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Abstract. The complexity of today’s large-scale enterprise applications 

demands system administrators to monitor enormous amounts of metrics, and 

reconfigure their hardware as well as software at run-time without thorough 

understanding of monitoring results. The Elba project is designed to achieve an 

automated iterative staging to mitigate the risk of violating Service Level 

Objectives (SLOs). As part of Elba we undertake performance characterization 

of system to detect bottlenecks in their configurations. In this paper, we 

introduce our concrete bottleneck detection approach used in Elba, and then 

show its robustness and accuracy in various configurations scenarios. We 

utilize a well-known benchmark application, RUBiS (Rice University Bidding 

System), to evaluate the classifier with respect to successful identification of 

different bottlenecks. 

Keywords: Bottleneck detection, statistical analysis, enterprise systems, 

perforance analysis  

1 Introduction 

Pre-production configuration testing of complex n-tier enterprise application 

deployment, or staging, can be as demanding and complex as the production system 

itself. System analysts and administrators monitor and analyze a large number of 

application-specific metrics such as the number of active threads and the number of 

EJB entity bean instances, along with system-level metrics like CPU usage and disk 

I/O rate. Any of these resources may cause the system to violate performance service 

level objectives (SLO), usually specified as service level agreements (SLA). 

Significantly lower cost and results at higher confidence levels may be produced by 

automated staging. The latter is an iterative process in the Elba project [11] whereby 

an application configuration is gradually refined. 

The main contribution of this paper is an automated bottleneck detection scheme 

based on a statistical intervention model. This approach is distinct from our previous 

work that used machine learning [4]. We introduce a deterministic algorithm, which 

has proven to be very effective in the Elba environment. The process automatically 



  

examines and analyzes the entire metric data derived from the staging experiment 

trials. A limited set of interesting metrics is identified very fast without the need of an 

extensive training or configuration phase. This set is then ordered according to the 

degree of correlation with the high-level system performance. We also show that we 

are able to accurately determine potential bottlenecks in different scenarios. 

Moreover, the resulting output is easily interpretable due to the intuitive model 

structure. 

The remainder of this paper is organized as follows. Section 2 describes our 

approach to bottleneck detection using intervention analysis. Section 3 presents the 

evaluation environment and our results utilizing RUBiS. Section 4 discusses related 

work, followed by the conclusion. 

2 Intervention Analysis 

An effective staging phase assures system administrators that a hardware/software 

configuration is capable of handling workloads to be seen during production. Starting 

at an initial configuration, this phase augments resources allowing the configuration to 

better satisfy the SLOs. So far our bottleneck detection approaches consisted of a 

multi-step analysis. If a SLA was not met (SLO-satisfaction drops significantly) in a 

certain scenario, a three-step detection process began: staging the system with varying 

workloads and collecting performance data from system-level and application-specific 

metrics, training a machine learning classifier with the data, and finally querying the 

trained machine learning classifier to identify potential bottlenecks. Please refer to [4] 

for more details. While our three-step methodology proved to be successful, it mainly 

relies on machine learning algorithms to execute the final performance modeling and 

classification. This implies two typical shortcomings that lie in the nature of the 

modeling scheme. Firstly, the machine learning classifiers require a training phase. 

This can be cost-intensive since certain accuracy and robustness levels might be 

defined a priori. Secondly machine learning classifiers produce a model that is not 

necessarily interpretable in a trivial manner. We discussed suitable interpretations in 

[4]. Nevertheless, this led to a residual degree of uncertainty in the interpretation of 

the analysis results. 

In this article we propose a novel approach based on statistical techniques, which 

results in an improvement of our bottleneck detection process in a consistent manner. 

We introduce an intuitive statistical model, which eliminated the need of machine 

learning on the one hand. And on the other, we observe that our approach achieves the 

same high accuracy level at a lower cost (fewer staging trials). Therefore we greatly 

increase the efficiency of the detection process and enhance the clarity of the final 

results at the same time. 



