
Ensuring Collective Availability in Volatile

Resource Pools via Forecasting?

Artur Andrzejak1, Derrick Kondo2, and David P. Anderson3

1 ZIB, Germany
andrzejak@zib.de
2 INRIA, France
dkondo@imag.fr

3 UC Berkeley, USA
davea@ssl.berkeley.edu

Abstract. Increasingly services are being deployed over large-scale com-
putational and storage infrastructures. To meet ever-increasing computa-
tional demands and to reduce both hardware and system administration
costs, these infrastructures have begun to include Internet resources dis-
tributed over enterprise and residential broadband networks. As these
infrastructures increase in scale to hundreds of thousands to millions of
resources, issues of resource availability and service reliability inevitably
emerge. Our goal in this study is to determine and evaluate predic-
tive methods that ensure the availability of a collection of resources.
We gather real-world availability data from over 48,000 Internet hosts
participating in the SETI@home project. With this trace data, we show
how to reliably and e�ciently predict that a collection of N hosts will
be available for T time. The results indicate that by using replication
it is feasible to deploy enterprise services or applications even on such
volatile resource pools.

1 Introduction

Services are being deployed increasingly over large-scale computational and stor-
age architectures. Internet services execute over enormous data warehouses (such
as Google) and cloud computing systems (such as Amazon's EC2, S3). Scien-
ti�c services are deployed over large-scale computing infrastructures (such as
TeraGrid, EGEE).

To meet ever-increasing computational demands and to reduce both hardware
and system administration costs, these infrastructures have begun to include In-
ternet resources distributed over enterprise and residential broadband networks.
Enterprises, such as France Telecom [1], are currently deploying a video-encoding
service where the computational load is distributed among the peers in a residen-
tial broadband network. Universities, through academic projects such as Fold-
ing@home [2], deploy scienti�c applications that use PetaFLOPS of computing
power from Internet resources.

? This research work is carried out in part under the projects CoreGRID (Contract
IST-2002-004265) and SELFMAN (contract 34084), both funded by the EC.

Infrastructures of this scale are exposed to issues of availability and reliabil-
ity. Low mean-time-to-failures (MTTF) and entire system crashes have plagued
both service providers and customers. For example, when Amazon's S3 storage
serviced crashed [3], numerous companies that depended on Amazon's services
were stranded. In Internet environments, such as BOINC, resource unavailability
can be as high as 50% [4].

At the same time, resource availability is critical for the reliability and re-
sponsiveness (low response latency) of services. Groups of available resources
are often required to execute tightly-coupled distributed and parallel algorithms
of services. Moreover, load spikes observed with Internet services (such as the
commonly observed slashdot e�ect [5]) require guarantees that a collection of
resources is available.

Given this need, our goal in this study is to determine and evaluate predictive
methods that ensure the availability of a collection of resources. We strive to
achieve collective availability from Internet distributed resources, arguably the
most unreliable type of resource world-wide. Our predictive methods could work
in coordination with a virtualization layer for masking resource unavailability.

Speci�cally, the contributions of this study are the following:

� We determine accurate methods and parameters for predicting resource
availability. In particular, we investigate the factors that in�uence predic-
tion error and determine indicators of resource predictability.

� We show how these methods and indicators can be used for predicting the
availability of groups of resources and the associated costs. In particular, via
trace-driven simulation, we evaluate our prediction method for collections
of resources with di�erent predictability levels. Our performance metrics
include the success of predictions, and the cost in terms of redundancy and
migration overhead for fault-tolerance.

Paper structure. In Section 2 we describe the data used in our study. Section
3 is devoted to the concept of predictability estimation, while Section 4 describes
and evaluates the simulation approach used to ensure collective availability. Sec-
tion 5 discusses related work. We conclude with Section 6.

2 Measurement Method

Our approach for gathering measurement data at a large-scale was to use the
Berkeley Open Infrastructure for Network Computing (BOINC) [6]. BOINC
serves as the underlying software infrastructure for projects such as SETI@home
[7] and is deployed currently across over 1 million resources over the Internet.

