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Abstract. Link dimensioning is generally considered as an effective and (oper-
ationally) simple mechanism to meet (given) performance requirements. In prac-
tice, the required link capacity C is often estimated by rules of thumb, such as
C = d ·M, where M is the (envisaged) average traffic rate, and d some (empiri-
cally determined) constant larger than 1. This paper studies the viability of this
class of ‘simplistic’ dimensioning rules. Throughout, the performance criterion
imposed is that the fraction of intervals of length T in which the input exceeds
the available output capacity (i.e., C ·T ) should not exceed ε, for given T and ε.
We first present a dimensioning formula that expresses the required link capac-
ity as a function of M and a variance term V (T ), which captures the burstiness
on timescale T . We explain how M and V (T ) can be estimated with low mea-
surement effort. The dimensioning formula is then used to validate dimensioning
rules of the type C = d ·M. Our main findings are: (i) the factor d is strongly
affected by the nature of the traffic, the level of aggregation, and the network in-
frastructure; if these conditions are more or less constant, one could empirically
determine d; (ii) we can explicitly characterize how d is affected by the ‘perfor-
mance parameters’, i.e., T and ε.

1 Introduction

In order to meet the users’ performance requirements on an Internet connection, two
approaches seem viable, see, [1,2]. The first approach relies on the use of protocols
that enforce certain service levels, for instance by prioritizing some streams over other
streams, by performing admission control, or by explicitly dedicating resources to con-
nections; examples of such techniques are DiffServ [3] and IntServ [4]. The second
approach does not use any traffic management mechanisms, but rather relies on allocat-
ing sufficient network capacity to the aggregate traffic stream. In this approach the link
capacity should be chosen such that it is always large enough to satisfy the performance
requirements of all flows. This approach, which is often called overdimensioning, is
commonly used by network operators for their backbone links; some studies found that
such links generally have a capacity which is ‘30 times the average traffic rate’ [5].

As described in [6,7], it has several advantages to guarantee the users’ performance
requirements (agreed upon in a service level agreement, or SLA) by relying on link
dimensioning. Perhaps the most significant advantage is that dimensioning is (opera-
tionally) simple; it eliminates the need for network systems and network management



to support relatively complex (and therefore error-prone) techniques for enforcing the
SLA parameters.

Although the idea of link dimensioning is simple, still the question remains of how
much link capacity is needed to guarantee the parameters agreed upon in the SLA.
Without sufficient capacity, the performance, as experienced by the users, will drop
below the required levels. If the link is dimensioned too generously, however, then the
performance does not improve anymore, and hence resources are essentially wasted.
This trade-off leads to the concept of smart dimensioning, which we define as the lowest
link capacity at which the SLA is met.

When determining this link capacity, a specific question is for instance: is there, for
a given performance target, a fixed ratio between the required capacity and the average
traffic rate? If there would be, then we would evidently have a simple and powerful
dimensioning rule. A more detailed question concerns the dependence of d on the per-
formance requirement imposed: when making the performance target more stringent,
evidently d should increase, but can this dependence be quantified?

Approach and organization. The idea in this paper is to study smart dimensioning, as
introduced above; the main question is ‘what is the link capacity that is minimally re-
quired?’ Throughout, the performance criterion imposed is that the fraction of intervals
of length T in which the input exceeds the available output capacity (i.e., CT ) should
not exceed ε, for given T and ε.

There are various possible approaches to answer this question. For instance, one
could follow a fully empirical approach. Then one experimentally increases (or de-
creases) a network link’s capacity, and evaluates the performance as experienced by the
users, so as to determine the minimally required link capacity.

We opt, however, for a different approach: we first derive an analytical link dimen-
sioning formula; this gives the required link capacity to achieve a certain performance
target, for given input traffic (in term of a mean rate and a variance term that expresses
the traffic aggregate’s burstiness). Then we explain how these traffic parameters can be
estimated with minimal measurement effort. We prefer this approach, mainly because
of its systematic nature: it explicitly shows which parameters of the underlying traffic
process essentially determine the required link capacity, and how it is affected by the
performance requirement.

