Adaptive Monitoring with Dynamic Differential
Tracing-based Diagnosis

Mohammad A. Munawar, Thomas Reidemeister, Michael Jiang, Allen George,
and Paul A.S. Ward*

Shoshin Distributed Systems Group
University of Waterloo, Waterloo, Ontario N2L 3G1,
mamunawa, treideme, m4jiang, aageorge, pasward}@shoshin.uwaterloo.ca
J g george, p

Abstract. Ensuring high availability, adequate performance, and proper
operation of enterprise software systems requires continuous monitoring.
Today, most systems operate with minimal monitoring, typically based
on service-level objectives (SLOs). Detailed metric-based monitoring is
often too costly to use in production, while tracing is prohibitively expen-
sive. Configuring monitoring when problems occur is a manual process.
In this paper we propose an alternative: Minimal monitoring with SLOs
is used to detect errors. When an error is detected, detailed monitoring
is automatically enabled to validate errors using invariant-correlation
models. If validated, Application-Response-Measurement (ARM) tracing
is dynamically activated on the faulty subsystem and a healthy peer to
perform differential trace-data analysis and diagnosis.

Based on fault-injection experiments, we show that our system is ef-
fective; it correctly detected and validated errors caused by 14 out of
15 injected faults. Differential analysis of the trace data collected for
210 seconds allowed us to top-rank the faulty component in 80% of the
cases. In the remaining cases the faulty component was ranked within
the top-7 out of 81 components. We also demonstrate that the overhead
of our system is low; given a false positive rate of one per hour, the
overhead is less than 2.5%.

1 Introduction

Enterprise software systems are large and complex and their operators expect
high availability and adequate performance. Proper operation given these con-
ditions requires continuous monitoring. However, this increases operation costs
since monitoring data is expensive to collect [1] and analyze [2]. System oper-
ators are faced with a choice of low-cost minimal monitoring, costly detailed
monitoring, and prohibitively expensive tracing. Although detailed monitoring
and tracing incur significant overhead, the information they provide is often es-
sential for fault diagnosis. Given the performance ramifications, most enterprise

* The authors gratefully acknowledge the support of IBM and the Natural Sciences
and Engineering Research Council of Canada (NSERC).

software systems today operate with minimal monitoring, using a few key met-
rics tied to service-level objectives (SLOs). When SLOs are violated a human
operator enables detailed monitoring in an attempt to diagnose the fault, and,
if unsuccessful, enables tracing. The quality of the final diagnosis is heavily de-
pendent on operator skill, but they can err [3], and may be overwhelmed by the
quantity of data collected.

We propose an alternative to this operator-driven approach: adaptive mon-
itoring with dynamic tracing-based diagnosis. Our alternative has three steps:
(1) error detection by monitoring of a minimal set of metrics via SLOs, (2) error
verification by monitoring an extended set of metrics using invariant regres-
sion models, and (3) diagnosis using a differential analysis of ARM trace data
collected from different peers. Each step is triggered based on analysis of data
obtained in the previous step. Our approach is intended to keep the monitoring
cost low during normal operation, only adding detailed monitoring and tracing
when needed.

1.1 Background

Enterprise software systems comprise a mix of in-house, vendor-supplied, and
third-party components, typically layered on standardized component frame-
works like NET [4], CORBA [5], J2EE [6], etc. To help operators monitor these
systems, most components expose a variety of monitoring data at various gran-
ularity. Common data sources include performance metrics, correlated traces,
and log records. In this paper we focus on J2EE-based systems, which provide
monitoring data wvia management APIs such as Java Management eXtensions
(JMX) [7] and ARM [8,9]. Even though we focus on J2EE, the approach dis-
cussed here can be applied to other frameworks easily.

The JMX interface allows us to sample system metrics (e.g., component
response-time, activity count, resource pool status, etc) periodically. These are
aggregate numerical values that reflect the state, behaviour, and performance of
components. ARM traces contain fine-grained instance-level details such as order
of component invocations and timing, which differ from the aggregate nature of
metrics data. The order of component invocations can be combined to create
complete paths. However, computing such paths in large-scale systems has a
cost, especially when operations are logged out of order.

