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Abstract. Performing impact analysis involves determining which users are af-
fected by system resource failures. Understanding when users are actually using 
certain resources allows system administrators to better assess the impact on en-
terprise operations. This is critical to prioritizing system repair and restoration 
actions, and allowing users to modify their plans proactively. We present an ap-
proach that combines traditional dependency analysis with resource usage in-
formation to improve the operational relevance of these assessments. Our ap-
proach collects data from end-user systems using common operating system 
commands, and uses this data to generate dependency and usage pattern infor-
mation. We tested our approach in a computer lab running applications at vari-
ous levels of complexity, and demonstrate how our framework can be used to 
assist system administrators in providing clear and concise impact assessments 
to executive managers. 
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1 Introduction 

An important question in system management is determining which users are affected 
by system resource failures [1]. System administrators are often tasked to assess the 
impact of system resource failures on business operations, which we refer to as as-
sessing the operational impact, and to present this assessment to management execu-
tives. Administrators must present this information in a manner that is clear and op-
erationally relevant to the executives. An example assessment is: “The purchasing 
department users will not be able to access their invoice applications for the next two 
hours because our application server has failed”, which connects the effects of the 
technical event clearly to one or more business operations. It also captures the concept 
that an operational impact occurs only if the purchasing department needs to access 
the invoice application during the outage period. Taking this usage information into 
account makes the impact assessment significantly more effective. 

Consequently, producing effective operational impact assessments requires: (1) 
connecting lower-level technical events to their impacts on higher-level, user-relevant 
resources; and, (2) integrating an understanding of when the higher-level resources 
are actually needed by the enterprise’s users. Most users are aware of the applications 
that they use to manage their local and remote data. We categorize these resources – 
programs, data files, and web sites – as higher-level because they are generally well 



 

understood by users in the context of allowing them to achieve the enterprise objec-
tives. These resources can vary in importance based on timing considerations. As one 
example, having access to certain financial files may be important to the enterprise 
only near the end of a fiscal quarter or year. In this case, we say that there is a sched-
ule-based usage pattern for the users accessing those files. As a different example, 
consider a special application that is accessed only when a certain combination of 
other resources are accessed – perhaps in response to a rare customer request. These 
requests might not occur at regularly scheduled times, as in the schedule-based exam-
ple. However, we may still be able to determine that the application is always ac-
cessed within a certain amount of time after the customer request is placed, and we 
say that there is a demand-based usage pattern for the users accessing this special 
application. We believe that this information can be collected, processed and inte-
grated to assist system administrators in producing effective operational impact as-
sessments.  

The main contribution of the paper is an operational impact assessment system that 
integrates events from all system and application components. These events are clus-
tered through simple data mining and statistical techniques to infer usage patterns 
needed for assessment. By integrating events from all relevant components, our sys-
tem is able to translate a low level event (e.g., failure of a device or router) into user 
level impact assessments meaningful to system administrators and managers. We 
demonstrate our approach by collecting and analyzing operational data at Georgia 
Tech for 35 days. Our experimental results show promising results in providing quan-
titative statistical support for operational impact analysis. 

The rest of the paper is organized as follows. We define our key goals and defini-
tions in Section 2. We highlight how our approach is distinguished from previous 
work in Section 3. We cover our approach in Section 4, and examine how we collect, 
process and integrate the topology and usage pattern data. We provide our experimen-
tal data in Section 5, including an example scenario of how we would produce the 
impact assessment from a specific technical event. Finally, we consider some possible 
extensions of our work in Section 6. 

2 Problem Goals and Definitions 

Our goal is to present a framework that helps system administrators assess the opera-
tional impact by determining the users affected by a component failure. This frame-
work supports assessments in the current time period, and also provides a predictive 
capability by leveraging the information generated from usage pattern mining to infer 
the likelihood of impacts during future time periods. We don’t expect this approach to 
assess the operational impact perfectly; the intent is that it will provide clear, opera-
tionally focused, and timely feedback that assists system administrators in assessing 
the operational impact for the executive users of the system. Our approach is based on 
collecting operating system data from selected end-systems to construct a model of 
the intra-system and inter-system resource dependencies. This information is then 
aggregated to construct a dependency model for the overall enterprise system. The 
data is also time-stamped, and data mining techniques are applied to detect usage pat-



 

terns. The dependency topology and usage pattern information is then used to assess 
operational impacts. 