The present paper builds upon previous work on traffic modeling and network link
dimensioning [8,9,11,12]. Section 2 recapitulates our findings on the modeling of real
network traffic (based on our measurements at 5 representative networking environ-
ments); importantly, these measurements indicate that under fairly general circum-
stances the Gaussian traffic model applies. We also derive a link dimensioning formula,
which greatly simplifies under Gaussianity; this formula shows how the ‘performance
parameters’ T and ε affect the required link capacity. Section 3 reviews approaches to
estimate the Gaussian traffic model’s parameters, i.e., mean and variance. In Section 4
it is discussed how to apply the link dimensioning formula from Section 2 in practice,
through an evaluation of its performance in different scenarios. Section 5 systematically
assesses the amount of link capacity required; interestingly, it is also shown how one



could explicitly predict the impact of changing T and/or ε on the required link capacity.
Concluding remarks are provided in Section 6.

2 Link dimensioning formula

As argued in the introduction, an important prerequisite for dimensioning is a formula
that determines, for given characteristics of the offered traffic and performance target,
the minimum required link rate. Preferably, such a dimensioning formula has minimal
requirements on the ‘nature’ of the traffic offered; for instance, we do not want to im-
pose any conditions on its correlation structure. In this section, we present a formula that
relies on only weak conditions on the traffic process, i.e., stationarity and Gaussianity:

– Stationarity means that, with A(s, t) denoting the amount of traffic arrived in the
time interval [s, t), the distribution of A(s+δ, t +δ) does not depend on δ (but just
on the interval length t− s). In the sequel we use the abbreviation A(t) := A(0, t).

– Gaussianity refers to the probability distribution of A(t). It is supposed that A(·) is
a Gaussian process with stationary increments, i.e., A(s, t) is normally distributed,
with mean M ·(t−s) and variance V (t−s), for some mean rate M ∈R and variance
curve V (·) : R+→ R+.

Stationarity is a common assumption in traffic modeling; it usually applies on time-
scales up to, say, hours. In earlier work, we have thoroughly investigated the Gaussianity
of real Internet traffic, in various representative settings (in terms of types of users,
network infrastructure, timescales, etc.) — see [8,9]. We found that a Gaussian traffic
model accurately describes real traffic, particularly when the level of aggregation was
sufficiently high. We note that this Gaussianity issue was the subject of a number of
other studies, see for instance Fraleigh et al. [6] and Kilpi and Norros [10]; similar
conclusions were drawn.

Derivation of link dimensioning formula for Gaussian traffic. Given the observation that
a real Internet traffic stream can be accurately approximated by a Gaussian process, we
now develop a formula that estimates the minimally required link capacity to cater for
that traffic stream.

First, however, we specify what ‘to cater for a traffic stream’ means. In this paper we
rely on the notion of link transparency that was introduced in [11]. Its main objective is
to ensure that the links are more or less ‘transparent’ to the users, in that the users should
not (or almost never) perceive any performance degradation due to a lack of bandwidth.
Clearly, this objective will be achieved when the link rate is chosen such that only
during a small fraction of time ε the aggregate rate of the offered traffic (measured on
a sufficiently small time scale T ) exceeds the link rate: P(A(T )≥CT )≤ ε. The values
to be chosen for the parameters T and ε typically depend on the specific needs of the
application(s) involved. Clearly, the more interactive the application, the smaller T and
ε should be chosen; network operators should choose them in line with the SLAs they
agreed upon with their clients.

Now, given the criterion P(A(T )≥CT )≤ ε, we can derive a formula for the minimal
link rate needed (without assuming Gaussian input at this point). Relying on the Markov



inequality P(X ≥ a)≤E(X)/a for a non-negative random variable X , we have for θ≥ 0
that P(A(T ) ≥ CT ) ≤ Eexp(θA(T ))exp(−θCT ), and hence we obtain the celebrated
Chernoff bound

P(A(T )≥CT )≤min
θ≥0

(
e−θCT EeθA(T )

)
.