  

2.1   Assumptions 

The following assumptions form the basis of our automated bottleneck methodology. 

They emphasize the general issues that need to be addressed by any satisfactory 

detection method and are reflected in previous Elba efforts. 

• A single experiment trial is not sufficient to record a conclusive metric vector and 

thus several trials of varying workloads are required. 

• Non-obvious interactions between resources make observation based bottleneck 

detection a hard problem. Nontrivial correlations have to be examined and the 

detection method needs to be able to produce a probabilistic result ranking. 

• The number of recorded monitoring metrics is very high. It is critical to device an 

approach that is able to sort through copious metric data automatically. 

• The nature and appearance of metrics can vary significantly and they are typically 

categorized as either system-level or application-specific. 

• High utilization of a resource implies high demand from an application while it 

may not necessarily be indicative of a bottleneck. A detection mechanism has to be 

capable of distinguishing bottlenecking behavior in terms of resource saturation. 

• Especially trend changes in metric graphs are of high importance. In fact we found 

in our previous work that it was highly effective to examine first derivative 

approximations instead of the actually recorded values. 

2.2   The Detection Model 

These assumptions together with observations from empirical data analysis suggest a 

simple performance model. We formulate the latter in terms of statistical intervention 

analysis, which allows us to formalize the characteristic bottleneck behavior of the 

system accurately. 

First we need to define an exogenous crossover point (c ∈ WS). This specific 

number of concurrent user sessions can be seen as an intervention point that divides 

our workload span (WS) into two disjunctive intervals: 

I := {w ∈ WS : w < c}     (1)     I ' := {w ∈ WS : w ≥ c}    (2) 

In this notation I represents the set of workloads that result in high levels of SLO 

satisfaction of the system, whereas the satisfaction levels drop significantly when 

exposed to workloads in I' (intervention effect). 

For our purposes we also need to adapt the standard transfer functional model 

formulation [1]. For any workload w ∈ WS an impact assessment model for the first 

difference of any metric value Yw can be formulated in terms of Equation 3. Note that 

we use the first difference as approximation of the first derivative consistently with 

our findings in [4]. 

∇Yw := f (Iw ) + N w + µ    (3)     Iw :=
1     for  w ≥ c

0    else 

 
 
 

   (4) 

In this formulation Nw is the noise component, and µ  denotes the constant term. The 

effect of the intervention variable Iw on the metric trend is defined as f(Iw). Following 

the standard notation, Iw is defined as an indicator function (Equation 4). We can now 



  

subtract the noise component from both sides of Equation 1. Since we only have to 

deal with abrupt and permanent intervention effects we can assume linearity in the 

metric values. Based on this linearity assumption we introduce δ as the constant term 

of the intervention effect, which yields the following formulation: 

∇Yw − Nw = δIw + µ    (5) 

In order to characterize the final model in a convenient manner, we define µ ' in 

Equation 6 which leads to the final model formulation in Equation 7. 

µ' := µ +δ    (6)     ∇ ˜ Y w := ∇Yw − N w =
µ    for  w < c

µ'    for  w ≥ c

 
 
 

  (7) 

This notation emphasizes the importance of the potential change in the trend of the 

metric value Yw as the system progresses from I to I' with increasing workload. 

Moreover, it allows us to establish causality between the model parameters of the low 

level metric and the high level system performance in an intuitive manner. 

2.3   Determining an Intervention Point 

Since the crossover point (c) between I and I' needs to be defined a priori, we define 

an iterative algorithm for our automated analysis scheme. The main idea is to asses the 

workload when the SLO-satisfaction (SATw) looses its stability and starts to deteriorate 

significantly upon further workload increase (i.e. we assume Property 8 and 9). 

