
LINUBIA: A Linux-supported User-Based IP Accounting

Cristian Morariu, Manuel Feier, Burkhard Stiller

Department of Informatics IFI, University of Zurich, Switzerland.
[morariu|stiller]@ifi.uzh.ch,manuel@feier.ch

Abstract. Obtaining information about the usage of network ressources by in-
dividual users forms the basis for establishing network billing systems or net-
work management operations. While there are already widely used accounting
techniques available for measuring IP network traffic on a per-host basis, there
is no adequate solution for accounting per-user network activities on a multi-
user operating system. This work provides a survey on existing approaches to
this problem and identifies requirements for a user-based IP accounting mod-
ule. It develops a suitable software architecture LINUBIA and proposes a proto-
typical implementation for the Linux 2.6 operating system, which is capable of
providing per-user accounting for both the IPv4 and the IPv6 protocol.

1 Introduction and Problem Statement

The Internet is rapidly growing and fundamentally influencing economic, cultural,
and social developments worldwide. While more and more people take advantage of
this global network and new services are being deployed every day, more network re-
sources are consumed. This creates the need for effective accounting mechanisms that
are closely coupled to authentication mechanisms, e.g., in support of network man-
agement tasks, charging requirements, or intrusion detection systems for systems and
users. Often it becomes necessary to know what amount and which type of network
traffic a specific network user is generating.

Today, as networking is moving towards an all-IP network [9] an accounting sys-
tem integrated into the IP layer seems the most straight forward solution. This ap-
proach allows for the same accounting mechanisms to be used regardless of the appli-
cation and the transport protocol carried over IP, or the data link layer and physical
connection the IP runs on top of.

Although the accounting of IP network traffic has received wide attention since
the beginning of the Internet [18], existing systems have a major drawback by look-
ing strictly to the IP packet captured on the wire. Such an approach allows for the
mapping of each IP packet to an end-system, which sends or receives the packet, but
it is unable to specify, which user was responsible for generating the traffic. Multi-
user operating systems often use a single IP address, which is shared among different
individual users. Since multiple users may be connected remotely at the same time to
the same machine and may have different applications that generate IP traffic being
transported over the network, it is impossible to identify how much traffic each of the-
ses users generated by just looking into the IP traffic at the router level.

Cristian Morariu, Manuel Feier, Burkhard Stiller

Therefore, this paper proposes the user-based IP accounting architecture named
LINUBIA, which uses a Linux kernel extension and a library for accessing this exten-
sion, for mapping each IP packet sent or received to the responsible user. This solu-
tion allows for splitting network costs in case of usage-based charging or may allow
detection of the user or process that was responsible for illegal IP traffic.

Fig. 1 depicts a typical scenario for using the new user-based IP accounting infra-
structure. In an enterprise network users are typically authenticated by using a central-
ized authentication server such as LDAP (Light-weight Directory Access Protocol)
[15] or Kerberos [12] and they may access the network from any terminal or working
station that is configured to use the central authentication server. Upon authentication
the device to which the user logged on to starts to meter the network usage and sends
periodic accounting records to the accounting server. Since the network usage is
mapped to user identifiers (ID) and a user uses the same ID with any device he is al-
lowed to connect to, the accounting server may aggregate the network usage from dif-
ferent devices within the network and present users with detailed and aggregated in-
formation about network traffic they created.

The remainder of the paper is structured as follows. Section 2 presents a brief
overview on related work in the field of IP accounting followed by Section 3, which
outlines the design of the new approach. Section 4 gives major implementation de-
tails. While Section 5 discusses evaluation results, finally, Section 6 draws conclu-
sions and provides ideas about future work.

2 Related Work

Some of the first guidelines for measuring internet traffic have been proposed in [18].
The IETF defined a generic AAA architecture (Authentication, Authorization, and
Accounting) [10] that formed the basis for RADIUS and [14] Diameter [2] protocols.

Fig. 1. Enterprise Scenario

LINUBIA: A Linux-supported User-Based IP Accounting

The AAA architecture and its related protocols do not define how measurements need
to be done, but specify how to transport and collect the data measured. SNMP (Sim-
ple Network Management Protocol) [3] allows network administrators to monitor and
manage network traffic performance. Each network device in a SNMP managed net-
work has a management agent that resides on that device. The management agent col-
lects information from different counters and configuration parameters of the man-
aged device and makes them available to a Network Monitoring Station (NMS) via
the SNMP protocol. The information collected via SNMP is typically highly aggre-
gated (e.g., summary of data transferred on an interface or average data rate during
the last n seconds). RTFM (Real-time Flow Monitoring) [1] and RMON (Remote
Monitoring) [19] also use SNMP for transporting measured data. None of these solu-
tion offers any support for user-based IP accounting.