Rewriting this expression, it is not hard to see that, in order to be sure that P(A(T ) ≥
CT )≤ ε it suffices to take the link’s bandwidth capacity C at least

C ≡C(T,ε) = min
θ≥0

logEexp(θA(T ))− logε

θT
. (1)

Finally, imposing some additional structure on A(·) simplifies the general dimensioning
formula of (1). When assuming traffic is Gaussian, with δ :=

√
−2logε, the dimension-

ing formula (1) reduces to

C = M +
δ

T
·
√

V (T ); (2)

here it is used that Eexp(θA(t)) = Mθt +θ2V (t)/2. The important consequence of this,
is that for the application of the dimensioning formula (2) in this Gaussian context it is
required to have estimates for the mean rate M and the variance V (T ).

3 Estimating traffic parameters

In the previous section we concluded that, in order to dimension a network link by
applying dimensioning formula (2), an accurate estimate of the traffic offered (both in
terms of the mean traffic rate M, as well as its fluctuations, expressed through V (T )) is
required. Estimating M is relatively straightforward, and can be done through standard
coarse traffic measurements, e.g., by polling Interfaces Group MIB counters via SNMP
(Simple Network Management Protocol) every 5 minutes.

Estimating the variance V (T ) (which could be interpreted as ‘burstiness’), however,
could be substantially harder: particularly on smaller timescales T , it is hard to do accu-
rate measurements through SNMP. The standard way to estimate V (T ) (for some given
small interval length T ) is what we refer to as the ‘direct approach’: perform traffic
measurements for disjoint intervals of length T , say ai(T ) for i = 1, . . . ,N, and compute
their sample variance

(N−1)−1
N

∑
i=1

(ai(T )−MT )2.

An important drawback to this direct approach, however, is that it requires substantial
measurement effort to accurately measure ai(T ) for small T . This drawback is coun-
tered by our so-called ‘indirect approach’, which is briefly discussed next — we refer
to [12] for an in-depth description.

Indirect estimation of V (T ). The ‘indirect approach’ to estimate V (T ) relies on (coarse-
grained) measurements of the buffer occupancy, as follows. By regular polling the oc-
cupancy B of the buffer in front of the to-be-dimensioned network link, the probability
distribution P(Q > B) of the buffer occupancy is estimated. Interestingly, as shown in



Location Short description # traces Mean rate (Mbit/s)

U university residential network (1800 hosts) 15 170
R research institute (250 hosts) 185 6
C college network (1500 hosts) 302 35
A ADSL access network (2000 hosts) 50 120
S server hosting provider (100 hosts) 201 12

Table 1. Measurement locations

[12], for Gaussian inputs, the distribution of the buffer occupancy uniquely determines
the variance function V (·) of the input process, for given mean rate M; in particular, it
was shown that it does so through the following relation:

V (t)≈ inf
B≥0

(B+(C−M)t)2

−2logP(Q > B)
.

In other words: when knowing P(Q > B) (or an accurate estimate), we can infer V (t) for
any timescale t. As our numerical and experimental evaluation in [12] shows, the above
‘indirect approach’ to obtain V (·) from coarse-grained measurements, yields estimates
of the variance that are remarkably close to the actual values.

Hence, we can estimate both M and V (T ) with relatively low measurement effort.
In the next section we demonstrate how these can be used to support finding an accurate
estimate of the required link capacity.

