
Monitoring Multiple Concurrent Service Level

Parameters with Multidimensional Trees

Andreas Kiefer 1, Elias P. Duarte Jr. 1, and Cristina D. Murta 2

1 Dept. Informatics, Federal University of Paraná (UFPR)
P.O. Box 19081 Curitiba PR 81.531-980 Brazil

{andreas,elias}@inf.ufpr.br
2 Department of Computing, CEFET-MG

Belo Horizonte 30.510-000 Brazil
cristina@decom.cefetmg.br

Abstract. The introduction of new computing paradigms in the Inter-
net as well as the increasing size and complexity of services and resources
demand the development of new approaches for defining and monitor-
ing service levels. It is often necessary to keep track of multiple con-
current service level requirements. In this paper we present a service
level monitoring strategy that allows both online and offline tracking
the performance of multiple concurrent resources. Data is collected with
SNMP (Simple Network Management Protocol). The strategy is based
on building multidimensional search trees. k-d (k-dimensional) trees are
employed for online continuous monitoring, and k-d-B trees are employed
for offline monitoring, based on logs of monitored data. Searching with
the proposed strategy has cost O(logN) where N is the number of sam-
plings or log size. The strategy allows clients and providers to confirm
whether contract specifications were hold or not, and for how long. Ex-
perimental results are presented, including a comparison of the proposed
approach with a traditional database. A practical tool was implemented
and results are shown for a set of monitored Web and Video servers, as
well as for monitoring data obtained from a real Telecom billing system.

1 Introduction

Cloud computing [1], as well as utility [2] and grid computing [3] have changed
the requirements of Internet users. In these systems, services and resources are
shared, being provided to diverse customers by several providers. Customers
need the assurance of performance and dependability levels, typically specified
by service contracts [4, 5]. A service contract is a formal service agreement de-
fined with a Service Level Agreement - SLA [6]. A contract defines the common
understanding about the service, obligations, responsibilities, priorities, guaran-
tees, and also the minimum service level that is acceptable for the customer,
as well as penalties in case the service levels are not met. These specifications

usually involve several parameters and different combinations of desired levels
[4, 5].

A service provider must continuously monitor the system, in order to guar-
antee that its multiple concurrent customers are being assigned the amount of
resources that guarantees previously agreed on service levels. The provider must
deal with different customer requirements and must ensure that each customer
receives enough resources for each task sent to the system [7]. The provider must
evaluate and decide in real time for each task which resources must be assigned
for its execution. This is a continuous process: assigning tasks to resources must
be evaluated and tasks should be re-scheduled as needed.

The process of selecting the right computational elements that will execute
a set of tasks is complex, depending on task priority, the capacity of resources
and the system load. Implementing such decision and resource allocation pro-
cess requires a systematic approach for continuously collecting and organizing
a set of performance and system load parameters from all system components
(e.g. processors or network connections) in order to match resources and tasks
effectively and continuously for each task that arrives at the system. This is a
complex management process [8] that involves a very large amount of monitoring
data, which must be organized, indexed and queried very frequently.

This work presents an efficient approach for monitoring service level that
keeps track of multiple simultaneous parameters. The monitoring information
can be used to decide and match resources and tasks, given a set of service level
requirements. A system for mapping information obtained from monitoring k

different parameters over a k-dimensional space was implemented and tested.
Each dimension represents a measure of a quantitative metric related to a pa-
rameter of a system resource, e.g. system load, idle processing capacity, amount
of free memory or available network bandwidth. The proposed strategy allows
multidimensional range search to be performed with cost O(logN), no matter
how large k is, where N is the number of samples or the size of the monitored
log. The k-d (k dimensional) tree [9] is used for online monitoring and the k-d-B
(k dimensional B) tree [10] is used for offline monitoring.

Related work leads to the conclusion that most grid and utility systems
collect and store this kind of information in traditional databases [2], [6] and [11].
Applying multidimensional and range search on those systems usually involves
complex and potentially slow procedures, and is not feasible especially for on-line
monitoring a set of multiple, concurrent system parameters.