Although the model formulation requires an exact transition point, it is sufficient for 

our method to approximate c in a qualitative manner (refer to Table 4). 

i∈I∀ : SATi ≈ const    (8)     i∈I '∀ : SATi <<
1

| I |
SAT j

j ∈I

∑   (9) 

We start at the lowest workload in our dataset and iteratively increase the value by the 

smallest possible step. In every iteration we calculate a simple heuristic approximation 

of the ninety-five percent confidence interval of the SLO satisfaction values seen so 

far. We consider n0 values which resulted from a workload smaller or equal to w0 ∈ 

WS (the workload currently examined). 

90% ≤
1

n0

SATi
0≤ i≤w0

∑ −
1.96

n0 −1
(SATi −

0≤ i≤w0

∑
1

n0

SAT j
0≤ j≤w0

∑ )2    (10) 

We continue to the next iteration as long as the lower bound of the confidence interval 

is not below ninety percent (Equation 10). Thus we characterize the satisfaction level 

for the first interval in a binary fashion as suggested by our observations. Once the 

lower bound of the confidence interval drops below ninety percent we exit the 

algorithm. The exit point w* ∈ WS is a heuristic approximation of the crossover point 

c. We can assume that the SLO satisfaction has deteriorated significantly from its 

stable level for all workloads greater or equal to w*, which yields the following 

formulation: 

ˆ I := {w ∈ WS : w < w*}   (11)     ˆ I ' := {w ∈ WS : w ≥ w*}    (12) 



  

2.4    Metrics Selection Scheme 

We can now turn to the process of selecting a set of potential bottleneck metrics and 

discarding all metrics that do not indicate a high resource saturation level. Given a 

known intervention (SLO begins to deteriorate) we identify all metrics that show 

evidence of a corresponding plateau (i.e. significant and permanent shift in average 

value) and a variability change in their first derivative (further evidence for a saturated 

resource). To identify the candidate set we perform a basic hypothesis-testing scheme 

adapted from [10]. We define a rule-based analysis process for testing the null 

hypothesis (13) of constant mean µ  and variance σ between the two intervals. 

H0 : ˆ µ ≈ ˆ µ ' ∧ ˆ σ ≈ ˆ σ '    (13) 

Empirical testing revealed that we have to account for the high variability of the 

metric data as well as adjust the analysis to specifically detect abrupt plateau shifts. 

Thus we deviate from the traditional intervention analysis methodology and devise a 

different testing scheme. We calculate representative quantiles for each interval and 

metric. The latter characterize the filtered behavior of the data in a more stable 

manner. We proceed to apply two selection rules in order to limit the group of 

candidate bottleneck metrics. 

q0.5 > q'0.5 ∧ q0.2 − q0.8 > q'0.1 −q'0.9    (14) 

Rule 14 accounts for all limited metrics that will saturate at a level of hundred 

percent. We choose all metrics where the median has decreased as well as where the 

distance between ten- and ninety-quantile in the second interval is smaller than the 

distance between twenty- and eighty-quantile in the first interval. If this rule is 

satisfied we have significant evidence to reject the null hypothesis and assign the 

metric to a set of potential bottlenecks. 

q0.9 < q'0.1 ∧ q0.9 < q'0.5 ∧ q0.9 < q'0.9    (15) 

Rule 15 accounts for all metrics that are not limited and show an exponential 

behavior when the resource saturates. We select all metrics, where all three quantiles 

of the second interval have increased above the ninety quantile of the first one. Again 

we reject the H0 if the rule applies. In this manner we have eliminated all metrics that 

do not show strong indications of bottlenecking behavior near the intervention point 

and narrowed our attention to potentially interesting resources. Note that the complete 

empirical derivation of the two decision rules is omitted due to space restrictions. 

Nevertheless it is based on standard statistical methods and our analysis experience. 