Commercial accounting systems, such as NetFlow [6], NARUS [11], or Juniper’s
J-Flow Accounting [8], lack the support for accounting on a per-user basis. The au-
thors of [4] propose a method for accounting TCP connections on a per-user basis.
Their solution is based on introducing an additional step in the TCP connection set-up
phase for checking the authenticity of the user. If a TCP session is started all the traf-
fic is reported to the user, who started the session. [20] proposes to use multiple IP ad-
dresses on a multi-user devices and use a distinct IP address for every user. This
would allow traditional IP traffic accounting systems to be used for user-based IP ac-
counting. NIPON [13] and [21] introduce an agent-based solution, where an agent is
set up on a host with multiple users; this agent is designed to collect required traffic
information directly on that host, but without having to change the operating system
(kernel), so that it can also be used with closed source systems, like Solaris or Win-
dows. The solution is based on capturing all traffic on the network interface to identi-
fy local traffic and to correlate it to local users. The drawback of this solution is the
need to monitor all traffic on the link in case of shared links such as Fast Ethernet.

The UTAdragon project (Useful Traffic Accounting Dragon) [17] retrieves net-
work data by collecting network and process information using the /proc/net in-
terface. Data about open network connections and processes that use them are collect-
ed and recombined to create a table showing, which system user has consumed how
much network traffic. The accounting data is stored in a MySQL Database, allowing
further processing or aggregation. UserIPAcct (User IP Accounting) [16] is an exten-
sion to the Linux kernel originally developed in 1994. The development has stopped
in 2000 and the latest beta version available addresses kernel 2.2. This system ex-
tends the Linux kernel in a way that it becomes able to attribute IP traffic to local sys-
tem users. This code is not compatible with modern Linux kernels (e.g., 2.6) and also
does not support IPv6.

Comparing to existing work, LINUBIA proposes a user-based IP accounting sys-
tem embedded into the latest generation of the Linux kernel (v2.6) and capable of per-
forming accounting for IPv4 as well as IPv6 traffic. Moreover, LINUBIA reports
measured traffic separated on different transport protocols. An important difference to
previous approaches is having not only a Linux kernel extension for user-based IP ac-
counting, but a solution that can easily integrate into existing authentication and ac-
counting systems by using standard protocols such as LDAP and Diameter. Having

Cristian Morariu, Manuel Feier, Burkhard Stiller

the accounting module embedded into the Linux kernel enables, besides traffic ac-
counting, later extensions to perform IP traffic access control based on users or appli-
cations which generated the traffic. The solution proposed here follows an architec-
ture close to the one proposed in [16].

3 Design

Based on the following use cases a summary of the main requirements for the new
user-based IP accounting architecture, termed LINUBIA is derived. Based on these
requirements that have been identified the design of the proposed solution is detailed.

3.1 Motivating Use Cases

Network Traffic Billing System
The first scenario deals with the case of a grid infrastructure spanning across a larger
area on top of which customers may run their own grid applications. A grid user will
typically install its applications on multiple nodes and these run typically with the us-
er’s privileges. The grid operator may use the user-based accounting module in order
to split network costs (traffic created by grid applications is typically high) among all
customers based on the amount of traffic they created.
Individual Load Monitoring and Abuse Detection
The second scenario addresses the case of an institution, for example a university,
which offers its students the possibility to use the Web for research and communica-
tion purposes, but does not want them to excessively waste precious network band-
width for sharing videos, filesharing, and the like. The system setup is done in a way
that a student can log into one of many computers at the university with his personal
credentials. The user account information is stored in a centralized LDAP directory,
so a specific student has uses the same user ID (UID) in every system he logs into. A
script can regularly copy usage information to a database server, where it is stored and
accumulated with the traffic footprint of other users in order to detect possible anoma-
lies in the traffic under investigation. The system administrator has the possibility to
monitor network usage of students, independent of applications or the computer they
use. With the help of this information he can detect and quantify abuses, suspend ac-
counts of the respective users, or initiate further investigations.
Service Load Measuring
The third scenario handles the identification of applications, which generate abnor-
mal traffic. For example, on a Linux server different services may be operational,
some of them may not be using well-known ports (e.g., a bit-torrent client, which con-
stantly changes ports it is running on). On that router connecting this server to the In-
ternet, the administrator can monitor how much traffic this server created, but he can
only identify applications based on port numbers. In case of applications that change
these ports the use a user-based IP accounting module eases traffic monitoring for
these type of applications.