4 Dimensioning

In Section 2 we developed a link dimensioning formula (2) for Gaussian network traffic,
which has the input parameters the mean M and variance V (T ), and is supposed to
meet the performance target P(A(T )≥CT )≤ ε. In Section 3 we then explained how M
and V (T ) could be estimated through coarse measurements. In the present section, the
estimates of M and V (T ) are inserted into the dimensioning formula (2) to estimate the
minimally required link capacity. We can then verify whether the performance criterion
imposed is actually met. We will do so through a number of case studies — a sizable
collection of traffic traces of 15 minutes each, from various representative locations, see
Table 1; for more detailed information, see [9, Section 2.3].

We evaluate the accuracy of the dimensioning formula (2). It requires knowledge
of M and V (T ), which we estimate as described in Section 3; in particular, V (T ) is
estimated through the ‘indirect approach’. This indirect approach requires an estimate
of P(Q > B) (as a function of B ≥ 0); this was enabled by a simple simulation envi-
ronment that ‘replays’ the real traffic trace through a simulated buffer and link. The
resulting estimates are inserted into (2), yielding the estimated minimally required link
capacity for a chosen ε and T . In the present experiments, we set ε to 1%, and set T
to 1 sec, 500 msec and 100 msec. These are timescales that are, for various applica-
tions, important to the perception of quality by (human) users, and thus are relevant



when striving for link transparency. Now it is interesting to validate whether, under the
estimated minimally required link rate, the performance requirement would be met.

A first validation result is presented in Fig. 1. It shows the estimated required band-
width for three different values of T , with ε = 0.01, for location A. It is noted that the
fluctuations of the traffic rate in this specific example are relatively low compared to
the mean traffic rate. This is because at this location a large number of relatively small
(ADSL) access links are multiplexed on a large (1 Gbit/sec) backbone, and therefore a
single user cannot have a strong impact on the aggregate traffic stream.

Because of the rather small fluctuations, the amount of extra bandwidth required to
cater for the peak traffic rates (which is desirable under the link transparency criterion
imposed), compared to the mean traffic rate, is also relatively small: some 20% at the
100 msec timescale. Later on in this paper we will see that in other scenarios, the extra
required bandwidth can be as high as hundreds of percents.

Figs. 2 and 3 present similar results for locations U and S, respectively. Fig. 2 shows
an interesting example of a heavily loaded network: it can be shown that the peak traffic
rates in this example trace, even at small timescales, are lower than may be expected
from a Gaussian traffic stream with the estimated mean and variance. As a result of this,
the ‘realized performance’ (in terms of the ε̂ that will be defined below) is well below
the anticipated ε = 0.01. This might be caused by the relatively high average traffic rate
(compared to the other parts in this same trace), from the approximately 280 th to 420 th
second.

Fig. 3 illustrates the importance of looking at small timescales when dimensioning
network links: the peak rates at small timescales, in this particular example, are some-
times as much as 6 times the average traffic rate. Evidently, also the setting of ε is of
importance when determining the required bandwidth capacity. It can clearly be seen
from Fig. 3 that when ε is set smaller than the 0.01 chosen here, the estimated required
bandwidth capacity increases significantly, as then a larger number of the traffic peaks
should be catered for.

The above experiments already gave a rough impression about the performance
of our dimensioning procedure. In order to further validate how well the estimated
bandwidth capacity C corresponds to the required bandwidth, we introduce the notion
of ‘realized exceedance’, denoted with ε̂. We define the ‘realized exceedance’ as the
fraction of (disjoint) intervals of length T , in which the amount of offered traffic ai(T )
exceeds the estimated required capacity CT — we stress the fact that ‘exceedance’ in
this context does not correspond to ‘packet loss’. In other words:

ε̂≡ ε̂(C) :=
#
{

i ∈ {1, . . . ,N} | ai(T ) > CT
}

N
.