2.5   Impact Assessment 

Once we have identified the set of candidate bottlenecks we can perform a ranking to 

describe the magnitude of the change. The magnitude reveals the correlation with the 

intervention and specifically accounts for the exact time when the change in the metric 

occurred. Hence we design a normalizing ranking function R  by calculating the 

quotient of the absolute mean values of the two intervals: 

R :=
ˆ µ 

ˆ µ '
   (16) 



  

This mechanism has two implications. Firstly, we assess how well the crossover point 

was chosen for each particular metric (temporal ranking). If the split is not exact, the 

resulting quotient will have a value closer to one. Furthermore, we have to rank how 

large the relative shift in plateau levels is for each particular metric. We expect 

bottlenecked metrics that were chosen with Rule 14 (limited metric) to display a very 

high-ranking value potentially approaching infinity. The slope of the metric values 

drops from a linear increase to a stable value near zero. Metrics chosen by Rule 15 

(unlimited metrics) will show a very low ranking value that is close to zero on the 

other hand. This means that a moderate positive slope changes to a very strong 

(exponential) growth. In the following evaluation we will subdivide the candidate set 

into set one and two. This will simplify the analysis for limited and unlimited metrics, 

respectively. 

3 Experimental Evaluation 

Rice University Bidding System, is a multi-tiered e-commerce application with 26 

interaction types, such as browsing, bidding, buying, or selling items; registering 

users; and writing or reading comments. RUBiS provides two workload transition 

matrices describing two different user behaviors: a browsing transition consisting of 

read-only interactions and a bidding transition, including 15% write interactions. In 

our experiments the write ratio is extended adding additional variability as explained 

in [6]. We utilize the bidding transition as well as neighboring write ratios of 10% and 

20% in our evaluation since these transitions are better representatives of an auction 

site workload [2] and provide a more accurate picture [6]. Our system reuses and 

extends a recent version of RUBiS from ObjectWeb [13]. Generally, experiments 

show that RUBiS is application-server tier intensive. In other words, it is 

characteristically constrained by performance in the EJB container tier as introduced 

in [2]. 

To execute the staging phase with RUBiS, we employ Apache 2.0.54 as an HTTP 

server, MySQL max-3.23.58 as a database server with type 4 Connector/J 3.0.11 as a 

JDBC driver, and JOnAS4.4.6-Tomcat5.5.12 package as an EJB-Web container. 

Apache HTTP server is equipped with mod_jk so that it can be used as a front-end 

server to one or several Tomcat engines, and it can forward servlet requests to 

multiple Tomcat instances simultaneously via AJP 1.2 protocols. We increase the 

number of the maximum processes of Apache to avoid connection refusals from the 

server when numerous clients simultaneously request services. We also set the 

automated increment option on every primary key of the RUBiS databases to prevent 

duplication errors when clients simultaneously attempt to insert data into a table with 

the same key. Finally, we adjust JOnAS to have an adequate heap memory size for 

preventing out-of-memory exceptions during staging. 

For gathering system-level metrics, we wrote a shell script to execute Linux/UNIX 

utilities, sar and ps, with monitoring parameters such as staging duration, frequency, 

and the location of monitored hosts. We also use JimysProbing 0.1.0 for metrics 

generated from JOnAS-Tomcat server, apachetop 0.12.5 for Apache HTTP server, 



  

and mysqladmin for MySQL database server. We slightly modified apachetop to 

generate XML encoded monitoring results. The client workload generator is designed 

to simulate remote Web browsers that continuously send HTTP requests, receiving 

corresponding HTML files, and recording response time as a performance metric 

during staging. Sysstat 7.0.2 was used for system resource utilization tracking. 

The experimental setup was deployed on two different clusters. Our initial data set 

(used in Section 3.1) was collected on the Georgia Tech Warp Cluster. This cluster is 

comprised of 56 Intel Blade Servers with Red Hat Enterprise Linux 4, with Linux 

kernel version 2.6.9-34-i386 as operating system. Each server is equipped with two 

Xeon 64-bit 3.06 GHz CPUs, 1 or 2 GB main memory, 1 Gbps network adapter, and a 

5400 RPM disk with 8 MB cache. The second cluster used for the data generation was 

the Emulab [12], which provides more than 200 servers of different types. Emulab 

also allows the physical separation of experiments by simulating a local network 

topology for each experiment. The results detailed in Section 3.3 incorporate two 

types of servers. Primarily we employed a high end system with one Xeon 3.0Ghz 64 

bit CPU, 2 GB main memory , six 1 Gbps network adapters, and a 10000 RPM disk. 