LINUBIA: A Linux-supported User-Based IP Accounting

3.2 Requirements

Based on these use cases above as well as a general observation of achieving a practi-
cal and implementable solution the following four key requirements for IP account-
ing LINUBIA have been identified:

• The IP accounting module shall account for IPv4 and IPv6 traffic information
on a per-user bases operating the Linux operating system.

• The IP accounting module shall allow for application-based traffic accounting.
• An API interface shall be available for configuring the IP accounting module

and retrieving accounted for data.
• The performance impact of the IP accounting module on the networking subsys-

tem should be kept minimal.

3.3 LINUBIA Architecture

The architecture of an enterprise network having LINUBIA running on the Linux
end-hosts, consists of both a network architecture (cf. Fig. 2) that defines the network
components required for LINUBIA and a end-host architecture (cf. Fig. 3) that de-
fines the software components required within an end-system to support LINUBIA.

Two types of devices may be identified: regular Linux hosts, which may be used
by users and the accounting domain infrastructure (consisting of an authentication
server, a data aggregation server, and a storage server). Linux nodes use an authenti-
cation server for verifying user credentials. Whenever a user logs in to a Linux host
all the processes started by the user will run with the global UID of the user. Each
Linux host has LINUBIA enabled. Accounted for data is encapsulated in accounting
records and it is transported from each Linux host to an accounting server using the
Diameter protocol. The accounting server further stores the accounting records in a
central database. For supporting this an accounting client runs on each host, collects
the data accounted by LINUBIA and sends it to an accounting server using the Diam-
eter protocol.

Fig. 2. Network Architecture

Cristian Morariu, Manuel Feier, Burkhard Stiller

3.3.1 End-Host Accounting Architecture
This section shall describe in detail the different components and their interactions re-
quired within an end-host in order to support user-based IP accounting. Regular oper-
ating systems do not offer a function to autonomously measure user-specific IP traf-
fic. Therefore, a host needs to be modified in order to be able to perform such a task.
Fig. 3 shows how this can be achieved by modifying the Linux operating system ker-
nel, which resides between the networking hardware and applications in the user
space. The kernel allows network applications to access the TCP/IP stack via the net-
work socket interface; it contains routines to send outgoing IP packets to the network
and deliver incoming packets to the destination applications. These routines and the
kernel have to be extended in order to measure, store and export the desired account-
ing information associated with each accounting-relevant IP network operation. This
is done by a kernel accounting extension that consists of a number of components
which are added to the kernel.

The information storage component is responsible for the temporary storage of
accounting information collected. Each incoming or outgoing packet triggers a lookup
in this component for finding the record entry for the username responsible with the
transfer thus the efficiency of the information storage component highly impacts the
overall performance of the accounting module. The data collector component re-
trieves the necessary information from the IP networking subsystem and puts it in the
storage component. The output generation component reformats the internal data be-
fore exporting it to user space via the proc filesystem (procfs). The module con-
troller provides facilities to manage records stored, for example to reset all records of
a specific user. It uses the ioctl interface.

Fig. 3. End-Host Architecture

LINUBIA: A Linux-supported User-Based IP Accounting

This architecture is designed to extract and export user-specific IP accounting in-
formation from the kernel to user space for further processing. The data is stored tem-
porarily in the main memory by the kernel module. Data aggregation and persistent
storage are done outside the kernel. in order to keep low the load on the kernel.
3.3.2 Integrated View
Fig. 4 shows the integration of the host specific architecture into the network architec-
ture. In addition to the kernel-based accounting architecture sketched in 3.3.1 two ad-
ditional components are required for building accounting applications on top of LIN-
BUIA. The first component is an accounting library that provides the API for query-
ing and configuring the accounting module. It enables applications to access the
kernel interfaces of the accounting extension. .