2 Approach

To illustrate our approach, we consider a simple J2EE cluster scenario, com-
plete with load balancer, replicated application servers, and a common database
back-end. We assume that the front-end load balancer can regulate the work
assigned to a particular machine, and that admission control is in place to avoid
system saturation. In addition, we assume that manifestation of multiple faults
simultaneously in independent systems, is rare. As such, two faults, or even two
instances of the same fault, are unlikely to be manifest in different application

System Status: ‘ Normal | Potentially Faulty ‘

Yes

Tracing
—
SLOs violated No
wnn >

Time

Fig. 1. Adaptive monitoring in action

servers at the same time. However, a fault in a shared subsystem (e.g., database)
could affect all dependent subsystems.

Any monitoring system has to balance complexity, overhead, and error-
detection capability. This insight guides our adaptive scheme: error hypotheses
are generated with minimal cost; these are consequently verified and diagnosed
within only a short period of performance degradation. Our approach has three
steps: Error detection with minimal monitoring, error verification with detailed
monitoring, and trace-based diagnosis. The effective cost of our system is then
a function of the false-positive rate. Figure 1 depicts the operating steps of our
approach, while Algorithm 1 describes its logic.

Minimal monitoring entails tracking a small set of important metrics and
detecting errors using SLOs. Because of its low overhead, we use it when system
conditions are deemed normal. Error verification involves monitoring a larger
set of metrics, and is thus more costly. We use invariant relationships between
metrics to track this larger set. When both SLOs and invariants indicate an
error, we enable tracing on the suspected subsystem and one of its peers deemed
healthy. We then perform precise diagnosis by comparing the collected traces.
As we discuss in Section 3.1, detailed monitoring is costly, it is used only when
errors are detected in the first step. Tracing is costlier; it is enabled only when
errors have both been detected with SLOs and validated with invariants.

2.1 Error Detection

Under normal conditions we only monitor a small set of carefully chosen met-
rics by comparing observed values against pre-specified SLOs in the form of
thresholds. We check for SLO violations, which occur when the corresponding
thresholds are consistently crossed. The monitored metrics are selected by sys-
tem administrators based on four factors: they are sensitive to the state of a large
subset of internal components, and so can detect a broad range of problems; they
directly reflect users’ perception of the service; they are inexpensive to measure
and collect; and finally, problems that do not affect them are, by definition, not
pressing enough to warrant further investigation. In our evaluation we monitor
web page response times and number of failed requests of an Internet-based en-
terprise application. SLOs are typically defined based on contractual obligations
(i.e., service-level agreements) or user preferences. Alternatively, historical data

begin Monitoring
mode := MINIMAL_MONITORING;
while true do
switch mode do
case MINIMAL_MONITORING
Monitor key metrics;

if anomaly detected then
| mode := DETAILED MONITORING;

case DETAILED_MONITORING
Check invariant regression models;

if error is confirmed for a cluster subsystem then
L Reduce load submitted to the suspected faulty subsystem and a

non-faulty peer;
For both subsystems: mode := TRACING;

if error is confirmed for all cluster members then
| Report error in shared subsystems;

if error is not confirmed then
| mode := MINIMAL_MONITORING;

case TRACING

Compare trace data from the suspected faulty subsystem and a
non-faulty peer;

Diagnose based on the differences;

end

Algorithm 1: Pseudo-code of our approach

can be used to set SLOs such that a certain percentile of observations are within
specified bounds.

2.2 Error Verification

While SLO monitoring can be inexpensive, its simplicity and reliance on static
thresholds make it vulnerable to false alarms. False alarms not only require
administrators’ time, they also increase the monitoring overhead, as tracing is
unnecessarily triggered. The error verification step aims to limit the monitoring
cost that arises because of false alarms, while providing a robust means for
validating the existence of an error.

Our verification step entails collecting a larger set of system metrics, among
which stable, long-term correlations exist [10-13]. These correlations, also known
as invariants, are captured a priori in the form of regression models using data
collected from a healthy system. Each model associates two variables, one of
which can be used to predict the other. As such, we can check each metric’s
behaviour by ensuring that its observed values are in line with predictions of
the corresponding learned model. Verifying whether faults exist in the system
involves determining the ratio of models that do not fit observations; when this
ratio exceeds a specified level, the presence of faults is confirmed.