In order to change the bottleneck pattern we also used low end machines with a 

Pentium P3 600 MHz processor, 256 MB main memory, five 100 Mbps network 

adapters, and 7200 RPM disk. Both server types ran with Red Hat Enterprise Linux 4, 

with Linux kernel version 2.6.9-34-i386. 

3.1   Bottleneck Detection in the 1/1/1 configuration 

In this section we present a walk-through of our bottleneck detection process for a 

1/1/1 configuration (no server replication in the tiers). The RUBiS benchmark was set 

to use the bidding transition matrices and the workload was incremented in steps of 

two. 

The graphs in Fig. 1 show two different representative metrics in all tiers. The SLO 

satisfaction is graphed against the CPU usage in (a) and against the memory usage in 

(b). The depicted satisfaction level needs to be calculated by for each trial. This is 

conveniently resolved by the policy specific SLO-evaluator that is generated by 

Mulini. Individual satisfaction levels are determined for each of the SLO components. 

Interested readers can refer to [4] and [11] for more details. For simplicity reasons we 

solemnly use the response time of the system from the SLO-evaluator in the presented 

analysis. It is clearly visible that the satisfaction level meets our assumptions. It 

remains very stable up to around one hundred and fifty users, and decreases rapidly 

once this point is crossed. The CPU usage of the application server increases linearly 

and saturates at 100% when the SLO satisfaction drops down to around 85%. 

Furthermore, it is evident that the variability of CPU usage strongly decreases at the 

same time, signifying the maximal saturation level. The trends of other CPU 

utilizations remain linear and stable on the contrary. In Fig. 1 (b) we can see that the 

memory of the application server and database server is underutilized. Both show a 

fairly stable linear trend. Although the memory usage of the HTTP server is somewhat 

high its trend is almost flat. The variability of all other metrics stays fairly constant 

throughout the whole experiment. Following the argument in [4] we can regard the 



  

application server CPU a typical representative of a single bottlenecked resource that 

will show a strongly non-stationary behavior in its delta values (first difference 

normalized by the step-width). All other delta series will retain a stable behavior 

throughout the entire workload span. 
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Fig. 1. SLO satisfaction against (a) CPU usage metric and (b) memory usage metric in all tiers. 



  

Table 1. Heuristic approximation of the intervention point. 

AVG [%] ST-DEV CI-LB WL 
98.39 2.37 93.75 148 

98.31 2.46 93.49 150 

98.17 2.72 92.84 152 

98.09 2.81 92.58 154 

97.79 3.83 90.28 156 

97.63 4.05 89.70 158 

97.40 4.53 88.52 160 

97.26 4.66 88.12 162 

 

We can now turn to the actual detection process. Table 1 contains the output of the 

algorithm used to determine the intervention as described in Section 2.3. We 

performed the analysis on a dataset consisting of one hundred and seventy-five staging 

trials. The number of concurrent users ranged from two to three hundred and fifty. The 

lower bound of the confidence interval drops below ninety percent for a workload of 

one hundred and fifty-eight. According to Section 2.3 this defines our heuristic 

approximation of the crossover point c. 

The final outcome of our heuristic testing scheme (2.4) and the impact assessment 

(2.5) for a limited dataset (first one-hundred and twenty-five trials) are summarized in 

Table 2.  

Table 2. Results of the bottleneck detection process. 

