number of

EJB entity bean instances, along with system-level metrics like CPU usage and disk

I/O rate. Any of these resources may cause the system to violate performance service

level objectives (SLO), usually specified as service level agreements (SLA).

Significantly lower cost and results at higher confidence levels may be produced by

automated staging. The latter is an iterative process in the Elba project [11] whereby

an application configuration is gradually refined.

The main contribution of this paper is an automated bottleneck detection scheme

based on a statistical intervention model. This approach is distinct from our previous

work that used machine learning [4]. We introduce a deterministic algorithm, which

has proven to be very effective in the Elba environment. The process automatically

examines and analyzes the entire metric data derived from the staging experiment

trials. A limited set of interesting metrics is identified very fast without the need of an

extensive training or configuration phase. This set is then ordered according to the

degree of correlation with the high-level system performance. We also show that we

are able to accurately determine potential bottlenecks in different scenarios.

Moreover, the resulting output is easily interpretable due to the intuitive model

structure.

The remainder of this paper is organized as follows. Section 2 describes our

approach to bottleneck detection using intervention analysis. Section 3 presents the

evaluation environment and our results utilizing RUBiS. Section 4 discusses related

work, followed by the conclusion.

2 Intervention Analysis

An effective staging phase assures system administrators that a hardware/software

configuration is capable of handling workloads to be seen during production. Starting

at an initial configuration, this phase augments resources allowing the configuration to

better satisfy the SLOs. So far our bottleneck detection approaches consisted of a

multi-step analysis. If a SLA was not met (SLO-satisfaction drops significantly) in a

certain scenario, a three-step detection process began: staging the system with varying

workloads and collecting performance data from system-level and application-specific

metrics, training a machine learning classifier with the data, and finally querying the

trained machine learning classifier to identify potential bottlenecks. Please refer to [4]

for more details. While our three-step methodology proved to be successful, it mainly

relies on machine learning algorithms to execute the final performance modeling and

classification. This implies two typical shortcomings that lie in the nature of the

modeling scheme. Firstly, the machine learning classifiers require a training phase.

This can be cost-intensive since certain accuracy and robustness levels might be

defined a priori. Secondly machine learning classifiers produce a model that is not

necessarily interpretable in a trivial manner. We discussed suitable interpretations in

[4]. Nevertheless, this led to a residual degree of uncertainty in the interpretation of

the analysis results.

In this article we propose a novel approach based on statistical techniques, which

results in an improvement of our bottleneck detection process in a consistent manner.

We introduce an intuitive statistical model, which eliminated the need of machine

learning on the one hand. And on the other, we observe that our approach achieves the

same high accuracy level at a lower cost (fewer staging trials). Therefore we greatly

increase the efficiency of the detection process and enhance the clarity of the final

results at the same time.

2.1 Assumptions

The following assumptions form the basis of our automated bottleneck methodology.

They emphasize the general issues that need to be addressed by any satisfactory

detection method and are reflected in previous Elba efforts.

• A single experiment trial is not sufficient to record a conclusive metric vector and

thus several trials of varying workloads are required.

• Non-obvious interactions between resources make observation based bottleneck

detection a hard problem. Nontrivial correlations have to be examined and the

detection method needs to be able to produce a probabilistic result ranking.

• The number of recorded monitoring metrics is very high. It is critical to device an

approach that is able to sort through copious metric data automatically.

• The nature and appearance of metrics can vary significantly and they are typically

categorized as either system-level or application-specific.

• High utilization of a resource implies high demand from an application while it

may not necessarily be indicative of a bottleneck. A detection mechanism has to be

capable of distinguishing bottlenecking behavior in terms of resource saturation.

• Especially trend changes in metric graphs are of high importance. In fact we found

in our previous work that it was highly effective to examine first derivative

approximations instead of the actually recorded values.

2.2 The Detection Model

These assumptions together with observations from empirical data analysis suggest a

simple performance model. We formulate the latter in terms of statistical intervention

analysis, which allows us to formalize the characteristic bottleneck behavior of the

system accurately.