We define an Enterprise System as a distributed system of components that are 
used in combination in pursuit of one or more functional objectives. We model an 
enterprise system as a directed graph of its’ distributed resources, where the nodes 
represent the system’s resources, and the edges represent the functional dependencies 
between resources. An edge from a source node to a sink node implies that the failure 
of the sink node would likely prevent the source node from completing its tasks suc-
cessfully. Fig. 1 presents our terminology and definitions. 

 

Fig. 1. Operational Impact Terminology and Definitions 

We define a Technical Event as a 4-tuple which represents the instance where a cer-
tain set of resources have Failed at time tfailure, and will not be repaired or restored 
until (tfailure + duration). In most cases, the average repair time (i.e. MTTR) can be 
used as an approximate duration value. Status captures the operational status of the 
system resources at the time of failure. Capturing all system status data might not be 
possible in some environments, but even partial status data can be useful in assessing 
impact. We then define an operational Impact Assessment as a set of 4-tuples. Each 
tuple represents how one user will be affected by one of the failed resources along a 
given Path, during the period from tstart to tstop, with a likelihood of pimpact. The path 
information is generated from the topology data, while the tstart, tstop and pimpact values 
are generated from the usage pattern data. 

3 Related Research 

There has been significant research in the areas of impact analysis, dependency dis-
covery and data mining. Two main factors distinguish our approach from previous 
research: (1) a focus on the subset of the topology with a directly traceable impact to 
one or more users; and (2) close integration of the resource dependency and resource 
usage data. Both of these factors help increase the operational relevance of the result-
ing assessments. 
 
Impact Analysis. There are still a significant number of administrators and executive 
users who perform impact analysis manually, based on best practices and rules of 



 

thumb [2][3]. Other automated, dynamic approaches have been proposed [4][5][6][7], 
but many require external expert knowledge in the form of SLAs, QoS metrics, user-
defined use cases, and weighing the importance of various resources. Our approach is 
automated, and infers the importance of system resources during different time frames 
by monitoring usage directly. Thereska et al [8] address the need to consider impact 
analysis in a proactive manner. They propose a “what-if” approach that supports in-
teractive exploration of the results of system changes. Their analysis is focused on 
determining the technical impact of configuration changes on the system’s perform-
ance, where our approach focuses more directly on assessing the operational impact 
for enterprise users. 
 
Dependency Discovery. There has also been significant research on the importance 
of dependency analysis in determining the impact of a resource failure. The most 
similar approach to ours is a forensic analysis tool [9] to help system administrators 
identify entry points when investigating security intrusions. They load modules into 
the Linux kernel, and use the information gathered to detect dependency relationships 
between objects by tracking events in which one object affects the state of another 
object. They focus on three types of dependencies based on the objects being moni-
tored: process/process, process/file and process/filename. Similarly, our approach 
uses the structure of the collected data records, including relationships between key 
fields, to determine dependencies. This differs from more sophisticated statistical ap-
proaches as used in [10][11]. In addition, the forensic analysis [9] focuses on files and 
programs, our approach includes a wider array of objects such as users, devices, net-
work ports, remotes sites and routers. 

Also, our approach collects data from the end-user workstations only, and doesn’t 
require any modification of the system hardware or software resources. This is similar 
to the philosophies and techniques in [12][13]. Some approaches capture data using 
methods such as offline perturbation, and modification of system components 
[14][15][16]. Though these approaches might yield richer and more comprehensive 
topology results, the intrusiveness of these techniques could make implementation 
and management more difficult in production environments. 
 
Data Mining. Data mining has been used for system management [17] and applica-
tion management [18]. Our approach goes beyond previous work by abstracting and 
integrating system level events and application level events. As an example, in the 
mining of usage data to detect business workflow patterns, Aalst et al [18] mention 
the exploitation of timing data as an open problem in workflow mining. We use tim-
ing as the underlying fabric on which we integrate events from all system and applica-
tion components.   

4 Overview of Our Approach 

Our approach is divided into four basic phases: Collection, Discovery, Mining and 
Assessment (Fig. 2). During the Collection Phase, we collect the operating system 
command output on various end-user workstations. The data is also time stamped to 
ensure consistency when linking records from different commands during the Discov-



 

ery Phase, and pattern mining during the Mining Phase. In the Discovery Phase, we 
construct a single, enterprise system-wide dependency topology using the collected 
data. The topology is then used to compute transitive dependencies between resources 
and users during the Assessment Phase. The Mining Phase detects usage patterns 
based on when dependencies occur (schedule-based), and how different dependencies 
are related in terms of their activity status (demand-based). Finally, the Assessment 
Phase integrates the system topology and usage patterns to produce an impact as-
sessment for a given technical event. 