We instrumented the BOINC client to record the start and stop times of
CPU availability (independently of which application the BOINC local client
scheduler chooses to run). The factors that can cause CPU unavailability include
machines failures, power cycling, and user load. We term an availability interval
as a period of uninterrupted availability delineated by a CPU start and the next
CPU stop as recorded by the BOINC client. The BOINC client would start or

stop an interval depending on whether the machine was idle. The meaning of
idle is de�ned by the preferences of the BOINC client set by the user. We assume
that the CPU is either 100% available or 0%. Our results in [4], and experience in
[8] have shown this to be a good approximation of availability on real platforms.

This modi�ed BOINC client was then made available for download starting
on April 1, 2007. After a trace collection period of about seven months, the
log �les of these hosts were collected at the BOINC server for SETI@home on
February 12, 2008. By December 1, 2007 more than 48,000 hosts had downloaded
and were running the modi�ed client. (By the end date, we had collected data
from among 112,268 hosts, and the logs traced 16,293 years of CPU availability.)
We use the subset of hosts (>48,000) that were actively running the client on
December 1, 2007, and use the trace data for these hosts up to the end date of
February 12, 2008.

Our trace data also includes the demographics of hosts, when speci�ed by
the BOINC user. About 32,000 hosts had speci�ed host types. Of these hosts,
about 81% are at home, 17% are at work, and 2% are at school.

3 Estimating Predictability and Forecasting Availability

This section focuses on forecasting the availability of individual hosts along with
the estimation of the forecast accuracy. Our prediction methods are measurement-
based, that is, given a set of availability traces called training data we create a
predictive model of availability that is tested for accuracy with the subsequent
(i.e. more recent) test data. For the sake of simplicity we refrain from periodic
model updates.

An essential parameter for successful host selection is the expected accuracy
of prediction (w.r.t. the test data). We designate it as (host) predictability. An es-
sential ingredient of our approach is that we compute estimators of predictability
from the training data alone. As we will show in Section 4, using this metric for
host selection ensures higher availability ratios. Together with average availabil-
ity, this metric allows also for fast elimination of hosts for which the predictions
are less accurate and thus less useful.

3.1 Prediction methodology and setup

We compute for each host a predictive model implemented as a Naïve Bayes
classi�er [9]. A classi�cation algorithm is usually the most suitable model type
if inputs and outputs are discrete [10] and allows the incorporation of multiple
inputs and arbitrary features, i.e., functions of data which expose better its
information content. We have also tried other algorithms such as decision trees
with comparable accuracy results. Since it is known that (given the same inputs
and prior knowledge) no predictive method performs signi�cantly better than
others [11,12], we stick to this computationally e�cient classi�er.

Each sample in the training and test data corresponds to one hour and so
it can be represented as a binary (01) string. Assuming that a prediction is

computed at time T (i.e. it uses any data up to time T but not beyond it),
we attempt to predict the complete availability versus (complete or partial)
non-availability for the whole prediction interval [T, T + p]. The value of p is
designated as the prediction interval length (pil) and takes values in whole hours
(i.e. 1, 2, . . .). To quantify the prediction accuracy evaluated on a set S of such
prediction intervals we use the ratio (called prediction error) of mispredicted
intervals in S to |S|. The value of the parameter pil in�uences strongly the
prediction accuracy. As other factors likely a�ect accuracy, we have also studied
the length of the training data interval and the host type (i.e. deployed at home,
work, or school).

To help a classi�er, we enrich the original 01 data with features from the
following groups. The time features include for each sample calendar information
such as hour in day, hour in week, day in week, day in month etc. The hist
features are (for each sample) the sums of the recent k �history bits� for k =
2, 5, 10, 20, 50 and 100. They express information about the length of the current
availability status and the availability average over di�erent periods.

3.2 Types of predictable patterns

There are several types of availability patterns that make a host predictable
[13,14]. As a type A we understand behavior with long (as compared to pil) con-
secutive samples (stretches) of either availability or non-availability. Patterns of
type B feature periodic or calendar e�ects, e.g. diurnal availability. For example,
host availability over weekends or nights would create patterns of the later kind.
Finally, availability of a host might occur after speci�c availability patterns (like
alternating on/o� status etc.). We disregard the last type as it is unlikely to
occur in our scenario.