The proposed approach was implemented using SNMP (Simple Network
Management Protocol) [12] for instrumentation. Experimental results are pre-
sented which show the effectiveness of the proposed strategies. Multiple resources
are concurrently and permanently monitored and alarms can be adjusted to in-
form that some resources are reaching thresholds or are not fulfilling expected
goals. Experimental results are shown comparing the proposed approach to a
traditional database, for up to 8 million data samples and up to 10 different
keys, confirming that the database cannot be used for on-line monitoring of
multiple parameters. A case study is described which was executed with real

data obtained from a Telecom billing system, as well as for a set of Web and
video servers.

The rest of this work is organized as follows. Section 2 presents an overview
of related work. In section 3 the data structures employed are specified, as well
as the types of queries supported. Section 4 describes the proposed monitoring
strategy. Experimental results and the tool we implemented are described in
section 5. Section 6 concludes the paper.

2 Service Level Monitoring

Performance and reliability monitoring is one of the basic functionalities of net-
work management systems [13]. Monitoring systems usually involve a cycle con-
sisting of following steps [14]: (1) resource monitoring data is collected; (2) the
obtained data is processed in order to discover resource utilization trends and
(3) the system is reconfigured, given the conclusions of the previous step. Service
management can be seen as a natural evolution of network management, which
actually extends traditional performance and availability monitoring strategies
to include the concept of service as one of the key managed objects. A service can
be provided by several types of entities, and the service definition varies widely,
examples include the execution of a task that requires intensive processing power
or the execution of a query on a database at a service provider. It is common
to have service levels specified by Service Level Agreements (SLA). The purpose
of service level monitoring systems is to ensure that clients obtain the required
service levels while providers optimize resource utilization.

A SLA is composed by [15]: a description of the service to be provided, the
specification of performance and reliability levels required; a detailed contin-
gency procedure, associated monitoring and notification procedures; duties and
penalties to be applied if the provided service does not meet the required per-
formance levels. Exceptions are also specified, i.e. situations in which the SLA is
not applied. A SLA also includes information such as procedures for performance
data collection and metric conversion [2]. Typical metrics include response time
and bandwidth available.

Monitoring a specific service given the corresponding SLA involves, besides
the SLA specification, obtaining information about the service execution, eval-
uating the service performance and availability, and deciding on future task
allocation policies. If the load on servers is heavy, the previously agreed service
levels may not be met. In this case the SLA monitoring system must decide, in
real time, which agreement should be violated [11].

The amount of information that a service provider has to deal with is huge.
This includes information about system resources and services available, their
load, client requests, and their requirements as specified in the SLA. All this
information has to be processed in real time, allowing tasks to be scheduled in
a way to both meet requirements and use resources effectively.

Related work include a number of frameworks and systems proposed recently
to monitor and control service level agreements. A SLA monitoring architecture

is presented in [16]. This system includes modules for SLA specification, server
discovery, metric definition, service monitoring and the detection of agreement
violation. Frameworks with similar functionalities are described in [2], [6] and
[11]. In [11] the authors propose contracts specified with XML; they aim at
helping in the definition of precise contracts, avoiding the ambiguity that results
when natural language is employed. The system provides strict load control in
order to avoid the system to get overloaded and, at the same time, maximize
the load to optimize system usage.

In all these proposals the authors recognize that it is very important effi-
ciently collect, store and retrieve service management information. In virtually
all related work the authors do not fully specify how these data are managed,
i.e. they do not define a data structure or format for keeping or searching the
monitoring data. In [2], [6] and [11], the authors mention the use of traditional
database systems. It is important to highlight that the sheer amount of data
that needs be stored by a service management system, the types of search that
must be executed in order to match resources satisfying specific criteria in real
time can easily represent more than typical database systems are able to han-
dle. In [17], the authors argue that it is not practical to employ a traditional
database systems for keeping/searching service monitoring data, where the au-
thors evaluate the high cost of employing SQL queries in databases in this kind
of environment. In the next section we present multidimensional data structures
that we propose precisely to solve this problem.