 

Fig. 2. Impact Assessment Dataflow 

Collection Phase. We use cron-activated batch files to capture data about the current 
state of the workstation being monitored. The batch files execute common Linux op-
erating systems (OS) commands like w(), ps(), lsof(), and traceroute(), to collect data 
about users, programs and processes, open files, and remote sites. The batch files also 
format the output for further processing during the Discovery Phase. 
 
Discovery Phase. We use PostgreSQL views and scripts to load the OS output into a 
database, and extract dependencies in accordance with our dependency topology 
model in Fig. 3. The nodes correspond to fields in the command output, and each edge 
is labeled with the commands used to generate that specific type of dependency. As 
an example, the w() command gives the identifier of users logged onto the system, 
and is primarily used to distinguish real user accounts from accounts used to manage 
system services. Consider this sample w() output from the workstation athena: 
USER  TTY    FROM             IDLE  WHAT 
adams  pts/0   achilles.cc.gt.atl.edu  4days  -bash 

 
We derive the following three dependencies from this output: 

! 

• user | global | adams" site | global | achilles.cc.gt.atl.edu

• user | global | adams" program | athena |#bash

• program | athena |#bash" site | global | achilles.cc.gt.atl.edu

 

These dependencies correspond to the three edges in the topology model between the 
users, programs, and sites nodes. 



 

 

Fig. 3. Impact Topology Dependency Model 

Each resource is represented by three values: type | zone | identifier. The resource 
types are defined in a relatively straightforward and intuitive manner. Identifier is the 
actual resource name, and type and zone are used to avoid machine-wide and system-
wide name conflicts, respectively. Resources located exclusively on a particular end-
system are assigned to that computer’s local zone. Resources accessible by two or 
more resources located in different local zones are assigned to the system-wide global 
zone. As an example, a device can represent a (local) hard drive, or a (global) network 
attached storage system. A system topology view consists of the combined dependen-
cies from one specific collection period. We use Graphviz to render the system topol-
ogy and impact topology graphs. 
 
Mining Phase. We mine the activity data for each dependency to find usage patterns. 
For each dependency, we extract the activity data from the database into the formats 
in Fig. 4. A schedule-based dataset captures the specific times a dependency is active, 
where the candidate attributes are the components of the timestamp ti. The nominal 
attribute (i.e. class label) is 1 if dependency dj is active at time ti, and 0 otherwise. In 
contrast, the demand-based dataset captures when a dependency is active relative to 
the activity status of other dependencies. The candidate attributes are the set of de-
pendencies (not including dj) that are active at time ti, referred to as the system status 
at ti. The nominal attribute is 1 if the dependency dj is active at any time during the ti 
to (ti + duration) time period, and 0 otherwise. The exact duration value is normally 
not known before the technical event occurs, but we can use common duration values 
for the advanced calculations. Schedule-based mining is similar to partial period pat-
tern searches in time-series data, and demand-based mining is similar to autocorrela-
tion analysis [19]. We use J48 and PART tools in WEKA [20] to generate the deci-
sion trees and rules, respectively, for the schedule-based and demand-based datasets. 
The trees and rules are stored as the system usage patterns. 

 

Fig. 4. Schedule- & Demand-Based Dataset Mining Formats 

We also use the activity frequency and correlation values to reduce the number of 
dependencies to be considered during the Mining Phase. Dependencies with a very 



 

low activity frequency will be unlikely to cause an operational impact, and will also 
be likely to yield trivial patterns during the mining process. Dependencies with a very 
high activity frequency will, on the other hand, almost certainly cause an impact; 
however, they will also be likely to yield trivial patterns. Consequently, dependencies 
with frequencies lower or higher than our established thresholds (e.g. 10% and 90%) 
are removed from mining consideration. We calculate the correlation value for de-
pendency pairs that have equivalent activity frequencies, or where the difference of 
their activity frequencies is smaller than an established tolerance (e.g. 2%). If a pair of 
dependencies is strongly correlated (e.g. > 96.9%), then we can remove one of the 
dependencies from mining consideration. 