Knowing the predominant pattern type is helpful in designing the predictabil-
ity indicators. For type A, simple metrics like the average length of an availability
run might su�ce, while type B requires more sophisticated methods like Fast
Fourier Transformation (FFT). We identify the predominant patterns type by
using di�erent groups of features (from hist and time) in predictions and com-
paring the prediction accuracy. Obviously the hist features would lead to higher
accuracy for type A patterns, while the time features are likely to be useful in
presence of type B patterns.

3.3 Predictability indicators

We have implemented as the predictability indicators a variety of metrics which
are likely to indicate patterns of type A, B and possibly others. All indicators are
computed over the training data only. The aveAva is the average host availability
in the training data. The aveAvaRun (aveNavaRun) is the average length of a
consecutive availability (non-availability) run. The aveSwitches indicator is the
average number of changes of the availability status per week.

The last two indicators zipPred and modelPred are more involved and com-
putationally costly. The former is inspired by [11] and is essentially the reciprocal

value of the length of a �le with the training data compressed by the Lempel-
Ziv-Welch algorithm (raw, without the time and hist features). The rationale is
that a random bit string is hardly compressible while a bit string with a lot of
regularities is. To compute the last indicator, we train the classi�er on half of
the training data and compute the classi�cation error (as above) on the other
half. The modelPred value is then the reciprocal value of this error.

To compare indicators in their power to estimate the prediction error we
compute the Spearman's rank correlation coe�cient over all hosts for di�erent
pil values. We also verify the correlations by visual inspection of scatter plots
(Figure 3).

3.4 Implementation and running time

The prediction and simulation experiments have been implemented and con-
ducted using the Matlab 2007b environment. This framework was complemented
by the PRTools4, a Matlab toolbox for pattern recognition [15]. As the Naïve
Bayes classi�er for predictions we used the naivebc method of PRTools4 with
the default parameters.

Since Matlab is a partially interpreted language the running times of the algo-
rithms are only upper bounds of tailored implementations. However, a complete
experimental evaluation of a single host (including �le operations, computation
of all predictability indicators, classi�er training and approximately 330 predic-
tions in the test interval) required on average 0.25 seconds on a 2.0 GHz Xeon
machine under Linux.

Even if this time is negligible compared to a typical pil value, an e�cient,
tailored implementation is likely to be much faster. Assuming that the length
of the training interval in hours (i.e. the length of the 01 training string) is n,
the upper bounds on the number of operations (per host) are as follows. The
computation of aveSwitches is O(n) with constant of 1 (other predictability
indicators are not used in a production scenario). An e�cient computation of
the features hist and time requires time O(n) with a constant below 10 in each
case. An implementation of the Naïve Bayes classi�er which precomputes all
conditional probabilities during training requires time O(nd) for training and
O(2d) for a prediction, where d is the number of features (below 20 in our
case). As an example, assuming a training interval of 30 days (n = 720) and
d = 20, a one-time feature computationa and training would require below 3 ·104

operations, and a single prediction about 40 operations. Note such a training is
performed only if a host has passed the aveSwitches test which itself costs merely
about n = 720 operations.

3.5 Experimental evaluation

If not otherwise stated, the experiments used all the data described in Section 2
and the size of the training data was 30 days.

Factors in�uencing the prediction error. Figure 1 (left) shows the de-
pendence of the prediction error on the length of the training data and the pil

1 2 3 4

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Prediction interval length pil (hours)

A
ve

ra
ge

d
pr

ed
ic

tio
n

er
ro

r

training days = 10
training days = 20
training days = 30
training days = 40
training days = 50
training days = 60

1 2 4 8 16

0.05

0.1

0.15

0.2

0.25

Prediction interval length pil (hours)

A
ve

ra
ge

d
pr

ed
ic

tio
n

er
ro

r

all
work
school
home

Fig. 1. Prediction error depending on the training data length and pil (left); Prediction
error depending on the host type and pil (right)

value for a subset of 10, 000 randomly selected hosts. While the error decreases
signi�cantly if the amount of training data increases from 10 to 20 days, further
improvements are marginal. We have therefore used 30 days as the amount of
training data for the remainder of this paper. Figure 1 (right) illustrates that
the host type in�uences consistently the prediction error, with work and school
hosts being more predictable. Despite of this e�ect, the simulation results did
not show any signi�cant di�erences between host types which can be attributed
to low magnitude of di�erences.