First we need to define an exogenous crossover point (c ∈ WS). This specific

number of concurrent user sessions can be seen as an intervention point that divides

our workload span (WS) into two disjunctive intervals:

I := {w ∈ WS : w < c} (1) I ' := {w ∈ WS : w ≥ c} (2)

In this notation I represents the set of workloads that result in high levels of SLO

satisfaction of the system, whereas the satisfaction levels drop significantly when

exposed to workloads in I' (intervention effect).

For our purposes we also need to adapt the standard transfer functional model

formulation [1]. For any workload w ∈ WS an impact assessment model for the first

difference of any metric value Yw can be formulated in terms of Equation 3. Note that

we use the first difference as approximation of the first derivative consistently with

our findings in [4].

∇Yw := f (Iw) + N w + µ (3) Iw :=
1 for w ≥ c

0 else





 (4)

In this formulation Nw is the noise component, and µ denotes the constant term. The

effect of the intervention variable Iw on the metric trend is defined as f(Iw). Following

the standard notation, Iw is defined as an indicator function (Equation 4). We can now

subtract the noise component from both sides of Equation 1. Since we only have to

deal with abrupt and permanent intervention effects we can assume linearity in the

metric values. Based on this linearity assumption we introduce δ as the constant term

of the intervention effect, which yields the following formulation:

∇Yw − Nw = δIw + µ (5)

In order to characterize the final model in a convenient manner, we define µ ' in

Equation 6 which leads to the final model formulation in Equation 7.

µ' := µ +δ (6) ∇ ˜ Y w := ∇Yw − N w =
µ for w < c

µ' for w ≥ c





 (7)

This notation emphasizes the importance of the potential change in the trend of the

metric value Yw as the system progresses from I to I' with increasing workload.

Moreover, it allows us to establish causality between the model parameters of the low

level metric and the high level system performance in an intuitive manner.

2.3 Determining an Intervention Point

Since the crossover point (c) between I and I' needs to be defined a priori, we define

an iterative algorithm for our automated analysis scheme. The main idea is to asses the

workload when the SLO-satisfaction (SATw) looses its stability and starts to deteriorate

significantly upon further workload increase (i.e. we assume Property 8 and 9).

Although the model formulation requires an exact transition point, it is sufficient for

our method to approximate c in a qualitative manner (refer to Table 4).

i∈I∀ : SATi ≈ const (8) i∈I '∀ : SATi <<
1

| I |
SAT j

j ∈I

∑ (9)

We start at the lowest workload in our dataset and iteratively increase the value by the

smallest possible step. In every iteration we calculate a simple heuristic approximation

of the ninety-five percent confidence interval of the SLO satisfaction values seen so

far. We consider n0 values which resulted from a workload smaller or equal to w0 ∈

WS (the workload currently examined).

90% ≤
1

n0

SATi
0≤ i≤w0

∑ −
1.96

n0 −1
(SATi −

0≤ i≤w0

∑
1

n0

SAT j
0≤ j≤w0

∑)2 (10)

We continue to the next iteration as long as the lower bound of the confidence interval

is not below ninety percent (Equation 10). Thus we characterize the satisfaction level

for the first interval in a binary fashion as suggested by our observations. Once the

lower bound of the confidence interval drops below ninety percent we exit the

algorithm. The exit point w* ∈ WS is a heuristic approximation of the crossover point

c. We can assume that the SLO satisfaction has deteriorated significantly from its

stable level for all workloads greater or equal to w*, which yields the following

formulation:

ˆ I := {w ∈ WS : w < w*} (11) ˆ I ' := {w ∈ WS : w ≥ w*} (12)

2.4 Metrics Selection Scheme

We can now turn to the process of selecting a set of potential bottleneck metrics and

discarding all metrics that do not indicate a high resource saturation level. Given a

known intervention (SLO begins to deteriorate) we identify all metrics that show

evidence of a corresponding plateau (i.e. significant and permanent shift in average

value) and a variability change in their first derivative (further evidence for a saturated

resource). To identify the candidate set we perform a basic hypothesis-testing scheme

adapted from [10]. We define a rule-based analysis process for testing the null

hypothesis (13) of constant mean µ and variance σ between the two intervals.