The second component is a Diameter accounting client that uses this library to
fetch the user-based IP accounting records from the kernel and sends them to a re-
mote data aggregation server using the Diameter protocol. The aggregation server can
evaluate and store the accounting data persistently, for example by using a separate
database server.

A flexible system authentication back-end and Name Service Switch (NSS) con-
figuration allows that a unique user account of a centralized user database (on a re-
mote directory) can be used on any user host; the suggested interface being used for
this is LDAP. The intention is that multiple hosts use the same user database and
therefore the same UIDs for individual users, making users and associated accounting
records uniquely identifiable across distinct hosts

Fig. 4. Integrated View

Cristian Morariu, Manuel Feier, Burkhard Stiller

4 Implementation

The implementation of the host-based extension is based on the code layout of the
useripacct project [16] and is entirely written in the C programming language [5].
Compared to the other investigated approaches, LINUBIA supports 64 bit counters,
provides real-time traffic statistics and allows parallel accounting of IPv4 as well as
IPv6. The accounting system was implemented for modern 2.6 series Linux kernels
and supports both IPv4 and IPv6.

The information triplet to be extracted from each IP network operation consists of
the IP packet size, the packet owner (user), and the network and transport protocols
involved with the operation. Unfortunately, the required routines and protocol head-
ers are distinct for IPv4 and IPv6, and for incoming traffic, the information cannot be
retrieved at the IP layer, like it is the case for outgoing traffic. This required the em-
bedding of the accounting module routines in the transport layer implementation. A
shortcoming of this approach is a scatter of the LINUBIA code across several files in
the Linux kernel network subsystem.

The data collector can extract the size of a packet from IP packet headers; the
sum of the transferred IP packet sizes equals the IP traffic. The network and transport
protocol types can be determined by identifying the kind of the network routine or by
also inspecting the IP packet header. The user information can be determined by look-
ing up the ownership properties of the network socket corresponding to a packet. As it
is possible that IP packets are sent or received that have no associated local network
socket, there are rare situations where traffic cannot be attributed to a regular user.
This is handled by directing such accounting information to the record of a special
user “nobody”.

Kernel Code

Accounting Module

Accounting
Data Collector

Module
Management

Controller

Output
Generator

Accounting
Temporary

Storage

Access
Library

Accounting
Client

I/O
 In

te
rfa

ce
(p

ro
c

&
io

ct
l)

Transport Layer
send/receive

Kernel Space User Space

Function call

Fig. 5. Implementation Architecture

LINUBIA: A Linux-supported User-Based IP Accounting

The information storage component is implemented as a number of records that
are connected in groups of doubly-linked lists within a hash table. Each record con-
tains the UID as the primary identification attribute as well as the measured IP traffic
values for different network and transport protocols. Users are dynamically added
when they start using IP-based networking.

Upon request, the output generation component loops through these lists to cre-
ate a table with all users and their traffic records which is exported to the proc file
system. The user space library reads a special item in the proc filesystem that is ex-
ported by the kernel extension and contains the temporary accounting information.
The library recreates the record structures so that they can be easily accessed by other
applications, such as the accounting client. It also provides functions to send com-
mands to the module controller, using the ioctl interface. The accounting client
sends locally detected accounting records to the accounting server using the Diameter
protocol. Within Diameter, records are structured as sets of (predefined) Attribute-
Value Pairs (AVP). The sample accounting client and sample server communicate in
regular intervals by using accounting sessions, where an accounting session contains
current records for one user, as delivered by the accounting library. Besides the ac-
counting Attribute-Value-Pairs (AVPs) proposed in [2], a set of parameters have been
defined as shown in Tab. 1.

A patch containing the user-based IP accounting module for the 2.6.17 version of
the Linux kernel may be found at http://www.csg.uzh.ch/staff/morariu/linubia.

5 Evaluation

The evaluation of the user-based IP accounting module was performed both in terms
of functional and performance evaluation. The tests have shown that the requirements
described in Sect. 3.2 have been fully met. The set of experiments that have been per-
formed in order to test the functionality, accuracy and performance of the accounting
module used a network set-up as the one described in Fig. 6. The testing environment
consists of two hosts that are connected in a LAN by a Fast Ethernet switch as seen in
the figure. Both hosts run a Linux 2.6 operating system and use IPv4 as well as IPv6.
Both hosts have Fast Ethernet network adapters. All performance tests have been per-