Both �gures show a strong in�uence of the prediction interval length, pil,
on the prediction error. This is a consequence of increased uncertainty over
longer prediction periods and the �asymmetric� de�nition of availability in the
prediction interval (a short and likely random intermittent unavailability makes
the whole interval unavailable).

history time both
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pr
ed

ic
tio

n
er

ro
r

Type of used data features (pil = 4 hours)

Fig. 2. Dependency of the prediction error on the data features

Types of availability patterns. As described in Section 3.2 we measured
the prediction error depending on groups of used data features for a group of

3000 randomly selected hosts. Figure 2 shows the lower quartile, median, and
upper quartile values in the box while whiskers extend 1.5 times the interquartile
range from the ends of the box. The median error is largest when using only time
features and smallest when using both feature groups. While the magnitude of
the di�erence is low, the relative order of cases was consistent across all pil
values and host types. We conclude that most predictable hosts have availability
patterns of type A (long availability state stretches) with few hosts exhibiting
periodic or calendar predictability. Despite of this �nding, we have included both
the time and hist features in the classi�er training as the computation of the
them requires only linear time in the length of the training interval.

Evaluating predictability indicators. Table 1 shows correlations between
prediction error and various predictability indicators de�ned in Section 3.3 (rows
correspond to di�erent prediction interval lengths). The strongest and most con-
sistent correlation values has the modelPred indicator. However, as it is compu-
tationally most expensive, we identi�ed the aveSwitches indicator as a viable
substitute. For pil = 1, 2, 4 its correlation is comparable to modelPred, however
it becomes much weaker for pil = 8 and 16. We could not fully explain this phe-
nomenon, especially since the simulation results con�rm its good quality even
for these high pil values. However, a visual inspection of scatter plots for pil = 2
and pil = 16 (Figure 3) reveals that while for pil = 2 the correlation is obvious,
for the higher pil value a relationship between the indicator and prediction error
still exists but it is blurred by many �outliers�. Finally, Table 1 con�rms the
�nding that there is no clear relationship between average availability aveAva
and the prediction error.

4 Evaluation of Group Availability Prediction via

Simulation

4.1 Method

We conducted trace-driven simulation applying the predictor determined in the
previous sections. The predictor uses a training length of 30 days, which was
shown to minimize prediction error according to Figure 1. This predictor is
used to determine groups of available hosts, and the quality of the prediction is
evaluated in simulation.

pil aveAva aveAvaRun aveNavaRun aveSwitches zipPred modelPred

1 -0.370 -0.594 0.085 0.707 -0.654 -0.724

2 -0.275 -0.486 -0.011 0.678 -0.632 -0.690

4 -0.119 -0.303 -0.119 0.548 -0.502 -0.640

8 0.194 0.056 -0.245 0.195 -0.127 -0.642

16 0.211 0.091 -0.185 0.057 0.062 -0.568

Table 1. Spearman's rank correlation coe�cient between prediction error and various
predictability indicators (rows correspond to di�erent pil values)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of availability state switches per week (pil = 2 hours)

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of availability state switches per week (pil = 16 hours)

Pr
ed

ic
tio

n
er

ro
r

Fig. 3. Scatter plots of number of availability state changes per week (aveSwitches)
and the prediction error (random subset of 2000 hosts)

We divide the hosts into groups based on the best predictability indicator
described in Section 1, namely aveSwitches. To determine how to divide the
hosts, we plotted the distribution of the aveSwitches values among the hosts
(see Figure 4). The point (x, y) in Figure 4 means that y fraction of the hosts
have an aveSwitches value of x or greater. Given the skew of this curve, we
choose the median value of 7.47 near the "knee" of the curve to divide the hosts
into two groups with high and low predictability respectively.

The parameters for simulation include the number of hosts desired to be
available for some time period which is potentially longer than pil. In this case
one could simply use the predictor at the end of each pil interval and repeat until
the desired time period is reached. We refer to the total desired time period of
availability as the threshold (which is some multiple of pil). For example, if the
pil is 4 but the threshold is 12, we would rerun the predictor after time intervals
of 4 and 8 elapse.