H0 : ˆ µ ≈ ˆ µ ' ∧ ˆ σ ≈ ˆ σ ' (13)

Empirical testing revealed that we have to account for the high variability of the

metric data as well as adjust the analysis to specifically detect abrupt plateau shifts.

Thus we deviate from the traditional intervention analysis methodology and devise a

different testing scheme. We calculate representative quantiles for each interval and

metric. The latter characterize the filtered behavior of the data in a more stable

manner. We proceed to apply two selection rules in order to limit the group of

candidate bottleneck metrics.

q0.5 > q'0.5 ∧ q0.2 − q0.8 > q'0.1 −q'0.9 (14)

Rule 14 accounts for all limited metrics that will saturate at a level of hundred

percent. We choose all metrics where the median has decreased as well as where the

distance between ten- and ninety-quantile in the second interval is smaller than the

distance between twenty- and eighty-quantile in the first interval. If this rule is

satisfied we have significant evidence to reject the null hypothesis and assign the

metric to a set of potential bottlenecks.

q0.9 < q'0.1 ∧ q0.9 < q'0.5 ∧ q0.9 < q'0.9 (15)

Rule 15 accounts for all metrics that are not limited and show an exponential

behavior when the resource saturates. We select all metrics, where all three quantiles

of the second interval have increased above the ninety quantile of the first one. Again

we reject the H0 if the rule applies. In this manner we have eliminated all metrics that

do not show strong indications of bottlenecking behavior near the intervention point

and narrowed our attention to potentially interesting resources. Note that the complete

empirical derivation of the two decision rules is omitted due to space restrictions.

Nevertheless it is based on standard statistical methods and our analysis experience.

2.5 Impact Assessment

Once we have identified the set of candidate bottlenecks we can perform a ranking to

describe the magnitude of the change. The magnitude reveals the correlation with the

intervention and specifically accounts for the exact time when the change in the metric

occurred. Hence we design a normalizing ranking function R by calculating the

quotient of the absolute mean values of the two intervals:

R :=
ˆ µ

ˆ µ '
 (16)

This mechanism has two implications. Firstly, we assess how well the crossover point

was chosen for each particular metric (temporal ranking). If the split is not exact, the

resulting quotient will have a value closer to one. Furthermore, we have to rank how

large the relative shift in plateau levels is for each particular metric. We expect

bottlenecked metrics that were chosen with Rule 14 (limited metric) to display a very

high-ranking value potentially approaching infinity. The slope of the metric values

drops from a linear increase to a stable value near zero. Metrics chosen by Rule 15

(unlimited metrics) will show a very low ranking value that is close to zero on the

other hand. This means that a moderate positive slope changes to a very strong

(exponential) growth. In the following evaluation we will subdivide the candidate set

into set one and two. This will simplify the analysis for limited and unlimited metrics,

respectively.

3 Experimental Evaluation

Rice University Bidding System, is a multi-tiered e-commerce application with 26

interaction types, such as browsing, bidding, buying, or selling items; registering

users; and writing or reading comments. RUBiS provides two workload transition

matrices describing two different user behaviors: a browsing transition consisting of

read-only interactions and a bidding transition, including 15% write interactions. In

our experiments the write ratio is extended adding additional variability as explained

in [6]. We utilize the bidding transition as well as neighboring write ratios of 10% and

20% in our evaluation since these transitions are better representatives of an auction

site workload [2] and provide a more accurate picture [6]. Our system reuses and

extends a recent version of RUBiS from ObjectWeb [13]. Generally, experiments

show that RUBiS is application-server tier intensive. In other words, it is

characteristically constrained by performance in the EJB container tier as introduced

in [2].