3 Multidimensional Search

Several types of applications in diverse fields require the storage and manipu-
lation of large sets of multidimensional data. Example applications span areas
such as Image Processing and Geographic Information Systems. Data can be
represented as points, lines, rectangles, areas, volumes, among others on the
Euclidean space. The attributes of multidimensional data can be represented
as an array. The simplest data unit that can be represented is a point in the
k-dimensional space, where k represents it set of attributes. Figure 1 shows an
example point in a two dimensional plane. Array (3,5) has value 3 for the x

axis and 5 for the y axis.
In the past twenty years numerous data structures have been proposed for

keeping and searching multidimensional data efficiently. Most of them are vari-
ations of multidimensional search trees or k-d trees (k-dimensional trees) [9, 18].
The k-d tree is a generalization of a binary tree. The k-d tree receives a set of
multidimensional points as input data. These points are embedded in a multidi-
mensional space. As a point is inserted in a k-d tree, it causes a recursive space
partition based on the division of hyperplans with k-dimensions. For example,
if k=3, then the division hyperplanes will alternate among x, y and z axes.

The hyperplanes can be obtained using the mean value of all points in each
dimension, which is employed as a discriminant. In this way, each other point
with the corresponding key value less than or equal to the discriminant is placed

Fig. 1. A point represented in the bidimensional space.

on the left subtree and points with greater values are placed on the right sub-
tree. For each dimension a new discriminant is obtained and the data insertion
algorithm is executed recursively until all points have been inserted.

Figure 2 shows two common representations of a two-dimensional k-d tree:
on a 2-dimensional space and as an abstract tree. In both representations point
p1 was chosen as discriminant and it divides the space in two hyperplanes. p1
is the root of the tree. The next division plan crosses p2 (left subtree) and p3

(right subtree). This procedure completes when all points have been inserted in
the tree.

p1

p2

p4

p9 p15

p5 p10
p13

p11

p8

p7 p18

p3

p6 p19

p16

p20

p12

p14

p17

p1

p2 p3

p4 p5 p6 p7

p8 p9 p10 p11 p12 p13 p14

p15 p16 p17 p18

p19 p20

Fig. 2. k-d tree: two-dimensional plane (left) and abstract tree (right) representations.

The k-d tree is a data structure that has to be entirely kept in main memory.
In case the tree is too large and must be stored in secondary memory, algorithms
will require paging, i.e. obtaining tree chunks from disk. As the tree grows in-
creasingly unbalanced, performance will deteriorate, and logarithmic algorithms
may become linear. An alternative to solve this problem is to employ another
balanced multidimensional tree meant for secondary memory, that is the k-d-B
tree proposed by Robison [10].

The k-d-B tree can be seen as variation of the k-d tree that combines the log-
arithmic algorithms of k-d tree with the efficient secondary memory management
algorithms of B trees. Thus it is efficient to process a tree that is not completely
loaded to main memory. The k-d-B tree is a multi-way tree that keeps all leaves
at the same level. Like the k-d tree, the k-d-B tree also partitions the multidi-

mensional space on which data are embedded in sub-spaces. Each internal node
corresponds to a rectangular region and its children define a disjoint partition
of that region. The points are stored in the leaves of the tree.

Figure 3 shows an example k-d-B tree. Each internal node represents a rect-
angular region in the planar representation, and each leaf represents a partition
obtained by recursive decomposition of the x and y axes using parallel lines (x1,
x2, x3 and x4; y1, y2 and y3).

p1

p2

p4

p9 p15

p5 p10
p13

p11

p8

p7
p18

p3

p6 p19

p16

p20

p12

p14

p17

x1

y1

x2 x4

y2

y3

x3

p1

p2

p4

p9 p15

p5 p10

x1

y1

x2

p11
p6

p19

p16

P20

p12

p17

x1

y2

y3

x3

p13

p7 p18

p3

p14

x4

y2

p2 p5 p9 p1 p4 p8 p10 p15 p6 p11 p17 p19 p20 p12 p16 p3 p7 p13 p14 p18

p8

Fig. 3. A k-d-B tree planar representation.