AVP Name AVP
Code AVP Name AVP

Code
Linux-Input-IPV4-Octets 5001 Linux-Input-IPV4-TCP-Octets 5101
Linux-Output-IPV4-Octets 5002 Linux-Output-IPV4-TCP-Octets 5102
Linux-Input-IPV6-Octets 5003 Linux-Input-IPV4-UDP-Octets 5103
Linux-Output-IPV6-Octets 5004 Linux-Output-IPV4-UDP-Octets 5104
Linux-Input-TCP-Octets 5005 Linux-Input-IPV6-TCP-Octets 5105
Linux-Output-TCP-Octets 5006 Linux-Output-IPV6-TCP-Octets 5106
Linux-Input-UDP-Octets 5007 Linux-Input-IPV6-UDP-Octets 5107
Linux-Output-UDP-Octets 5008 Linux-Output-IPV6-UDP-Octets 5108

Table 1. New AVPs for Linux User-Based IP Accounting

Cristian Morariu, Manuel Feier, Burkhard Stiller

formed in a laboratory environment. For testing the functionality and robustness of
the module LINUBAIA was installed on an Ubuntu desktop machine and used in a
production environment.

For testing the accuracy of the accounting module several tests have been per-
formed in which TCP, UDP, and ICMP incoming and outgoing IPv4 and IPv6 traffic
was generated and accounted for. The experiments have shown that the accounting
module correctly accounts for IP traffic. During experiments it was observed that
some traffic cannot be mapped to any user (such as scanning traffic or incoming
ICMP messages). Such traffic is accounted for the system user by the accounting
module. Another observation concerns ICMP traffic that appears to be exclusively
mapped to the system user and not to the user who actually sent the message. The rea-
son for this is that raw socket operations are considered critical and only possible for
user root, also for security reasons (a regular user can only execute the ping program
because it has the SUID-bit set, thus being executed under root context).

Tab. 2 shows the results of a first test consisting of a 256 MB file transfer over a
Fast Ethernet link with and without LINUBIA using IPv4 and IPv6. The purpose of
this test was to identify the impact of accounting on the performance of the Linux net-
work subsystem. As the table shows there is only a small impact (0.83% for IPv4 and
0.41% for IPv6) on performance observed when running with LINUBIA enabled.

In Tab. 3 observed and estimated maximum throughput on a Linux box with and
without LINUBIA are shown. For estimating the maximum throughput the Iperf [7]
tool was used. The test with Iperf affirms that the measuring results are correct. Al-
though the values are not totally equal, the dimensions are the same and the perform-
ance loss is marginal.

Fig. 6. Testing environment

Unmodified
IPv4

Accounting
IPv4

Unmodified
IPv6

Accounting
IPv6

Average time 21.815 s 21.998 s 22.102 s 22.193 s
Std. deviation 0.062 s 0.208 s 0.010 s 0.204 s

Table 2. Average time for a 256 MB file transfer over a Fast Ethernet connection with
and without the user-based IP accounting enabled (average numbers of 20 runs)

LINUBIA: A Linux-supported User-Based IP Accounting

During the evaluation phase of LINUBIA the architecture and its implementation
have been tested to check the functionality they provide and the performance impact
on the Linux kernel network subsystem. These tests have shown that LINUBIA deliv-
ers the required accounting results, especially a per-user network activities result on a
multi-user operating system, while having a small impact on the performance of the end-
system under investigation.

6 Conclusions and Future Work

This paper demonstrates by a design and prototypical implementation that a user-
based IP accounting approach is technically possible on modern Linux (2.6 series) op-
erating systems. Additionally, it can be used also in the same version with the upcom-
ing IPv6 network protocol and it can be integrated into an existing accounting infra-
structure, such as Diameter. On one hand, users are not supposed to have only one
computer device of their own (not to mention sharing one device with other users),
but rather to have several devices for different purposes. On the other hand, the more
computers become commodities for daily life and will be used by different people
(producing networking-related and other costs), the more important it becomes to es-
tablish accounting systems, which offer a clear and secure user identification on the
end-device and will probably have an integrated character. The current implementa-
tion shows a clear proof of concept. Compared to traditional device-based accounting
mechanisms, a user-based approach allows the mapping of network services usage not
only to a device, but more specific, to the user which consumed those services.