To execute the staging phase with RUBiS, we employ Apache 2.0.54 as an HTTP

server, MySQL max-3.23.58 as a database server with type 4 Connector/J 3.0.11 as a

JDBC driver, and JOnAS4.4.6-Tomcat5.5.12 package as an EJB-Web container.

Apache HTTP server is equipped with mod_jk so that it can be used as a front-end

server to one or several Tomcat engines, and it can forward servlet requests to

multiple Tomcat instances simultaneously via AJP 1.2 protocols. We increase the

number of the maximum processes of Apache to avoid connection refusals from the

server when numerous clients simultaneously request services. We also set the

automated increment option on every primary key of the RUBiS databases to prevent

duplication errors when clients simultaneously attempt to insert data into a table with

the same key. Finally, we adjust JOnAS to have an adequate heap memory size for

preventing out-of-memory exceptions during staging.

For gathering system-level metrics, we wrote a shell script to execute Linux/UNIX

utilities, sar and ps, with monitoring parameters such as staging duration, frequency,

and the location of monitored hosts. We also use JimysProbing 0.1.0 for metrics

generated from JOnAS-Tomcat server, apachetop 0.12.5 for Apache HTTP server,

and mysqladmin for MySQL database server. We slightly modified apachetop to

generate XML encoded monitoring results. The client workload generator is designed

to simulate remote Web browsers that continuously send HTTP requests, receiving

corresponding HTML files, and recording response time as a performance metric

during staging. Sysstat 7.0.2 was used for system resource utilization tracking.

The experimental setup was deployed on two different clusters. Our initial data set

(used in Section 3.1) was collected on the Georgia Tech Warp Cluster. This cluster is

comprised of 56 Intel Blade Servers with Red Hat Enterprise Linux 4, with Linux

kernel version 2.6.9-34-i386 as operating system. Each server is equipped with two

Xeon 64-bit 3.06 GHz CPUs, 1 or 2 GB main memory, 1 Gbps network adapter, and a

5400 RPM disk with 8 MB cache. The second cluster used for the data generation was

the Emulab [12], which provides more than 200 servers of different types. Emulab

also allows the physical separation of experiments by simulating a local network

topology for each experiment. The results detailed in Section 3.3 incorporate two

types of servers. Primarily we employed a high end system with one Xeon 3.0Ghz 64

bit CPU, 2 GB main memory , six 1 Gbps network adapters, and a 10000 RPM disk.

In order to change the bottleneck pattern we also used low end machines with a

Pentium P3 600 MHz processor, 256 MB main memory, five 100 Mbps network

adapters, and 7200 RPM disk. Both server types ran with Red Hat Enterprise Linux 4,

with Linux kernel version 2.6.9-34-i386.

3.1 Bottleneck Detection in the 1/1/1 configuration

In this section we present a walk-through of our bottleneck detection process for a

1/1/1 configuration (no server replication in the tiers). The RUBiS benchmark was set

to use the bidding transition matrices and the workload was incremented in steps of

two.

The graphs in Fig. 1 show two different representative metrics in all tiers. The SLO

satisfaction is graphed against the CPU usage in (a) and against the memory usage in

(b). The depicted satisfaction level needs to be calculated by for each trial. This is

conveniently resolved by the policy specific SLO-evaluator that is generated by

Mulini. Individual satisfaction levels are determined for each of the SLO components.

Interested readers can refer to [4] and [11] for more details. For simplicity reasons we

solemnly use the response time of the system from the SLO-evaluator in the presented

analysis. It is clearly visible that the satisfaction level meets our assumptions. It

remains very stable up to around one hundred and fifty users, and decreases rapidly

once this point is crossed. The CPU usage of the application server increases linearly

and saturates at 100% when the SLO satisfaction drops down to around 85%.