3.1 Multidimensional Search Types

Searches are typically initiated in response to a query. A search algorithm re-
turns the records that match the query condition. A multidimensional search,
sometimes also referred as associative search or search using secondary keys op-
erates on records with several keys specified as tuples of attributes. A record can
be represented in the Euclidean space as a point, its attributes correspond to
the point’s coordinates in the space. A tuple represents coordinates in a multi-
dimensional space, where each dimension represents one attribute.

A query retrieves all records that satisfy some properties. Various types of
queries exist [19] and are classified according to specification of desired records,
also called a region. A query always retrieves all records that fall within the spec-
ified region. A region is defined as a set of maximum and minimum coordinate
values in the geometric space. A description of the main types of queries follows.
The exact match is the most simple query, and returns a specific record defined
by its k keys. A partial match yields a set of registers whose k keys match at least

one key specified in the query. The range match looks for all records that have
their k keys within the specified ranges of keys of key values. Finally, a proximity

query looks for the records that are closest to a given set of key values.

4 The Monitoring Strategy

The proposed monitoring strategy is described in this section. Multiple concur-
rent management objects provide automated data collection of selected system
resources, for example, CPU, disk, memory, network interfaces. The monitoring
strategy is composed of three phases: data sampling, data insertion into the mul-
tidimensional space, and requirements evaluation (assessment of requirements).

The monitored parameters are SNMP objects. These objects collect perfor-
mance data and quantitative information of the computing device monitored.
Each object is associated with requirements described by arithmetic and logic
functions. Multiple requirements reflect restrictions on the values of the objects.

To carry out the first phase, sampling, we define the monitoring objects, the
SNMP agents from which objects are derived, as well the sampling interval. In
the second phase, the sampled values are mapped to a multidimensional space.
In this space, each dimension corresponds to an object. Each point of this space
is a managed computing resource or device.

Figure 4 shows an example of a bidimensional space. Four computing units
are monitored and mapped in a bidimensional space that represents two com-
puting resources: available memory and processor utilization. In this picture,
C1, C2, C3, and C4 represent the resources monitored. The available memory is
plotted on the x axis, while the processor utilization is represented on the y axis.
The points M1, M2, M3, and M4 are values for available memory (%) for each of
the four resources C1, C2, C3, and C4. In the same way, P1, P2, P3, and P4 are
the processor utilization (%) of each computing resource.

The mapping of the objects in the multidimensional plane is done with mul-
tidimensional search trees in the second phase. The k-d tree is the data structure
chosen for online monitoring, while the k-d-B tree is provided for offline moni-
toring. The search in both trees can be based on specified computing resource
metrics.

In the third phase, the monitoring strategy retrieves data from the updated
multidimensional search tree. The queries are built on the requirements. The
multidimensional search is applied to all monitored resources.

The multidimensional search returns the devices that match the specified
performance parameters and based on thresholds a warming or alarm can be
issued if requirements are not met. The tool can be also record the time interval
in which resources presented a given performance. A timestamp is appended to
the collected data items, so it is possible to evaluate the history of the resource
behavior.

Fig. 4. Mapping of objects and resources in a bidimensional space.

5 Monitoring Tool Description and Experimental Results

In this section we describe a tool that implements the proposed strategy and the
experimental setup and results. The tool is composed by a monitoring module
which is based on SNMP, and a module to manage the multidimensional trees.

5.1 Description of the Monitoring Tool

The tool was written in C++ and runs on the Linux operating system. The
data collection module is based on Net-SNMP[20]. The tool obtains data from
SNMP agents. Some SNMP objects are directly used, without any extra pro-
cessing. Other SNMP objects, e.g. counters, require two sequential samples to
be obtained in order to give meaningful information.

Consider for instance how the processor load and memory usage are
monitored. The processor load is computed from objects ssCpuRawNice,
ssCpuRawUser, ssCpuRawSystem, and ssCpuRawIdle, availabled in UCD-
SNMP MIB [20]. The values represent, respectively, the time the system was
in “low priority”, “ user”, “system”, and “idle” modes, all of which are kernel
measures.