If C is properly estimated, then ‘exceedance’ (as in ai(T ) > CT ) may be expected in a
fraction ε of all intervals. There are, however, (at least) two reasons why ε̂ and ε may
not be equal in practice. (i) Firstly, (2) assumes ‘perfectly Gaussian’ traffic, which is
not always the case [8]. Evidently, deviations of ‘perfectly Gaussian’ traffic may have
an impact on the estimated C. (ii) Secondly, to obtain (1), an upper bound (viz. the



(a) T = 1 sec, ε = 0.01,√
v(T ) = 6.9 Mbit,

C = 168.1 Mbit/sec,
ε̂ = 0.00033

(b) T = 500 msec, ε = 0.01,√
v(T ) = 3.6 Mbit,

C = 169.4 Mbit/sec,
ε̂ = 0.0028

(c) T = 100 msec, ε = 0.01,√
v(T ) = 0.97 Mbit,

C = 176.6 Mbit/sec,
ε̂ = 0.00027

Fig. 1. Case-study for location A, example trace with (M = 147 Mbit/sec)

(a) T = 1 sec, ε = 0.01,√
v(T ) = 24.3 Mbit,

C = 312.6 Mbit/sec,
ε̂ = 0.0000

(b) T = 500 msec, ε = 0.01,√
v(T ) = 12.6 Mbit,

C = 314.8 Mbit/sec,
ε̂ = 0.0000

(c) T = 100 msec, ε = 0.01,√
v(T ) = 2.7 Mbit,

C = 320.8 Mbit/sec,
ε̂ = 0.0003

Fig. 2. Case-study for location U, example trace with (M = 239 Mbit/sec)

(a) T = 1 sec, ε = 0.01,√
v(T ) = 2.9 Mbit,

C = 23.2 Mbit/sec,
ε̂ = 0.0056

(b) T = 500 msec, ε = 0.01,√
v(T ) = 1.6 Mbit,

C = 24.3 Mbit/sec,
ε̂ = 0.0083

(c) T = 100 msec, ε = 0.01,√
v(T ) = 0.45 Mbit,

C = 27.8 Mbit/sec,
ε̂ = 0.0100

Fig. 3. Case-study for location S, example trace with (M = 14.3 Mbit/sec)



Location T avg. |ε− ε̂| stderr |ε− ε̂|
U 1 sec 0.0095 0.0067

500 msec 0.0089 0.0067
100 msec 0.0077 0.0047

R 1 sec 0.0062 0.0060
500 msec 0.0063 0.0064
100 msec 0.0050 0.0053

C 1 sec 0.0069 0.0047
500 msec 0.0066 0.0043
100 msec 0.0055 0.0041

A 1 sec 0.0083 0.0027
500 msec 0.0083 0.0024
100 msec 0.0079 0.0020

S 1 sec 0.0052 0.0050
500 msec 0.0049 0.0055
100 msec 0.0040 0.0059

Table 2. Required bandwidth: estimation errors (ε = 0.01).

Chernoff bound) on the target probability has been used, and it is not clear upfront how
far off this bound is.

To assess to what extent the dimensioning formula for Gaussian traffic is accurate
for real traffic, we compare ε and ε̂. We do this comparison for the hundreds of traces
that we collected at measurement locations {U, R, C, A, S}. Table 2 presents the average
differences between the targeted ε and the ‘realized exceedance’ ε̂ at each location
(where the averaging is done over all traces collected at that location), as well as the
corresponding standard deviations, for three different timescales T (1 sec, 500 msec
and 100 msec). The table shows that differences between ε and ε̂ are small. Hence,
we conclude that our approach accurately estimates the required bandwidth to meet the
pre-specified performance target.

5 Dimensioning factors

In this section we address the question whether there is, for a given performance target,
a fixed ratio between the required capacity C and the average traffic rate M. We start
this section, however, with a quantification of this ratio as a function of the parameters
T and ε (i.e., the parameters that determine the performance requirement).