Another parameter is redundancy. We de�ne redundancy to be (R − N)/N
where N is the number of hosts desired to be available, and R is the number of
hosts actually used. The number of hosts we use in simulation are 1, 4, 16, 64,
256, 1024. The redundancy is in the range of [0, 0.50]. Due to space limitations,
the simulation results we present below are for a pil of 4, though we also tried
other pil values and observed similar trends.

The predictor is run using a test period of about two weeks which follow
directly the training period. For each data point shown in the �gures below, we
ran about 30,000 simulations to ensure the statistical con�dence of our results.
In total, we executed more than 2 million simulations.

4.2 Performance metrics

We measured the performance of the predictions in simulation by a success rate
metric. In a simulation trial, we randomly choose R number of hosts from the
pool predicted to be available for the entire threshold. We run trials in this way
throughout the test period. We then count the number of trials where the number

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Predictability (aveSwitches)
R

em
ai

ni
ng

 F
ra

ct
io

n
of

 P
re

di
ct

ab
ili

ty
 V

al
ue

s

num values: 48873

mean: 10.0459

median: 7.4667

min: 0

max: 165.9

Fig. 4. Distribution of aveSwitches

of hosts actually available A (out of R) is greater than or equal to the desired
number N . If A is greater than or equal to N for the entire threshold, then we
consider the simulation trial a success. Otherwise, it is considered a failure. This
fraction of the number of successes to total number of trials is de�ned as the
success rate.

We also measure performance by the host turnover rate for thresholds greater
in length than the pil. The turnover rate indicates the overheads (due to process
migration, or service re-deployment, for example) due to changes in the predicted
state of hosts from one sub-threshold to the next. We computed the turnover
rate by �rst determining an active set of R hosts predicted to be available during
some sub-threshold of length pil. In the following sub-threshold, we determine
which hosts in the active set are predicted to be unavailable. The fraction of
hosts in the active set that change from an available state to an unavailable
state from one sub-threshold to the next is the turnover rate. Our method for
computing the turnover rate gives an upper bound on fault-tolerance overheads.

We then compute the average turnover rate across all sub-thresholds of size
pil throughout the entire test period. We conduct this process for active sets

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Redundancy

Su
cc

es
s

R
at

e

1
4
16
64
256
1024

of hosts

(a) Complete range

0 0.1 0.2 0.3 0.4 0.5
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Redundancy

S
uc

ce
ss

 R
at

e

1
4
16
64
256
1024

of hosts

(b) Zoomed-in range

Fig. 5. Success rates versus redundancy for high predictability group and pil 4

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Redundancy

Su
cc

es
s

R
at

e

1
4
16
64
256
1024

of hosts

(a) Complete range

0.47 0.475 0.48 0.485 0.49 0.495 0.5
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Redundancy

S
uc

ce
ss

 R
at

e

1
4
16
64
256
1024

of hosts

(b) Zoomed-in range

Fig. 6. Success rates versus redundancy for low predictability group and pil 4

with di�erent numbers of hosts and also di�erent hosts randomly chosen from
the pool of hosts predicted to be available.

4.3 Results

In Figures 5 and 6, we show the success rate achieved for various levels of redun-
dancy and number of hosts desired. Figure 5 focuses on the high predictability
group, and Figure 6 focuses on the low predictability group. In each of the sub-
�gures, we show the results in the entire range (left), and also for the zoomed-in
range (right) for success rates in [0.95,1.00] or smaller.

In Figure 5 (left), we observe that when redundancy is 0, the success rate de-
creases exponentially with the number of hosts desired. However, as redundancy
increases, the success rate increases dramatically as well. We observe the redun-
dancy necessary to achieve success rates of 0.95 or higher in Figure 5 (right). In
particular, if we look at the redundancy where the success rate is 0.95, we �nd
that redundancy of 0.35 can achieve 0.95 success rates for groups up to 1024 in
size.

In Figure 6, we observe similar trends in terms of success rate versus re-
dundancy. However, we observe clear di�erences between the high and low pre-
dictability groups in the amount of redundancy needed to achieve the same
level of group availability. For example, with the high predictability group, a
redundancy of 0.35 will achieve success rates of 0.95 or higher. With the low pre-
dictability group, only the groups with 256 and 1024 desired hosts can achieve the
same level of success rates; at the same time, high redundancy greater than 0.45
is required. Thus grouping hosts by predictability levels using the aveSwitches
indicator signi�cantly improves the quality of group availability prediction, and
consequently the e�ciency of service deployment.