Memory usage is computed from objects hrStorageSize and hrStorageUsed

implemented in the Host Resources MIB [21]. These objects represent, respec-
tively, the amount of available memory and used memory. All samples collected
are stored in secondary memory before being handled to the multidimensional
information management module, described below.

The multidimensional information management module is responsible for the
insertion the collected samples in multidimensional search trees. The k-d-B tree
was implemented using the toolkit TPIE (Transparent Parallel I/O Environ-
ment) [22], that allows the implementation of external memory algorithms, and
minimizes the input and output communication (I/O) performed when solving
problems on very large data sets. The k-d tree was implemented using the tem-
plate libkdtree [23]. Both the k-d-B tree and the k-d tree implementations allow
data to have, at least in theory, an unlimited number of dimensions.

5.2 Results

We initially present results comparing the proposed approach with a traditional
database, in this case MySQL. We measured the time required for inserting and
searching up to 8 million monitoring samples. The comparison was performed
for off-line monitoring, and thus only with k-d-B trees, which also involve disk
accesses. It is important to remark that k-d trees used for on-line monitoring is
orders of magnitude faster than both databases and k-d-B trees. In our experi-
ment the database either presented a very high search time or a very high index
building time. In order to get roughly the same search time of multidimensional
trees (ranging from 2 to 6 milliseconds) the database had to be configured to
build indices for all 10 keys. Figure 5 shows the insertion time measured in this
case. While in our approach the time required is at most a few seconds, the
database required more than 2 hours for fully indexing 8 million records.

We now present experimental results obtained from monitoring three Web
servers and three video servers. In the experiments, six parameters were sam-
pled: the time instant the SNMP query was issued; the utilization of the input
network interface; the utilization of the output network interface; memory us-
age; processor utilization; and number of active TCP connections. Servers were
connected to a non-dedicated 100Mbps Ethernet network.

The monitoring samples were inserted into the k-d tree. Three experiments
were then executed with different purposes. The first experiment was meant to
show that the tool performed as expected and that the multidimensional search
returned correct values. The second experiment was performed to show that the
variation in the number of key attributes did not affect the tool performance.
The third and final experiment show the relationship between the response time
of the multidimensional search and the number of records stored in the k-d tree.
The response time is an important parameter to allow the tool to be used for
continuous on-line monitoring.

In the first experiment, a video server was monitored for an interval of 60
seconds. Samples containing the six monitoring parameters were collected every
second and inserted in the k-d tree. Figure 6 shows results. Several multidimen-
sional range queries were executed including (ranges are specified in brackets):
processor utilization: [5-7] %, output network interface utilization: [15-25] %,
memory usage: [85-95] %. For the other parameters, the range of query was
the range of the field of records. The multidimensional search is shown in Fig-
ure 6. The horizontal lines show the specified limits for the three parameters.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

tim
e

(m
s)

records

insertion - 10 keys

mysql
kdbtree

Fig. 5. Comparison of the insertion time: k-d-B tree and MySQL.

The query retrieved 38 records that meet the criteria described above, which
means that during approximately half of the time of observation, the selected
parameters presented their values within the range specified by the search. This
result confirms that the tool produces accurate results as expected, i.e. it allows
monitoring and range search for system parameters according to specified values.

The goal of the second experiment is to evaluate the relationship between the
number of query attributes, that is, the search keys, and the response time of
the search in the k-d tree. The video server and the Web server were monitored.
The monitoring phase has produced 600 records with 4 keys, 600 records with 5
keys, and 600 records with 6 keys. A tree was built for each set of 600 records
and the insertion time was measured. The experiment was repeated hundreds
of times. Table 1 presents the average insertion time and the average search
time measured in this experiment with a varying number of keys. It is easy
to see that the insertion time is constant, i.e. does not vary with the number
of search keys. This result is expected as the multidimensional search tree is a
generalization of the binary search tree. At each tree level, one key is used as
the search parameter, and guides the traversal. Another consideration is that
the time to search the tree does not depend on the type of information stored,
i.e. it is independent of the content of records and, consequently, independent of

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

R
e

s
o

u
rc

e
s
 U

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Memory
Network (out)

CPU

Fig. 6. Utilization of the video server resources.

the kind of monitored resources. The result of this experiment confirms that we
are able to issue queries using a large number of keys. As a consequence, we can
record and retrieve several system resources simultaneously with no penalties
for keeping the chosen data structure.

keys # records Average time # records Average time
inserted insertion (ms) retrieved search (ms)

searched

4 600 20 600 20
5 600 20 600 20
6 600 20 600 20

Table 1. Average time of insertion and search in a k-d tree using 4 to 6 search keys.