Metric q0.1 q0.5 q0.9 q'0.2 q'0.5 q'0.8 R 
APP_CPU -1.01 0.05 0.74 -0.62 -0.02 0.58 70.05 

DB_KBCached -3.80 4.63 12.39 -3.56 3.26 11.46 11.72 

APP_KBBuffers 7.40 53.00 170.60 0.00 0.00 39.00 3.33 

DB_CPU -0.03 0.00 0.04 -0.03 0.00 0.03 2.81 

APP_Memory -0.15 0.08 1.04 -0.14 0.03 0.38 2.26 

WWW_CPU -0.07 0.00 0.06 -0.05 0.00 0.06 1.08 

 

The two delta value intervals I and I' are [4-156] and [158-250] respectively. While 

Rule 14 returns six hits, Rule 15 results in an empty set of candidate bottlenecks. All 

other metrics are discarded automatically. The values in the last column reveal the 

application tier CPU as most likely bottleneck. Thus our model has correctly detected 

the bottleneck in this scenario. For further understanding of the table it is important to 

note that we map all related values to its resource for the final interpretation. 

Therefore the R-value of the APP_CPU can result from more than one metric (e.g. the 

overall usage or the system usage) for instance. 

We now proceed to demonstrate the robustness of our method when subjected to 

various configuration settings. We show that our approach is highly robust with regard 

to variations in the width of the intervals (Table 3), the position of the crossover point 

(Table 4), and the step-width between the different workloads (Table 5). Table 3 

shows the value of the ranking function depending on the length of the two input 



  

intervals. Our model predicted the bottleneck correctly each time. We see that the 

width of the second interval influences the magnitude of the R-value strongly. 

Table 3. Ranking function value against interval width. 

I I' R* Pred Acc 
[4;156] [158;206] 6.94 1 

[4;156] [158;256] 68.32 1 

[4;156] [158;350] 13.92 1 

[58;156] [158;206] 3.83 1 

[58;156] [158;256] 7.66 1 

[58;156] [158;350] 15.01 1 

[108;156] [158;206] 4.33 1 

[108;156] [158;256] 8.67 1 

[108;156] [158;350] 17.11 1 

 

We now examine the impact of different choices of crossover point values, which are 

summarized in Table 4. Within certain intuitive limits the model predicts correctly. 

This is of special importance since the determination of the intervention point is the 

result of the algorithm in Section 2.3. We see that its heuristic character is justified in 

the nature of the data. 

Table 4. Ranking function value against different crossover points. 

I I' R* Pred Acc 
[16;114] [116;214] - 0 

[26;124] [126;224] - 0 

[36;134] [136;234] 5.09 1 

[46;144] [146;244] 6.86 1 

[56;154] [156;254] 7.93 1 

[66;164] [166;264] ∞ 1 

[76;174] [176;274] 59.43 1 

[86;184] [186;284] 0.93 0 

 

Finally we turn to Table 5 and the analysis of the robustness of the choice of step-

width. The table contains the ranking function values for different step-widths. 

Table 5. Ranking function value against the step width. 

I I' Step # Trials R* Pred Acc 
[4;156] [158;350] 2 174 13.92 1 

[4;156] [160;348] 4 87 12.58 1 

[4;156] [164;348] 8 44 188.60 1 

[4;148] [164;340] 16 22 112.17 1 

[4;132] [164;324] 32 11 ∞ 1 

 



  

At first it looks surprising that the ranking values increase almost monotonically as the 

step-width increases. Nevertheless, this is due to the stochastic nature of our data and 

the fact that with increased step width the two intervals are separated farther apart. By 

increasing the observable change in the bottleneck metric the results become clearer. 

This proves the robustness of our method and reveals its effectiveness when exposed 

to data of higher step-width. 

3.2   Performance Comparison of the Analysis 

In this section we present the results of our experiments across a wide range of 

configurations to show how the method evaluates a changing bottleneck pattern. This 

data was collected on Emulab [12] with different write ratios (WR0.1 and WR0.2) and 

server configurations (H and L). 