Services will sometimes need durations of availability longer then the pil.
In these cases, one can just reevaluate the prediction at the beginning of a new
prediction interval, i.e., sub-threshold. The question is what are the costs in terms
of service re-deployment across sub-thresholds. In Figure 7, we observe turnover

0 0.1 0.2 0.3 0.4 0.5
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

Redundancy

H
os

t T
ur

no
ve

r R
at

e

1
4
16
64
256
1024

of hosts

(a) High predictability

0 0.1 0.2 0.3 0.4 0.5
0.09

0.095

0.1

0.105

0.11

0.115

Redundancy

H
os

t T
ur

no
ve

r R
at

e

1
4
16
64
256
1024

of hosts

(b) Low predictability

Fig. 7. Turnover rates versus redundancy for pil 4

rates as a function of redundancy and the number of hosts. We observe that the
turnover rates are relatively low. The turnover rate is less than 0.024 for the
high predictability group, and about 0.115 for the low predictability group. This
shows that the overheads (of process migration, or using a checkpoint server,
for example) with thresholds larger than the pil are relatively low. Observe that
the stated turnover rates are for two consecutive pil intervals. The cumulative
turnover rate for the whole threshold is r ∗ n where n is the number of sub-
thresholds and r is the turnover rate.

Another important aspect of Figure 7 is the relationship between the number
of hosts and turnover rate. We observe that the host turnover rate does not
increase dramatically with the desired number of hosts. Instead, it increases
only by a few percent even when the number of hosts increases by a factor of 4.
This indicates that turnover rate scales with an increase in number of hosts. We
also computed the turnover rates with a pil of 2. We found similar trends, and
and the turnover rates were either equal or an order of magnitude lower.

5 Related Work

Forecasting is an established technique in the arsenal of proactive management of
individual computer systems, with applications ranging from capacity estimation
to failure prediction [10,12]. This study di�ers from other prediction studies
in three main respects, namely types of hosts considered (inclusion of home
desktops versus only those in the enterprise), the type of measurements used for
the evaluation of prediction (CPU availability versus host availability), and the
prediction issues investigated (the accuracy of e�cient and scalable prediction
methods, indicators of predictability, and the use and overheads of prediction of
group availability).

With respect to the types of measurements, our data set consists of traces
of CPU availability, which is a stricter and more accurate representation of re-
source's true availability. Most (P2P) availability studies [16,17,14] and predic-

tion studies [14] focus on host availability, i.e., whether the host is pingable
or not, instead of CPU availability. However, resources can clearly have 100%
host availability but 0% CPU availability. Paradoxically, in our more volatile
system, we �nd that simple prediction methods are suitable when applied with
predictability indicators.

Moreover, with respect to the types of hosts characterized, the studies in
[18,4] consider only resources in the enterprise (versus in home) environments.
By contrast, the majority of resources in our study lie on residential broadband
networks. Again, the time dynamics of CPU availability of home resources di�er
from those in enterprises. For example, the mean availability lengths found in
this study are about 5.25 times greater than those in enterprise environments[4].
Also, the mean fraction of time that a host is available is about 1.3 times lower
than that observed in enterprise desktop grids[4]. The studies in [19] and [20]
focused solely on enterprise environments. For example, the Resource Prediction
System (RPS) [19] is a toolkit for designing, building and evaluating forecast
support in clusters. The Network Weather Service (NWS) is another well-known
system for predicting availability in Grids (composed of multiple clusters).

With respect to prediction issues studied, we focus on novel prediction issues
compared to previous works [14,19,20]. We focus on simple, scalable forecasting
methods coupled with an e�cient approach to �lter out non-predictable hosts.
Furthermore, we adjust our methods to types of predictable availability patterns
for enabling group availability prediction.

6 Conclusions

In in this paper we attempted to show that a deployment of enterprise services
in a pool of volatile resources is possible and incurs reasonable overheads. The
speci�c technical contributions are this paper were as follows:

� We showed that the primary reason for the predictability of certain Internet
hosts is the existence of long stretches of availability, and such patterns can
be modeled e�ciently with basic classi�cation algorithms.