 
Assessment Phase. First, we use the system topology to calculate each path from a 
failed resource to a user who may be impacted by the given technical event. We then 
analyze the dependencies along each potentially impacted path. For each dependency, 
we use the system usage patterns, time of failure, duration, and system status informa-
tion to determine the maximum likelihood that the dependency will be active during 
the outage period. For each path, we use the minimum likelihood of the dependencies 
on the path to determine the overall likelihood that the user will be operationally im-
pacted by the failed resource. We remove any paths where the likelihood is less than a 
certain threshold, and return the remaining paths as the operational impact assess-
ment.  

5 Experimental Results 

We tested our approach on a computer lab with six Linux–based end-user worksta-
tions, all of which are connected to a significantly larger campus infrastructure. The 
collector program was implemented as a Linux batch file on each workstation, and 
configured to collect data at roughly 5-minute intervals, which was then consolidated 
to one-hour groupings. We collected data from these systems over 35 days, and then 
aggregated the data on a central server to support the Discovery, Mining and Assess-
ment Phases. We gathered more than 5000 distinct groups of data from the six end-
systems, distributed over approximately 700 distinct collection times. The steps taken 
during the Discovery, Mining and Assessment Phases allowed us to significantly re-
duce this potentially overwhelming amount of data, making it much more manageable 
and operationally relevant. There are two significant motivations in reducing the size 
of the system and impact topologies: to reduce the amount of information processing 
needed to produce an impact assessment; and, to improve the clarity of the results for 
the system administrators and executive users, as shown in Table 1. 

Table 1. Dependency Topology Sizes (Measured in Number of Dependencies/Edges) 

system-wide per technical event  
all real-users all freq < 0.1 0.1 ≤ freq ≤ 0.9 freq > 0.9 

Mean 3461 844 81 64 14 3 
St. Dev. 1269 334 233 189 70 10 
Skew 1.3 0.7 4.2 5.3 7.2 3.9 



 

The system topology data values were distributed fairly evenly around the mean. The 
impact topology values, however, were skewed significantly towards positive values. 
This was caused when certain technical events impacted an unusually large number of 
resources. As an example, most port or device failures only affected 4 to 12 resources. 
In contrast, technical events involving the http port on dionysos (port | dionysos | 
http), and a local device on hera (device | hera | 8-1), impacted 405 and 1,554 re-
sources, respectively. 

The initial topology, using all of the data gathered from one collection period, has an 
average of 3,461 dependencies. We reduce size of the system topology by 75% by 
identifying the subset of this topology that has a potential impact on one or more real 
users. Similarly, the initial impact topology for a given technical event has an average 
of 81 dependencies. We reduce the number of dependencies to be evaluated for the 
impact assessment by 79% by eliminating those dependencies with a frequency lower 
than our established threshold of 10%. Finally, an average of 14 dependencies needed 
to be evaluated with the system usage patterns for a given technical event. We deter-
mined that 1,893 of the dependencies collected during our testing had a frequency 
between 10% and 90%, inclusively. Further testing showed that 1,775 of these de-
pendencies were strongly correlated (97% or more), such that we needed to perform 
usage pattern mining on only 118 distinct dependencies. Our practice results so far 
confirm these percentages: we’ve had to perform usage mining on an average of 2 of 
the 14 dependencies, and the usage patterns for the remaining 12 dependencies were 
strongly correlated to these results. 

We will now demonstrate these principles with a practical example. Consider the 
technical event caused when the mysql port on the six end-systems used in our test 
environment are closed unintentionally by a faulty host firewall configuration. The 
comprehensive system topology for the entire testing period included over 92,000 
distinct dependencies. Manually analyzing a topology of this size would be cumber-
some and error-prone. We can use automated techniques to calculate more specifi-
cally which users are likely to be affected for this event, as shown in Fig. 5. 

 

Fig. 5. Impact Topology Without Activity Frequencies 

Using the impact topology results alone allows us to infer that the closed mysql port 
could potentially affect 4 of the 17 total users. We can leverage the system usage pat-
terns to more specifically determine the impact. Fig. 6 gives an improved impact to-



 

pology for this technical event, where each edge label represents the activity fre-
quency for that dependency. 