Dimensioning for various parameter settings. As indicated earlier, the required band-
width should increase when the performance criterion (through ε and T ) becomes more
stringent. To give a few examples of the impact of the performance parameters T and ε

on the required bandwidth capacity, we plot curves for the required bandwidth capacity
at T = 10,50,100 and 500 msec, and ε ranging from 10−5 to 0.1, in Fig. 4. In these



Fig. 4. Required bandwidth for other settings of T and ε for locations {U, R, C, A, S}, with M =
{207, 18.9, 23.4, 147, 14.3}Mbit/s, respectively.

curves, M and V (T ) are estimated from an example traffic trace collected at each of the
locations {U, R, C, A, S}.

Figure 4 shows that the required bandwidth C decreases in both T and ε, which
is intuitively clear. The figures show that C is more sensitive to T than to ε — take
for instance the top-left plot in Figure 4, i.e., location U; at ε = 10−5, the difference
in required bandwidth between T = 10 msec and T = 100 msec, is some 20%. At
T = 100 msec, the difference in required bandwidth between ε = 10−5 and ε = 10−4 is
just 3% approximately. For other examples, the precise differences may change but the
impression stays the same: a tenfold increase in stringency with respect to T requires
(relatively) more extra bandwidth, than a tenfold increase in stringency with respect to ε

(of course, this could already be expected on the basis of the required link rate formula).
We have verified whether the required link rate is accurately estimated for these

case-studies with different settings of T and ε. The estimation errors in these new situa-
tions are similar to the earlier obtained results (cf. Table 2). It should be noted however,
that we have not been able to verify this for all possible combinations of T and ε: for
ε = 10−5 and T = 500 msec for instance, there are only 1800 samples in our traffic
trace (which has a length of 15 minutes) and hence, we cannot compute the accuracy of
our estimation. Another remark that should be made here, is that for locations with only
limited aggregation in terms of users (say some tens concurrent users), combined with a
small timescale of T = 10 msec, the Gaussianity assumption may become questionable.
Consequently, the accuracy of our required bandwidth estimation decreases.

Impact of changing performance parameters on required bandwidth. As illustrated in
Fig. 4, it is possible to express the estimated required bandwidth capacity as function of
ε and T . Having such a function at our disposal, and one or two actual estimates of the
required bandwidth, it is possible to ‘extrapolate’ such estimates to other settings of ε

and T . This allows for investigation of the impact of, say, a more stringent performance



target on the required capacity. We first assess the impact of a change in ε and then of a
change in T .

Suppose that, for a given T , a proper required bandwidth estimate C(T,ε1) is known,
for some ε1 and estimated M. From (2) it follows that C(T,ε1) = M + δ1 ·Ψ, where
δ1 :=

√
−2logε1. Evidently, we can estimate Ψ by (C(T,ε1)−M)/δ1. Then, to find

the required bandwidth estimate for some other performance target ε2, it is a matter of
inserting these M and Ψ into

C(T,ε2) = M +Ψ
√
−2logε2.

We give an example application hereof using the top-left graph (location U) in Fig. 4.
At the T = 100 msec timescale, taking ε1 = 0.01, M = 207 Mbit/s, it follows that
C(T,ε1) ≈ 266 Mbit/s. Thus, Ψ ≈ 19.4. Suppose we are interested in the impact on
the required bandwidth capacity if we reduce ε with a factor 1000, i.e., ε2 = 10−5.
Estimating the new required bandwidth capacity through the formula above yields that
C(T,ε2)≈ 300 Mbit/s, which indeed corresponds to the required bandwidth as indicated
by the curve in Fig. 4. Hence, informally speaking, the additional bandwidth required
to cater for 1000 times as many ‘traffic peaks’ is, in this scenario, just some 34 Mbit/s.

Secondly, we look at the impact of a change in T on the required bandwidth. Com-
pared to the above analysis for ε, we now have the extra complexity of the variance
V (T ) in (2), which evidently changes with various T . We therefore impose the addi-
tional assumption that traffic can be modeled as fractional Brownian motion (fBm); this
special case of the Gaussian model has found widespread use in modeling network traf-
fic. Under fBm, the variance satisfies V (T ) ≈ σ ·T 2H , where H is the so-called Hurst
parameter, and σ is some positive scaling constant. Using this variance function, (2) can
be rewritten as C = M +δ ·Φ(T ), with Φ(T ) =

√
σ ·T H−1.