� We also demonstrated that simple and computationally cheap metrics are
reliable indicators of predictability, and that resources could be divided into
high and low predictability groups based on such indicators.

� For the high predictability group, via trace-driven simulation, we found that
our prediction method can achieve 95% or greater success with collections
of resources up to 1,024 in size using redundancy levels of 35% or less.

� For the high and low predictability groups, we found that the host turnover
rates are less than 2.4% and 11.5% respectively. This indicates that predic-
tion across long thresholds with low overheads is possible.

As a future work we plan to extend our experiments to other host pools, including
PlanetLab. We also intend to study whether including additional features and
inputs (such as CPU, memory or network utilization) can improve the prediction
accuracy. Another research goal is to re�ne the predictability groups beyond low
and high types.

References

1. Krishnaswamy, R.: Grid4all. http://www.grid4all.eu
2. Larson, S.M., Snow, C.D., Shirts, M., Pande, V.S.: Folding@Home and

Genome@Home: Using distributed computing to tackle previously intractable
problems in computational biology. Computational Genomics (2003)

3. Carr, N.: Crash: Amazon's s3 utility goes down. http://www.roughtype.com
4. Kondo, D., et al.: Characterizing and Evaluating Desktop Grids: An Empirical

Study. In: Proceedings of the IPDPS'04. (April 2004)
5. Adler, S.: The slashdot e�ect: An analysis of three internet publications. http:

//ldp.dvo.ru/LDP/LG/issue38/adler1.html
6. Anderson, D.P.: BOINC: A system for public-resource computing and storage.

In Buyya, R., ed.: 5th International Workshop on Grid Computing (GRID 2004),
8 November 2004, Pittsburgh, PA, USA, Proceedings, IEEE Computer Society
(2004) 4�10

7. Sullivan, W.T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, G., Anderson, D.:
A new major SETI project based on Project Serendip data and 100,000 personal
computers. In: Proc. of the Fifth Intl. Conf. on Bioastronomy. (1997)

8. Malecot, P., Kondo, D., Fedak, G.: Xtremlab: A system for characterizing internet
desktop grids (abstract). In: in Proceedings of the 6th IEEE Symposium on High-
Performance Distributed Computing. (2006)

9. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classi-
�ers. In: Proc. 11th Conference on Uncertainty in Arti�cial Intelligence, Morgan
Kaufmann (1995) 338�345

10. Vilalta, R., Apte, C.V., Hellerstein, J.L., Ma, S., Weiss, S.M.: Predictive algorithms
in the management of computer systems. IBM Systems Journal 41(3) (2002) 461�
474

11. Keogh, E.J., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data
mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. (August 2004) 206�215

12. Andrzejak, A., Silva, L.: Using machine learning for non-intrusive modeling and
prediction of software aging. In: IEEE/IFIP Network Operations & Management
Symposium (NOMS 2008). (Apr 7�11 2008)

13. Douceur, J.R.: Is remote host availability governed by a universal law? SIGMET-
RICS Performance Evaluation Review 31(3) (2003) 25�29

14. Mickens, J.W., Noble, B.D.: Exploiting availability prediction in distributed sys-
tems. In: NSDI, USENIX (2006)

15. van der Heijden, F., Duin, R.P.W., de Ridder, D., Tax, D.M.J.: Classi�cation,
Parameter Estimation and State Estimation. John Wiley & Sons (2004)

16. Bhagwan, R., Savage, S., Voelker, G.: Understanding Availability. In: In Proceed-
ings of IPTPS'03. (2003)

17. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer �le
sharing systems. In: Proceedinsg of MMCN. (January 2002)

18. Bolosky, W., Douceur, J., Ely, D., Theimer, M.: Feasibility of a Serverless Dis-
tributed �le System Deployed on an Existing Set of Desktop PCs. In: Proceedings
of SIGMETRICS. (2000)

19. Dinda, P.: A prediction-based real-time scheduling advisor. In: 16th International
Parallel and Distributed Processing Symposium (IPDPS'02). (April 2002) 10

20. Wolski, R., Spring, N., Hayes, J.: Predicting the CPU Availability of Time-shared
Unix Systems. In: Peoceedings of 8th IEEE High Performance Distributed Com-
puting Conference (HPDC8). (August 1999)