Table 6 lists the top candidate bottleneck metrics and their R-value in the last two 

columns. We also applied a simple heuristic filtering mechanism to discard 

uninteresting ranking values. The latter eliminates the problematic behavior of some 

utilization values for instance, which was detailed in our previous work. We 

automatically discard values if the utilization does not cross a certain threshold (90% 

in our case) [4]. The table shows that our methodology is able to detect the shifting 

bottleneck as we progress to higher replication levels of the application server tier. 

Table 6. Top candidate bottleneck metrics. 

Config WR WS # Trials c S1/S2-Sz Result Metric R* 
H/2H/H

1 

20% 100-600 51 440 11/2 APP_CPU 73.02 

H/4H/H 20% 540-1040 51 844 4/1 APP_CPU 16.61 

H/6H/H 20% 1040-1448 51 1264 7/0 APP_CPU 13.10 

H/8H/L 10% 1300-1820 51 1490 4/0 DB_Memory 10.22 

H/8H/2L 10% 1400-1920 51 1640 5/1 APP_CPU 7.82 

 

In order to make the performance limitation appear faster we employed a lower write 

ratio and lower end DBs in the last two data sets. At a replication level of eight 

application servers the bottleneck has shifted to the database tier. Our algorithm 

identifies the DB memory as a potentially saturated resource. Now we examine the 

effect of replicating the bottlenecked DB. This again results in a shift of the bottleneck 

towards the application tier and is successfully detected by our algorithm. It is also 

evident that we are able to perform our detection process accurately with a 

significantly lower number of trials than other approaches. 

4 Related Work 

The area of performance modeling in multi-tier enterprise systems has been subjected 

to substantial research efforts in the recent time. Many of the well-documented 

approaches use machine learning or queuing theory. 



  

Cohen et al [3] apply a tree-augmented Naïve Bayesian network to discover 

correlations between system-level metrics and performance states, such as SLO 

satisfaction and SLO failure. Powers et al [5] also use machine learning techniques to 

analyze performance. However, rather than detecting bottlenecks in the current 

system, they predict whether the system will be able to withstand load in the following 

hour. Similarly, we have performed a comparative study of machine learning 

classifiers to investigate performance patterns [11]. Our goal was to compare the 

performance of several well-known machine learning algorithms as classifiers in terms 

of bottleneck detection, and finally to identify the classifier that best detects 

bottlenecks in multi-tier applications. Several other studies are based on dynamic 

queuing models combined with predictive and reactive provisioning as in [9]. Their 

contribution allows an enterprise system to increase capacity in bottleneck tiers during 

flash crowds in production.  

Elba, in addition to being oriented towards avoiding in-production performance 

shortfalls, emphasizes fine-grained reconfiguration. By identifying specific limitations 

such as low-level system metrics (CPU, memory, etc.) and higher-level application 

parameters (pool size, cache size, etc.) configurations are tuned to the particular 

performance problem at hand. Another fundamental difference of our work is that in 

addition to correlating metrics to performance states, we focus on the detection of 

actual performance-limiting bottlenecks. We employ a unique procedure to analyze 

the change in trends of metrics. Finally, our set of metrics for bottleneck detection 

includes over two hundred application-level metrics as well as system-level metrics. 

5 Conclusion 

Our detection scheme based on intervention analysis has proven to be very effective 

with our experimental data. The method is able to characterize the potential change in 

metric graph trends automatically and assess its correlation with SLO violations. Our 

statistical modeling approach eliminates the previously necessary data filtering (e.g. 

correlation analysis) and model calibrating phases (e.g. classifier training). The results 

are clear and intuitive in the interpretation. We showed that our new method yields 

these general as well as practical advantages in our evaluation. Potential bottlenecks 

are identified accurately in different scenarios. As future work this method could be 

extended with a maximization/minimization scheme for the ranking function. This 

would allow a more thorough root-cause analysis in the case of multiple bottlenecks. 

We also plan to employ our results as input for a regression model that will be able to 

predict actual SLO satisfaction levels. 
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