Furthermore, it is evident that the variability of CPU usage strongly decreases at the

same time, signifying the maximal saturation level. The trends of other CPU

utilizations remain linear and stable on the contrary. In Fig. 1 (b) we can see that the

memory of the application server and database server is underutilized. Both show a

fairly stable linear trend. Although the memory usage of the HTTP server is somewhat

high its trend is almost flat. The variability of all other metrics stays fairly constant

throughout the whole experiment. Following the argument in [4] we can regard the

application server CPU a typical representative of a single bottlenecked resource that

will show a strongly non-stationary behavior in its delta values (first difference

normalized by the step-width). All other delta series will retain a stable behavior

throughout the entire workload span.

0

20

40

60

80

100

2 22 42 62 82 102 122 142 162 182 202 222 242

Num of Concurrent Users

P
e

rc
e

n
ta

g
e

SLO satisfaction Database tier

HTTP server tier App server tier

0

20

40

60

80

100

2 22 42 62 82 102 122 142 162 182 202 222 242

Num of Concurrent Users

P
e

rc
e

n
ta

g
e

SLO satisfaction Database tier

HTTP server tier App server tier

Fig. 1. SLO satisfaction against (a) CPU usage metric and (b) memory usage metric in all tiers.

Table 1. Heuristic approximation of the intervention point.

AVG [%] ST-DEV CI-LB WL
98.39 2.37 93.75 148

98.31 2.46 93.49 150

98.17 2.72 92.84 152

98.09 2.81 92.58 154

97.79 3.83 90.28 156

97.63 4.05 89.70 158

97.40 4.53 88.52 160

97.26 4.66 88.12 162

We can now turn to the actual detection process. Table 1 contains the output of the

algorithm used to determine the intervention as described in Section 2.3. We

performed the analysis on a dataset consisting of one hundred and seventy-five staging

trials. The number of concurrent users ranged from two to three hundred and fifty. The

lower bound of the confidence interval drops below ninety percent for a workload of

one hundred and fifty-eight. According to Section 2.3 this defines our heuristic

approximation of the crossover point c.

The final outcome of our heuristic testing scheme (2.4) and the impact assessment

(2.5) for a limited dataset (first one-hundred and twenty-five trials) are summarized in

Table 2.

Table 2. Results of the bottleneck detection process.

Metric q0.1 q0.5 q0.9 q'0.2 q'0.5 q'0.8 R
APP_CPU -1.01 0.05 0.74 -0.62 -0.02 0.58 70.05

DB_KBCached -3.80 4.63 12.39 -3.56 3.26 11.46 11.72

APP_KBBuffers 7.40 53.00 170.60 0.00 0.00 39.00 3.33

DB_CPU -0.03 0.00 0.04 -0.03 0.00 0.03 2.81

APP_Memory -0.15 0.08 1.04 -0.14 0.03 0.38 2.26

WWW_CPU -0.07 0.00 0.06 -0.05 0.00 0.06 1.08

The two delta value intervals I and I' are [4-156] and [158-250] respectively. While

Rule 14 returns six hits, Rule 15 results in an empty set of candidate bottlenecks. All

other metrics are discarded automatically. The values in the last column reveal the

application tier CPU as most likely bottleneck. Thus our model has correctly detected

the bottleneck in this scenario. For further understanding of the table it is important to

note that we map all related values to its resource for the final interpretation.

Therefore the R-value of the APP_CPU can result from more than one metric (e.g. the

overall usage or the system usage) for instance.

We now proceed to demonstrate the robustness of our method when subjected to

various configuration settings. We show that our approach is highly robust with regard

to variations in the width of the intervals (Table 3), the position of the crossover point

(Table 4), and the step-width between the different workloads (Table 5). Table 3

shows the value of the ranking function depending on the length of the two input

intervals. Our model predicted the bottleneck correctly each time. We see that the

width of the second interval influences the magnitude of the R-value strongly.

Table 3. Ranking function value against interval width.