Improvements are possible, e.g., with the storage component, which can be done
with a smaller memory footprint and also more efficiently by utilizing advanced data
structures that will help to optimize access times. Another interesting issue deter-
mines the linkage of the networking subsystem to the socket interface, which also im-
plies a link to the process management of the operating system. An advanced account-
ing module can offer IP accounting not only per user, but also per process. This al-
lows for the identification, the management, or schedulability of processes not only
by their CPU usage or memory consumption, but also by their network resource con-
sumption. Finally, this leads to the creation of network filters or firewalls that allow
for or deny network access to specific applications or users running on a host, instead
of only allowing or denying specific services. The current LINUBIA implementation
treats all traffic the same, thus producing an overall network consumption report for
each user. An interesting improvement would be separated accounting for different
services (differentiated based on DSCP number or destination Autonomous System).

Unmod.
IPv4

Acct.
IPv4

Rel. diff.
(%)

Unmod.
IPv6

Acct
IPv6

Rel. diff.
(%)

Manual (Mbps) 93.880 93.099 0.839 92.661 92.281 0.412
Iperf (Mbps) 94.080 91.700 2.595 92.880 92.870 0.012

Table 3. Average maximum throughput observed and calculated by Iperf over an Fast
Ethernec connection, with and without the user-based IP accounting module enabled.

Cristian Morariu, Manuel Feier, Burkhard Stiller

Acknowledgment.
This work has been performed partially in the framework of the EU IST Project EC-
GIN (FP6-2006-IST-045256) as well as of the EU IST NoE EMANICS (FP6-2004-
IST-026854).

References

1. N. Brownlee, C. Mills, G. Ruth, Traffic Flow Measurement: Architecture; RFC 2722, Oc-
tober 1999.

2. P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko, Diameter Base Protocol; RFC
3588; September 2003.

3. D. Harrington, R. Presuhn, B. Wijnen, An Architecture for Describing SNMP Management
Frameworks; RFC 2271, January 1998.

4. R. J. Edell, N. McKeown, P. P. Varaiya: Billing Users and Pricing for TCP; IEEE Journal
on Selected Areas in Communications, Vol. 13, No. 7, September 1995.

5. M. Feier: Design and Prototypical Implementation of a User-based IP Accounting Module
for Linux, Diploma Thesis, University of Zürich, Switzerland, February 2007.

6. Flexible NetFlow Homepage, http://www.cisco.com/en/US/products/ps6601/products_
data_sheet0900aecd804b590b.html, May 2007.

7. Iperf Homepage: http://dast.nlanr.net/Projects/Iperf/, May 2007.
8. Juniper Homepage, http://www.juniper.net/, May 2007.
9. M. Koukal, R. Bestak: Architecture of IP Multimedia Subsystem; 48th International Sym-

posium ELMAR-2006 focused on Multimedia Signal Processing and Communications, Za-
dar, Croatia, June 2006.

10. C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, D. Spence, Generic AAA Architecture;
RFC 2903, August 2000.

11. Narus Homepage, http://www.narus.com/, May 2007.
12. B. C. Neuman, T. Ts’o: Kerberos: An Authentication Service for Computer Networks,

IEEE Communications, Vol. 32, No. 9., pp 33—38, September 1994.
13. NIPON: Nutzerbasiertes IP Accounting; http://www.icsy.de/forschung/nipon/, May 2007.
14. C. Rigney, S. Willens, A. Rubens, W. Simpson, Remote Authentication Dial In User Serv-

ice (RADIUS); RFC2865, June 2000.
15. J. Sermersheim (ed): Lightweight Directory Access Protocol (LDAP): The Protocol; RFC

4511, June 2006.
16. UserIPacct Homepage: http://ramses.smeyers.be/homepage/useripacct/, May 2007.
17. UTA Dragon Homepage: http://www.crash-override.net/utadragon.html, May 2007.
18. G. Vinton (ed), Guidelines for Internet Measurement Activities; RFC 1262, October 1991.
19. S. Waldbusser, Remote Network Monitoring Management Information Base; RFC 2819,

May 2000.
20. G. Zhang, B. Reuther: A Model for User Based Traffic Accounting; 31st EUROMICRO

Conference on Software Engineering and Advanced Applications, Porto, Portugal, August
30 — September 3, 2005.

21. G. Zhang, B. Reuther, P. Mueller, Distributed Agent Method for User Based IP Account-
ing, 7th CaberNet Radicals Workshop, Bertinoro, Forlì, Italy, 13-16 October 2002.