 

Fig. 6. Impact Topology with Activity Frequencies 

We don’t have enough information on the dependencies with a frequency < 10% to 
determine if they will be active during the outage period with any significant likeli-
hood. Consequently, we remove the paths using these dependencies from considera-
tion. The only path remaining for consideration is from user | global | linqf through 
program | hera | mysqld to port | hera | mysql. The next step is to use the timing and 
system status information from the technical event, along with the system usage pat-
terns, to determine if there will be an impact on user | global | linqf. 

    

Fig. 7. Schedule-Based (a) and Demand-Based (b) Decision Trees 

The two dependencies are strongly correlated, so we can use the same system usage 
pattern results for both dependencies. Fig. 7 shows the relevant decision tree results 
for these relationships. The scheduled-based decision tree has a correctly classified 
instances value of 96.57%, and we can use this as our measure of the likelihood of an 
impact. If the outage occurs between the 23rd and 28th of the month, then we would 
assess that user linqf has a 96.57% likelihood of being impacted during the outage 



 

period. Similarly, if the event occurs on the 22nd at 9pm, with an expected duration of 
6 hours, then we would adjust our assessment such that user linqf has a 96.57% likeli-
hood of being impacted between the hours of midnight and 3am on the 23rd. 

Now, suppose the event occurs on the 15th at 4pm, and lasts 6 hours. The schedule-
based patterns do not indicate activity during this period, but the demand-based pat-
terns might still indicate activity based on the status of other resources. Our approach 
will assess an impact if either set of patterns – schedule-based or demand-based – 
indicates that the dependency is likely to be active during the outage period. The de-
mand-based decision tree has a correctly classified instances value of 95.57%, and 
was generated based on the designated outage period of 6 hours. As an example, if the 
sshd program on the computer named hera has an active connection to the hel-
sinki.cc.gatech.edu site at the time of failure, then we can infer that the dependencies 
user | global | linqf → program | hera | mysqld and program | hera | mysqld → port | 
hera | mysql will also be active at some time during the 6-hour outage period. Conse-
quently, we would assess that user linqf has a 95.57% likelihood of being impacted 
during the outage period. 

This example demonstrates how the using the combination of system topology and 
system usage pattern information has allowed us to improve the clarity and opera-
tional relevance of our impact assessments. In the given scenario, the impact topology 
indicates that the closed mysql port might impact four different users. Incorporating 
the usage patterns allowed us to further determine which specific users had a signifi-
cant likelihood of being affected during the outage period for the failed resource. This 
is precisely the kind of information that many system administrators need to make 
their impact assessments more operationally relevant for management executives. 

6 Conclusion and Future Research 

We described an operational impact assessment model and system (Section 4) that 
integrates events from all system and application components. By clustering events 
through simple data mining and statistical techniques, our system translates a low 
level event (e.g., failure of a device or router) into a probabilistic user level impact 
assessment meaningful to system administrators and managers. We demonstrate our 
approach by collecting and analyzing operational data at Georgia Tech for 35 days. 
Our experimental results (Section 5) show the promise of our approach in providing 
quantitative statistical support for operational impact analysis. 

From the system management point of view, we consider the work described here 
as a concrete and significant first step. A natural next step is to apply our approach on 
systems of increasing scale and complexity. Through automated monitoring and 
analysis, we will collect a much larger event data set and build a more complete to-
pology model of usage patterns. In addition to observed (real world) failures, we can 
also conduct controlled experiments by inducing faults in various resources to evalu-
ate the accuracy and coverage of dependencies captured by our topology model. 
Trade-offs between the granularity/length of data collection and the accu-
racy/coverage of topology models (e.g., schedule-based and demand-based patterns) 
are another area of interesting research. Finally, a user-based assessment (e.g., feed-



 

back gathered from users via the help desk) matched to technical events (e.g., device 
failure) may provide a management-level validation of our approach and system. 

From the technical point of view, we will investigate methods to deploy the collec-
tion systems more easily (e.g. Java applets). We will also examine ways to distribute 
the discovery and mining processes to the end systems, without sacrificing the accu-
racy of the results. This could improve the scalability of the overall system by reduc-
ing the bandwidth and processing costs when compared to our current, centralized 
approach. Future research will include incorporating our usage pattern mining tech-
niques with more sophisticated dependency discovery systems. Our current approach 
allows us to integrate the dependency topology tightly with our usage mining tech-
niques. Using more sophisticated dependency discovery systems might allow us to 
complement our current focus on the end-systems with improved visibility into the 
infrastructure.  
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