We have described our invariant-identification and error detection approach
based on simple linear regression in previous work [12,13]. Here we extend it
to clustered systems, taking care to avoid identifying accidental correlations as
invariants. Such correlations arise because of replication and coupling among
subsystems. Replicated subsystems cause accidental correlations because they
expose the same metrics and, because of the load balancer, experience similar

workloads; as such, metrics that correlate within the subsystem, also correlate
between replicas. We therefore only learn correlations within replicas, rather
than between replicas. Similarly, coupling is caused by shared subsystems such
as the load balancer and the database. We avoid these correlations by discarding
models that relate metrics of any subsystem to metrics of a shared subsystem.

Error verification allows us to pinpoint faulty subsystems and identify healthy
subsystems. We do so by analyzing invariants on each subsystem and then com-
paring the results across peers. A healthy subsystem will exhibit none or few
model violations. If a single peer is experiencing model violations, we presume
it is the faulty peer; where multiple peers are experiencing violations, per our
assumption of a single faulty subsystem, we presume there is a common sub-
system causing the errors. The outcome allows downstream diagnosis engines to
readily select a non-faulty cluster member as a baseline.

2.3 Diagnosis

When an error is reliably detected, we enable ARM tracing on two peers: one
healthy and one suspected to be faulty. The detection and verification steps
determine which peer is deemed healthy and which is not; a non-healthy peer
would cause SLOs and invariant correlations to be violated. At this stage, equal
amounts of requests are directed towards the two peers, ensuring their behaviour
will be statistically similar, modulo the fault.

Timing Data: Many faults directly or indirectly affect the timing behaviour
of individual components. In particular, such faults change the distribution of
the time taken to complete operations. To diagnose timing-related faults, we
compare sample distributions of operation time instances, obtained from traces,
of a healthy subsystem to those of the suspected non-healthy one. We use the
standard y? Two Sample Test [14] to check whether the two distributions of time
values are different for a given significance level, «. This test does not require
us to assume any specific timing distribution or handle sample-size differences.
If the timing samples of a component are found to be statistically different, it is
further considered in the diagnosis.
Our diagnosis consists of a ranked list of components. The rank of a component-

operation pair is based on a score given by Equation 1, which is the ratio of the
average execution time in the two different peers:

max (1 (Cr), p2(Cr)) + 1

S(Cr) = min(p1 (Cr), 2(Ck)) + 1

(1)

p1(Cr) and po(Cy) are the means of the two sample distributions for each
component-operation Cf, and 1 is added to ensure numeric stability. We take the
ratio of the maximum over the minimum value so that the full range of changes
between the two peers is captured.

Structural Data: We also use weighted component-connectivity graphs derived
from traces, represented as coincidence matrices, to diagnose faulty components.
Each edge represents a caller-callee relationship and the edge weight is deter-
mined by the number of times the relationship appears in traces. We use the
following three properties of the coincidence matrices for diagnosis:

1. InCalls: Calls made to component Cy, IC(Cy) = >_i~ | G(i, k).

2. OutCalls: Calls made by Cj to other components OC(Cy) = i, G(k, 7).

3. OutCalls-InCalls Ratio: CC(Cy) = (I)g((gf)).
We use the same anomaly scoring function as for timing data, i.e., Equation 1
is applied to the structural measures IC(Cy), OC(Cy), and CC(C}), to produce
individual scores and rankings. Because we aggregate the structural data in the

form of counts, we ignore all counts smaller than the minimal threshold %, .

2.4 Diagnosis Integration

Each of the diagnosis methods focuses on distinct characteristics of system be-
haviour. We therefore combine their results to improve fault coverage. Let C
be the set of all components, and M be the set of diagnosis methods. For each
¢ € C, a method m € M reports an anomaly score s = m(c) € [0,00). m(c) =0
if m does not shortlist ¢ as anomalous. The goal of integration is to combine
individual scores, m;(c), into a global score, §:

§:(mq(c),ma(c),...,mg(c)) = [0,00] YeeC my,ma,...,m; €M

Simple Combination: We normalize the anomaly scores of the individual
methods, m;, to the range [0,1] and take their sum as the combined anomaly
score §.

k
§= Zm;(c) VeeC mj(c) : my(c) — [0,1],i =1,2,..k Ve € C
i=1

Weighted combination: Some diagnosis methods can more accurately
identify certain faults than others; this can be automatically determined via the
diagnosis results. For example, faults that affect operation times can clearly be
diagnosed by methods based on timing data; i.e., there is a large gap in anomaly
score between the faulty and non-faulty components. We thus give such meth-
ods more weight when their results indicate that they are accurate. Specifically,
we weight the scores produced by the analysis of timing data by the ratio of
the scores of the first- and second-ranked component. The other methods are
assigned weights as described in the simple combination approach.