Now suppose that for two different time intervals, namely T1 = T and T2 = βT
(for some β > 0; ε is held fixed), the required bandwidth is known. This enables us to
compute Φ(T ) and Φ(βT ), as above. But then

Φ(βT )
Φ(T )

=
√

σ · (βT )H−1
√

σ ·T H−1 = β
H−1,

or, in other words, g := (logβ)−1 · log(Φ(βT )/Φ(T )) is constant in β (and has value H−
1). Again we consider, as an example, location U, with ε = 10−3. For T = 100 msec we
obtain from C(T,ε)≈ 279 that Φ(T ) = 19.37. Now take β = 0.5; from C(βT,ε)≈ 290
we obtain Φ(βT ) = 22.3 It follows that g =−0.20. Suppose we now wish to dimension
for T3 = β′T with β′ = 0.1 (i.e., T = 10 msec), we obtain Φ(β′T ) = Φ(T )(β′)g ≈ 30.7,
so that C(β′T,ε) = M +

√
−2logε ·Φ(β′T ) ≈ 321. It is easily verified that this corre-

sponds to the required bandwidth as indicated by the curve in Fig. 4.

Dimensioning factors. Link dimensioning formula (2) requires knowledge of M and
V (T ) to estimate the minimally required link capacity, for specified ε and T . It is com-
mon practice to measure M, for instance through the popular MRTG tool [13]. Operators
then look at the ‘busy hour’ to estimate the load at the busiest time of the day. It is less



Location U R C A S

T (sec) 1.0 0.5 0.1 1.0 0.5 0.1 1.0 0.5 0.1 1.0 0.5 0.1 1.0 0.5 0.1
d 1.33 1.35 1.42 2.91 3.12 3.82 1.71 1.83 2.13 1.13 1.14 1.19 1.98 2.10 2.44
σd 0.10 0.09 0.09 1.51 1.57 1.84 0.44 0.49 0.67 0.03 0.03 0.03 0.78 0.87 1.01

Table 3. Required bandwidth: dimensioning factors (ε = 0.01).

common to also estimate V (T ), which reflects the fluctuations of the traffic rate at the
(usually rather small) timescale T — this could be done through the method described
in Section 3 of this paper. It would be interesting though to know whether there is a
common dimensioning factor, say d, which yields the required bandwidth (taking into
account fluctuations at small timescales), just on the basis of the mean traffic rate. If
there would be such a common dimensioning factor, one could easily estimate the re-
quired bandwidth through a simple formula of the type C = d ·M.

In order to study this dimensioning factor, the required bandwidth and mean traffic
rates are compared, by computing d := C/M, for each trace at all locations. These di-
mensioning factors, averaged over all traces at each location, as well as their respective
standard deviations, are given in Table 3.

Table 3 shows, for instance, that at location U, some 33% extra bandwidth capacity
would be needed on top of the average traffic load M, to cater for 99% (ε = 0.01) of
all traffic peaks at a timescale of T = 1 sec. At location R, relatively more extra band-
width is required to meet the same performance criterion: about 191%. Such differences
between those locations can be explained by looking at the network environment: at lo-
cation R, a single user can significantly influence the aggregated traffic, because of the
relative low aggregation level (tens of concurrent users) and the high access link speeds
(100 Mbit/sec, with a 1 Gbit/sec backbone); at location U, the user aggregation level
is much higher, and hence, the traffic aggregate is ‘more smooth’. Conclusion is that
simplistic dimensioning rules of the type C = d ·M are inaccurate, as the d is all but a
universal constant (it depends on the nature of the traffic, on the level of aggregation, the
network infrastructure, and on the performance target imposed). The table does, how-
ever, show, that within a location in some situations (in particular locations U and A)
the standard deviation of d is rather low; in these cases one could empirically determine
d (for fixed T,ε), and dimension through C = d ·M.