I I' R* Pred Acc
[4;156] [158;206] 6.94 1

[4;156] [158;256] 68.32 1

[4;156] [158;350] 13.92 1

[58;156] [158;206] 3.83 1

[58;156] [158;256] 7.66 1

[58;156] [158;350] 15.01 1

[108;156] [158;206] 4.33 1

[108;156] [158;256] 8.67 1

[108;156] [158;350] 17.11 1

We now examine the impact of different choices of crossover point values, which are

summarized in Table 4. Within certain intuitive limits the model predicts correctly.

This is of special importance since the determination of the intervention point is the

result of the algorithm in Section 2.3. We see that its heuristic character is justified in

the nature of the data.

Table 4. Ranking function value against different crossover points.

I I' R* Pred Acc
[16;114] [116;214] - 0

[26;124] [126;224] - 0

[36;134] [136;234] 5.09 1

[46;144] [146;244] 6.86 1

[56;154] [156;254] 7.93 1

[66;164] [166;264] ∞ 1

[76;174] [176;274] 59.43 1

[86;184] [186;284] 0.93 0

Finally we turn to Table 5 and the analysis of the robustness of the choice of step-

width. The table contains the ranking function values for different step-widths.

Table 5. Ranking function value against the step width.

I I' Step # Trials R* Pred Acc
[4;156] [158;350] 2 174 13.92 1

[4;156] [160;348] 4 87 12.58 1

[4;156] [164;348] 8 44 188.60 1

[4;148] [164;340] 16 22 112.17 1

[4;132] [164;324] 32 11 ∞ 1

At first it looks surprising that the ranking values increase almost monotonically as the

step-width increases. Nevertheless, this is due to the stochastic nature of our data and

the fact that with increased step width the two intervals are separated farther apart. By

increasing the observable change in the bottleneck metric the results become clearer.

This proves the robustness of our method and reveals its effectiveness when exposed

to data of higher step-width.

3.2 Performance Comparison of the Analysis

In this section we present the results of our experiments across a wide range of

configurations to show how the method evaluates a changing bottleneck pattern. This

data was collected on Emulab [12] with different write ratios (WR0.1 and WR0.2) and

server configurations (H and L).

Table 6 lists the top candidate bottleneck metrics and their R-value in the last two

columns. We also applied a simple heuristic filtering mechanism to discard

uninteresting ranking values. The latter eliminates the problematic behavior of some

utilization values for instance, which was detailed in our previous work. We

automatically discard values if the utilization does not cross a certain threshold (90%

in our case) [4]. The table shows that our methodology is able to detect the shifting

bottleneck as we progress to higher replication levels of the application server tier.

Table 6. Top candidate bottleneck metrics.

Config WR WS # Trials c S1/S2-Sz Result Metric R*
H/2H/H

1

20% 100-600 51 440 11/2 APP_CPU 73.02

H/4H/H 20% 540-1040 51 844 4/1 APP_CPU 16.61

H/6H/H 20% 1040-1448 51 1264 7/0 APP_CPU 13.10

H/8H/L 10% 1300-1820 51 1490 4/0 DB_Memory 10.22

H/8H/2L 10% 1400-1920 51 1640 5/1 APP_CPU 7.82

In order to make the performance limitation appear faster we employed a lower write

ratio and lower end DBs in the last two data sets. At a replication level of eight

application servers the bottleneck has shifted to the database tier. Our algorithm

identifies the DB memory as a potentially saturated resource. Now we examine the

effect of replicating the bottlenecked DB. This again results in a shift of the bottleneck

towards the application tier and is successfully detected by our algorithm. It is also

evident that we are able to perform our detection process accurately with a

significantly lower number of trials than other approaches.

4 Related Work

The area of performance modeling in multi-tier enterprise systems has been subjected

to substantial research efforts in the recent time. Many of the well-documented

approaches use machine learning or queuing theory.