3 Evaluation

We set up a small clustered enterprise application environment to evaluate our
adaptive-monitoring approach and differential trace-analysis methods. Our test-
bed, shown in Figure 2, comprises a DB2 UDB 8.2 database server, two Web-
Sphere 6 Application Servers (WAS), workload generators, a monitoring engine,

Anomaly
Injector J
WebSphere 6.0 4
/ Appl. Server
Load (WAS1)
Generator DB2

WebSphere 6.0

Appl. Server
Monitoring (WAS2)
| _Engine [

HOST 1: HOST 2/HOST 3: HOST 4:
Dual Processor Dual Core Intel Pentium IV 2.4 GHz
Intel Xeon 2.8 GHz Intel Pentium D 3.2 GHz with 1 GB RAM
with 1 GB RAM. with 3.5 GB RAM 0S: Linux (CentOS 4)
0S: Linux (CentOS 3) 0S: Windows Server 2003

Fig. 2. Experimental Setup

and a fault-injection module. We use this infrastructure to execute the Trade
benchmark [15], a J2EE application which implements an online stock-brokerage
System.

The monitoring engine collects ARM and JMX data from the two application
servers. The metric data is collected every 10 seconds from the JMX interface
of the application servers and saved in a local database. For convenience, unless
otherwise stated, the metric data is collected throughout experiments for offline
analysis. Trace data is logged in files only when enabled; the files are then fetched
by the monitoring engine for analysis. While we could transfer the trace data
directly from ARM agents to the monitoring engine, we did not see a performance
gain when compared to logging.

The load generator creates randomized workload patterns, subject to a max-
imum. Because we simulate user activity, we implemented the load-balancing
logic as part of the load generation module. In practise, a separate workload
balancer would distribute the work among cluster members. When tracing is en-
abled, the load-balancing logic reduces and controls the load such that a roughly
equal amount of work is submitted to each application server.

3.1 Cost of Monitoring

We performed experiments to measure the overhead caused by the monitoring
logic (e.g., counter updates and time-stamping) and the data-collection logic. We
used a simplified setup with one application server, a database, and an open-
loop workload generator that enforces exponential inter-arrival time between
requests. The service time in similar systems has been observed to follow the
exponential distribution [16]. We thus model the system using an M/M/1 queue
and derive the mean service time (7%) thus:

(2)

Service Time
Monitoring Level||Mean (ms)|Std. Error (ms)|Overhead (%)

None 7.468 0.001 0.0
Minimal 7.604 0.001 1.8
Detailed 10.152 0.009 35.9
Logged Trace 12.414 0.089 66.2

Table 1. Effect of monitoring on service time

where g is the mean service rate, T, is the response time, and A is the request
arrival rate. For each monitoring configuration, we execute experiments at dif-
ferent load levels. We repeat each experiment five times at every load level. For
each experiment, our analysis takes 60 samples (10 minutes) into consideration;
it excludes data collected during warm-up. Table 1 shows the mean service time
as a function of increasing monitoring levels. The service times shown represent
averages across the different load levels and the five repetitions. The standard
error reflects the variation in the mean results. These results confirm that mini-
mal monitoring has a small effect on performance, whereas detailed monitoring
and tracing significantly degrade performance. While this increase may be ac-
ceptable for a brief period, it cannot be incurred continually. In particular, the
overhead translates directly into the additional fraction of machines required for
a data center with monitoring to service an equal load as one without, not tak-
ing into account analysis machines. Tracing has higher overhead than detailed
monitoring. It also generates a larger amount of monitoring data which needs
to be analyzed. Our analysis does not account for such overhead. These results
support our claim that to contain the performance impact, detailed monitoring
should only be used when an error is suspected, and that tracing should only be
enabled if the error is confirmed.