6 Concluding remarks

This paper introduced the concept of ‘smart dimensioning’. We derived a dimensioning
formula that gives the minimally required bandwidth capacity for a network link. We
evaluated this formula using an extensive number of traffic traces collected at different
locations. It turned out that the formula accurately predicts the required bandwidth,
which is of valuable help when considering link dimensioning as approach to meeting
the performance targets agreed upon in the Service Level Agreement.

The main question we posed is that of how much additional bandwidth is required,
on top of the average rate traffic rate M. From our evaluation, we may conclude that



there is no universal multiplicative factor d that would support a statement like ‘a band-
width of d ·M suffices’. It is clear that the factor d depends heavily on the performance
requirement imposed, but also on the nature of the traffic, the level of aggregation,
and the network infrastructure. We have seen that in some scenarios, as low as 13%
extra bandwidth (on top of M) is enough, while in others almost this percentage was
around 300% (but, evidently, these numbers should be not seen as universal bound-
aries). Clearly, the ‘30 times the average traffic rate’, as observed by [5] in several real
scenarios, seems highly overdone.

Acknowledgments. This paper was supported in part by the EC IST-EMANICS Net-
work of Excellence (#26854) (RvdM & AP) and the EC IST-EURO-FGI Network of
Excellence (#28022) (MM).

References

1. Zhao, W., Olshefski, D., Schulzrinne, H.: Internet Quality of Service: an Overview. Techni-
cal report, Columbia University (2000) CUCS-003-00.

2. Pras, A., van de Meent, R., Mandjes, M.: QoS in Hybrid Networks - An Operator’s Per-
spective. In de Meer, H., Bhatti, N.T., eds.: Proceedings of the 13th International Workshop
on Quality of Service (IWQoS 2005). Volume 3552 of Lecture Notes in Computer Science
(LNCS), Passau, Germany (2005) 388–391

3. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for
Differentiated Services. IETF RFC 2475 (1998)

4. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture: An
Overview. IETF RFC 1633 (1994)

5. Odlyzko, A.M.: Data networks are lightly utilized, and will stay that way. Review of Network
Economics 2 (2003) 210–237

6. Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely, T.,
Diot, C.: Packet-Level Traffic Measurements from the Sprint IP Backbone. IEEE Network
17 (2003)

7. Fraleigh, C., Tobagi, F., Diot, C.: Provisioning IP Backbone Networks to Support Latency
Sensitive Traffic. In: Proceedings of IEEE Infocom, San Francisco, USA (2003)

8. van de Meent, R., Mandjes, M., Pras, A.: Gaussian traffic everywhere? In: Proceedings of
the 2006 IEEE International Conference on Communications (ICC 2006), Istanbul, Turkey
(2006)

9. van de Meent, R.: Network link dimensioning: a measurement & modeling based approach.
PhD thesis, University of Twente (2006)

10. Kilpi, J., Norros, I.: Testing the Gaussian approximation of aggregate traffic. In: Proceedings
of the 2nd ACM SIGCOMM Internet Measurement Workshop, Marseille, France (2002) 49–
61

11. van den Berg, J., Mandjes, M., van de Meent, R., Pras, A., Roijers, F., Venemans, P.: QoS-
aware bandwidth provisioning of IP links. Computer Networks 50 (2006) 631–647

12. Mandjes, M., van de Meent, R.: Inferring traffic characteristics by observing the buffer
content distribution. In Boutaba, R., et al., ed.: Proceedings of the 4th International IFIP-TC6
Networking Conference (Networking 2005). Volume 3462 in Lecture Notes in Computer
Science (LNCS), Waterloo, Canada (2005) 303–315

13. Oetiker, T.: MRTG: Multi Router Traffic Grapher (2003) Available from URL:
http://people.ee.ethz.ch/˜oetiker/webtools/mrtg/.