Cohen et al [3] apply a tree-augmented Naïve Bayesian network to discover

correlations between system-level metrics and performance states, such as SLO

satisfaction and SLO failure. Powers et al [5] also use machine learning techniques to

analyze performance. However, rather than detecting bottlenecks in the current

system, they predict whether the system will be able to withstand load in the following

hour. Similarly, we have performed a comparative study of machine learning

classifiers to investigate performance patterns [11]. Our goal was to compare the

performance of several well-known machine learning algorithms as classifiers in terms

of bottleneck detection, and finally to identify the classifier that best detects

bottlenecks in multi-tier applications. Several other studies are based on dynamic

queuing models combined with predictive and reactive provisioning as in [9]. Their

contribution allows an enterprise system to increase capacity in bottleneck tiers during

flash crowds in production.

Elba, in addition to being oriented towards avoiding in-production performance

shortfalls, emphasizes fine-grained reconfiguration. By identifying specific limitations

such as low-level system metrics (CPU, memory, etc.) and higher-level application

parameters (pool size, cache size, etc.) configurations are tuned to the particular

performance problem at hand. Another fundamental difference of our work is that in

addition to correlating metrics to performance states, we focus on the detection of

actual performance-limiting bottlenecks. We employ a unique procedure to analyze

the change in trends of metrics. Finally, our set of metrics for bottleneck detection

includes over two hundred application-level metrics as well as system-level metrics.

5 Conclusion

Our detection scheme based on intervention analysis has proven to be very effective

with our experimental data. The method is able to characterize the potential change in

metric graph trends automatically and assess its correlation with SLO violations. Our

statistical modeling approach eliminates the previously necessary data filtering (e.g.

correlation analysis) and model calibrating phases (e.g. classifier training). The results

are clear and intuitive in the interpretation. We showed that our new method yields

these general as well as practical advantages in our evaluation. Potential bottlenecks

are identified accurately in different scenarios. As future work this method could be

extended with a maximization/minimization scheme for the ranking function. This

would allow a more thorough root-cause analysis in the case of multiple bottlenecks.

We also plan to employ our results as input for a regression model that will be able to

predict actual SLO satisfaction levels.

Acknowledgment

This research has been partially funded by National Science Foundation grants

CISE/IIS-0242397, ENG/EEC-0335622, CISE/CNS-0646430, AFOSR grant

FA9550-06-1-0201, IBM SUR grant, Hewlett-Packard, and Georgia Tech Foundation

through the John P. Imlay, Jr. Chair endowment.

References

1. P. Brockwell and A. Davis: Introduction to Time Series and Forecasting. Springer Inc.,

NY, 1996.

2. E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel: Performance

comparison of middleware architectures for generating dynamic Web content. Middleware

2003.

3. I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase: Correlating instrumentation

data to system states: A building block for automated diagnosis and control. OSDI 2004.

4. G. Jung, G. Swint, J. Parekh, C. Pu, and A. Sahai. Detecting Bottlenecks in n-Tier IT

Applications through Analysis. DSOM 2006 (LNCS vol. 4269).

5. R. Powers, M. Goldszmidt, and I. Cohen: Short Term Performance Forecasting in

Enterprise Systems. KDD 2005.

6. C. Pu, A. Sahai, J. Parekh, G. Jung, J. Bae, Y. Cha, T. Garcia, D. Irani, J. Lee, and Q. Lin:

Observation-Based Approach to Performance Characterization of Distributed n-Tier

Applications. Submitted for publication.

7. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc.,

CA, 1993.

8. M. Raghavachari, D. Reimer, and R. D. Johnson: The Deployer’s Problems: Configuring

Application Servers for Performance and Reliability. ICSE 2003.

9. B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal: Dynamic Provisioning of Multi-tier

Internet Applications. ICAC 2005.

10. C. Wu, and M. Hamada: Experiments: Planning, Analysis, and Parameter Design

Optimization. Wiley & Sons Inc., NY, 2000.

11. Elba project. http://www-static.cc.gatech.edu/systems/projects/Elba.

12. Emulab/Netlab. http://www.emulab.net/.

13. RUBiS distribution. http://forge.objectweb.org/project/showfiles.php?group_id=44.