Given these overhead numbers, we can estimate the cost of our adaptive mon-
itoring scheme by assuming a false positive rate of less than one SLO triggered
per hour, which is much more lenient than any system administrator would ac-
cept. With our setup and uniformly random workload, we have found that, using
percentile-based SLOs determined from historical data, such a false alarm tar-
get can easily be achieved, while maintaining good fault coverage. Since detailed
monitoring can refute the false positive in a minute, the mean service time of
our approach would be 527.604 + §510.152 = 7.646, or an overhead of 2.39%.

Beside the measurement overhead, the analysis needed for our three-step
approach incurs little computational overhead. During minimal monitoring, 20
metrics are tracked and each SLO can be checked in constant time. During
detailed monitoring, the cost of analysis is O(m - ¢) where m is the number
of invariant models and ¢ is the number of sampling intervals considered. In
our experiments m was close to 20000 for both application servers and detailed
monitoring was enabled for 6 sampling intervals. The analysis needed for tracing
depends on the method used. The cost of computing the InCalls and OutCalls
measures is O(c? - s) where ¢ is the number of components and s is number of

lPammeter| Value H Pammeter| Value |

dien 500 (ms) ||dwait [0,100) (ms)
dmax o0 6prob 03
linterval 1000 (I'IlS) llock 0.5

Table 2. Faults Parameters

entries per component in the traces. For analyzing the timing data, we need
O(c - s) operations. In our experiments ¢, the number of components, was 81.

3.2 Faults and Fault-Injection Experiments

We have developed several types of faults to assess the effectiveness of our ap-
proach and methods. Delay-loop faults entail delaying completion of a selected
method for die, time units. To configure these faults, we specify a component,
one of its methods, the delay-loop duration dje,, and a maximum number of
loop instances dpax. These faults can be configured in two ways: (1) uniform-
randomly spaced, by specifying a minimum random wait time between two delay-
loop-executions dy.it; (2) probabilistic occurrences, by setting a probability of
occurrence eprob. Frception faults, with probability epron, throw an unhandled
exception when a selected method is executed. A table-locking fault periodically
locks a chosen database table. The lock is activated for ljoq fraction of every
linterval time interval during the fault-injection period. We have also developed
a series of common operator-caused configuration faults, including authentica-
tion errors, incorrect thread-pool and connection-pool sizing, and component
deletion. We do not evaluate these faults in this work because of space limits.
Each of our fault-injection experiments consists of a warm-up period, a period
of normal activity during which we learn invariant regression models, and a
period during which the system is monitored. We inject faults in the last period,
while our monitoring is active. Unless stated otherwise, we use values listed in
Table 2 to configure faults. The typical duration of an experiment is one hour.

3.3 Error Detection

During minimal monitoring, we oversee response-time and failure count metrics
associated with all web pages of the Trade application. If either requests to a
page fail or the response time of a page violates the corresponding SLO in three
consecutive sampling intervals, we suspect presence of faults. Table 3 shows the
effectiveness of our error detection approach. Each row represents an experiment
where faults are injected in a method of a chosen component. We inject delay-
loops and exception faults in components of WASI. Table-locking faults are
injected in the database.

The results show that all faults injected in WAS1 are detected. In the case of
QuoteBean, we see SLO violations on the non-faulty application server (WAS2),
which arise from the coupling induced by the database. We explain this further
in Section 3.4. For table-locking faults, we see that, except for ORDEREJB, SLOs

Faults Error Detection Error Verification
Type Component Detected | Detected || % Model with | % Model with
on WAS1?|on WAS2?||Outliers WAS1|Outliers WAS2
Exceptions QuoteBean Yes No 4.8 0
OrderBean Yes No 5.6 0
HoldingBean Yes No 4.8 0
AccountProfileBean Yes No 0.5 0
AccountBean Yes No 1.7 0
Delay Loops |QuoteBean Yes Yes 2.1 0.01
OrderBean Yes No 3.3 0
HoldingBean Yes No 2.9 0
AccountProfileBean Yes No 1.1 0
AccountBean Yes No 2.7 0
Table Locking| QUOTEEJB Yes Yes 2.1 1.7
HOLDINGEJB Yes Yes 0.6 1.3
ORDEREJB No No 0.3 0.4
ACCOUNTEJB Yes Yes 2 1.9
ACCOUNTPROFILEEJB Yes Yes 1.8 1.5

Table 3. Error detection with SLOs and verification with invariant-correlation models

are violated on both WAS1 and WAS2. This is the expected behaviour, as both
depend on the database.

3.4 Error Verification

In this work we only leverage intra-subsystem invariant correlations for each
cluster member (i.e., intra-WAS in our case). An example of such a correla-
tion is shown in Figure 3 where the number of requests to the TradeScenario
component is plotted against the number of store operation for the OrderEJB
component for both WAS1 and WAS2.

The intra-WAS models allow us to perform diagnosis at the level of cluster
members. A subsystem is faulty if a significant number of its invariants are
violated. In practise, the administrator would decide what is significant based
on data collected during validation of the invariants. Because the target system is
dynamic with many sources of noise and the invariant models are statistical, we
cannot expect all models to hold at all times. Thus, after a thorough validation,
we expect none or a very small fraction of models to report outliers. Here, we
consider faults to exist if 0.5% or more of intra-WAS models report outliers.

Table 3 summarizes results obtained from the analysis of correlation models
for the experiments reported in Section 3.3. For both loop and exception-based
faults, at least 0.5% of models within WASI1, the faulty application server, re-
port outliers. Except for QuoteBean with loop-based faults, no model from WAS2
persistently reports outliers. Loop-based faults cause database connections to be
tied up for longer periods and also cause the associated threads on the database
to be unavailable. This limits the number of threads available to process work
from WAS2. This problem is visible in the case of QuoteBean, as it is the most
frequently used component of Trade. Nevertheless, very few models report out-
liers on WAS2 in this case. We are thus able to correctly confirm an error in
WAST in all cases.

1200 —
WAST x
WAS2 =
1000 | . <
800

600

400

OrderEJB store count

200

0 50 100 150 200 250 300 350 400 450 500
TradeScenario request count

Fig. 3. Example of a stable correlation in both WAS1 and WAS2

Results for table-locking faults show a significant number of models report-
ing outliers on both WAS1 and WAS?2 for all cases, indicating an error in the
database. Tracing is thus not enabled, as it will not provide additional informa-
tion on the status of the application servers. For the ORDEREJB table, the fraction
of models with outliers is below the 0.5% threshold. In Table 3, we see that these
faults are not detected using SLOs, thus neither detailed monitoring nor tracing
is enabled. This case represents a false negative for our monitoring system.

3.5 Diagnosis

We now evaluate the accuracy of diagnosis methods and their combination. Ta-
ble 4 summarizes the results obtained with the different methods. The first 10
results in Table 4 correspond to the first 10 results in Table 3; these represent
experiments in which we apply all three steps, i.e., detection, verification, and
diagnosis if required. Note that diagnosis using the x? test on the timing data
only reports components whose operation time distribution changes at the 0.05
significance level.

We see two interesting phemomena in these results: (1) no one method is
better than the rest, as the effectiveness of individual methods depends on the
fault and the faulty component; (2) combining diagnoses can produce a better
outcome than any single test; (3) the weighted combination generally beats the
simple combination, but is sometimes (about 20% of the cases) worse than the
best individual test.

For delay-loop faults, as expected, ranks using timing data are generally cor-
rect, while results with structural data are misleading. Given this, the weighted
combination produces an exact diagnosis for the first set of experiments with
delay-loop faults (lines 6-10), and only becomes weaker when the frequency of
timing faults drops very low, to about 3% of the time (lines 16-20).

Fault Type|Faulty Component Timing OutCalls/ |[InCalls|{OutCalls Simple Weighted
H Data (OT)||InCalls (CC)|| (IC) (OC) ||Combination||Combination
Exceptions|QuoteBean.getDataBean 1 00 1 e} 2 1
OrderBean.getDataBean 9 2 1 3 1 1
HoldingBean.getDataBean 7 2 6 2 1 1
AccountProfileBean.getDataBean 1 00 42 00 9 6
AccountBean.getDataBean 6 1 68 9 6 7
[l
Delay loops|QuoteBean.getDataBean 1 00 35 00 7 1
dien = 500ms|OrderBean.getDataBean 1 5 11 1 1
dywait = (0,100)ms|HoldingBean.getDataBean 1 oo 61 28 8 1
AccountProfileBean.getDataBean 1 00 39 00 5 1
AccountBean.getDataBean 1 4 20 13 1 1
[[
Delay loops|QuoteBean.getDataBean 1 0 48 00 7 1
dien = 500ms|OrderBean.getDataBean 1 4 32 13 2 1
dwait = (0,1500)ms|HoldingBean.getDataBean 1) 34 12 6 1
AccountProfileBean.getDataBean 1 00 16 S 5 1
AccountBean.getDataBean 1 3 13 8 1 1
Delay loops|QuoteBean.getDataBean 1 00 20 0 6 2
dien = 100ms|OrderBean.getDataBean 1 4 33 20 3 1
dwait = (0,7000)ms|HoldingBean.getDataBean 3 oo 12 12 6 7
AccountProfileBean.getDataBean 1 00 11 o 4 1
AccountBean.getDataBean 1 4 32 16 2 1

Table 4. Ranks of faulty (component, operation) out of 81 possibilities for delay loop-
and exception faults. A rank of 1 is the most accurate diagnosis, while a rank of co
means that the component is not short-listed

We perform additional experiments to evaluate the sensitivity of diagnosis
based on trace data. The last 10 lines in Table 4 show the results of these
experiments. We show that we are able to exactly diagnose delay-loop faults
with loops lasting 500 ms with a random inter-loop gap with range (0, 1500) ms,
and within the top-7 even with a small disturbance of 100 ms with a random
inter-loop gap with range of (0, 7000) ms.

4 Related Work

Work in the area of error detection and diagnosis in enterprise software systems
can be broadly divided into issues of data acquisition and analysis. Much work
in data acquisition focuses on reducing monitoring overhead. Agarwala et al. [17]
propose classes of channels, each with different rate and granularity of monitoring
data; consumers can dynamically subscribe to these channels as needed. This
approach only allows control of the communication overhead. Recent work on
dynamic code instrumentation (e.g., [18,19]) focuses on how to efficiently adapt
monitoring logic but not on when to do so.

Comparative analysis based on peer subsystems has been applied to offline
diagnosis of known configuration faults (e.g., [20,21]). Pertet et al. [22] apply
peer analysis to group communication protocols. But while their work presumes
that the effects of the fault have spread, we assume efficient detection and val-
idation, allowing timely and precise diagnosis. Kiciman and Fox [23] use peer
comparison of paths to identify application-level faults. They, however, require
continuous trace collection. Mirgorodskiy et al. [24] describe a methodology to
compare timing behaviour of similar processes in a parallel computing environ-

ment. We focus on enterprise software systems which are often more dynamic
than applications targeted in [24].

The use of invariant correlations between metrics for error detection and
diagnosis was proposed both in our previous work [10] as well as by Jiang et
al. [11]. The latter work assumes that a fixed set of metrics is always collected
and no adaptation occurs. Agarwal et al. [25] also describe an approach to create
fault signatures based on correlation between change-points in different metrics.
Our prior work [12] is the first to demonstrate automated adaptive monitoring,
and focuses on achieving the benefits of continuous monitoring at a fraction of
the cost. The current work augments our earlier approach by diagnosing faulty
components using more-precise trace data instead of metric-based invariants.
Furthermore, the context of this work is a larger, clustered system, which allows
us to employ novel techniques such as differential trace analysis.

Trace data analysis has been studied extensively. Kiciman and Fox [23] per-
form statistical comparison of instance-level component interactions. By con-
trast, our trace analysis is more efficient as it uses aggregate component inter-
actions, and also looks at timing data. Kiciman and Fox also apply decision
trees to correlate failures with faulty components. Likewise, Chen et al. [26] use
clustering and Cohen et al. [27] use Bayesian models for the same purpose. Our
work differs from these works in that they ignore monitoring costs.

5 Conclusions

In this paper we describe our approach to adaptively monitor software systems.
Our approach consists of three, increasingly costly, steps: detection, verification,
and diagnosis. To the best of our knowledge, it is the first monitoring system
that automatically adapts from SLOs to tracing. It is also the first work that uses
peer comparison of invariant models based on metrics for error detection. Unlike
prior work that assumes continuous tracing, we enable detailed monitoring and
tracing only when needed, thus incurring less than 2.5% overhead. Our verifica-
tion approach uses peer comparison of invariant models of system metrics. We
devise diagnosis methods based on differential analysis of information extracted
from ARM traces and describe means to integrate their results. We show that
once a statistically significant problem is detected, it is accurately validated and
diagnosed. Our approach ensures that we only enable costly tracing when we are
confident that tracing will accurately diagnose the defect.

References

1. Fox, A., Patterson, D.: Self-repairing computers. Scientific American (June 2003)

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
36(1) (2003) 41-50

3. Pertet, S., Narasimhan, P.: Causes of failure in web applications. Technical Report
CMU-PDL-05-109, CMU Parallel Data Lab (December 2005)

4. Microsoft Corp: .NET Platform Available at http://www.microsoft.com/net/.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Object Management Group, Inc.: Common object request broker architecture
(CORBA) http://www.corba.org/.

Sun Microsystems, Inc.: Java 2 platform enterprise edition, v 1.4 API specification
http://java.sun.com/j2ee/1.4/docs/api/.

Sun Microsystems Inc.: JMX - Java Management Extensions.
http://java.sun.com/javase/technologies/core/mntrmgmt/javamanagement /.
Johnson, M.W.: Monitoring and diagnosing application response time with ARM.
In: SMW. (1998)

Rolia, J., Vetland, V.: Correlating resource demand information with arm data for
application services. In: WOSP. (1998)

Munawar, M.A., Ward, P.A.: Adaptive monitoring in enterprise software systems.
In: SysML. (June 2006)

Jiang, G., Chen, H., Yoshihira, K.: Discovering likely invariants of distributed
transaction systems for autonomic system management. In: ICAC. (2006)
Munawar, M.A., Ward, P.A.S.: Leveraging many simple statistical models to adap-
tively monitor software systems. In: ISPA. (August 2007) 457-470

Munawar, M.A., Ward, P.A.: A comparative study of pairwise regression techniques
for problem determination. In: CASCON. (2007) 152-166

Croarkin, C., Tobias, P., eds.: Engineering Statistics Handbook. National Institute
of Standards and Technology (2006)

Coleman, J., Lau, T.: Set up and run a Trade6 benchmark with DB2 UDB.
IBM developerWorks. http://www128.ibm.com/developerworks/edu/dm-dw-dm-
0506lau.html?S_TACT=105AGX11&S_CMP=LIB.

Tesauro, G., Das, R., Jong, N.K.: Online performance management using hybrid
reinforcement learning. In: Proceedings of SysML. (2006)

Agarwala, S., Chen, Y., Milojicic, D., Schwan, K.: QMON: QoS- and utility-aware
monitoring in enterprise systems. In: ICAC. (2006)

Dmitriev, M.: Profiling java applications using code hotswapping and dynamic call
graph revelation. In: WOSP. (2004) 139-150

Mirgorodskiy, A.V., Miller, B.P.: Autonomous analysis of interactive systems with
self-propelled instrumentation. In: MMCN. (January 2005)

Mickens, J., Szummer, M., Narayanan, D.: Snitch: Interactive decision trees for
troubleshooting misconfigurations. In: SysML. (April 2007)

Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.M.: Automatic misconfig-
uration troubleshooting with peerpressure. In: OSDI. (2004) 17-17

Pertet, S., Gandhi, R., Narasimhan, P.: Fingerpointing correlated failures in repli-
cated systems. In: SysML. (April 2007)

Kiciman, E., Armando, F.: Detecting application-level failures in component-based
internet services. IEEE Trans. on Neural Networks 16(5) (Sept. 2005) 1027-1041
Mirgorodskiy, A.V., Maruyama, N., Miller, B.P.: Problem diagnosis in large-scale
computing environments. In: Supercomputing Conference. (2006)

Agarwal, M., Anerousis, N., Gupta, M., Mann, V., Mummert, L., Sachindran,
N.: Problem determination in enterprise middleware systems using change point
correlation of time series data. In: NOMS. (April 2006)

Chen, M.Y., Kiciman, E.; Fratkin, E., Fox, A., Brewer, E.A.: Pinpoint: Problem
determination in large, dynamic internet services. In: DSN. (2002) 595-604
Cohen, 1., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.: Correlating instru-
mentation data to system states: A building block for automated diagnosis and
control. In: OSDI. (December 2004) 231-244