The third experiment is designed to evaluate the search time in the mul-
tidimensional search tree as a function of the number of records entered and
obtained from the experiment. In this experiment, the servers were monitored
by a period of 30 minutes (1,800 seconds), and samples were collected every sec-
ond. These samples were inserted into the multidimensional search tree every 60
seconds. This procedure was repeated until the end of the experiment. For each
insertion the time (in ms) of the operation was measured, as well as the time (in

ms) to execute the range search. The range was defined in a way to allow the
retrieval of all data stored, which is the most comprehensive search possible.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
 (

m
s
)

Records

Insert
Range Search

Fig. 7. Insertion and search response times as a function of the number of records in
tree.

The response times for the insertion of samples collected from the start of
monitoring (generating a history of monitoring), and the response times to search
the multidimensional trees with a varying number of records inserted are shown
in Figure 7. This Figure shows that both the insertion time and the response
time grow with the number of records. For example, when we have 230 records,
the response time for the insertion operation is around 10 ms. In order to give an
idea of the time limits presented for on-line monitoring we can add the insertion
time plus the multidimensional range search time, we obtain a response time of
20 ms. In this case, the proposed strategy takes 20 ms on average to insert 230
records in a multidimensional search tree and to get the result of a query in this
data structure. Consider a new request that arrives and has to assigned to a
computational unit, selected in terms of performance parameters. For each new
request, a search is executed in about 10 ms. For 100 requests, the response time
of the search would is about 1 second, which results in a rate of approximately
100 requests answered by second. The response time of the query by interval
may be reduced if the number of records stored in the tree is also reduced, this
can be done by entering only the most recent records in the tree, which will
reflect the recent state of the system.

We also evaluate the proposed tool using Call Detail Records (CDR) of a
real telecom billing system. The call processing system evaluated produces an

average load of 300 CDRs/s. Each CDR generates 1KB of data. The system
under evaluation processes an average of 60,000 calls/s, and the CDR are col-
lected at every three minutes. We have collected 100,000 CDR, that accounts for
approximately five minutes of system activity. We inserted these records in the
multidimensional data structure under test. The results shows that the insertion
time as well as range search are logarithmic, as expected. This experiment con-
firms that the data structure can be effectively used to handle real-world systems
data.

6 Conclusion

In this paper we presented a strategy to efficiently monitor multidimensional
data which consists of several parameters. Data instrumentation is based on
SNMP. Queries can include multiple concurrent requirements on several system
devices. The multidimensional search can be used for instance to find resources
that meet specific requirements within a set of monitored distributed systems.
The proposed strategy is based on storing data in multidimensional trees which
allow logarithmic range search. A implementation was described that allows both
continuous online monitoring with the k-d tree and offline monitoring massive
amounts of logged data with a k-d-B tree.

Experimental results are shown comparing the proposed approach to a tra-
ditional database. The comparison involved up to 8 million data samples and
up to 10 different keys, confirming that the database either requires a time con-
suming full index creation or presents very high search delays. A set of Web and
video servers was monitored. Server resource information was collected and in-
serted in the data structures, allowing the identification of periods in which the
servers were heavily/lightly used during the period of observation. Overall the
results confirm that the proposed strategy can be effectively applied to monitor
real systems. Besides including the development of a Web interface for the tool,
future work is focused on integrating the proposed tool to a cloud computing
platform.

Acknowledgements

The comparison of our approach to a traditional database (MySQL) was pos-
sible thanks to the implementation and careful evaluation conducted by Saulo
Quinteiro dos Santos, Renato Yamazaki, and Luiz F. A. de Prá, at UFPR.
This work was partially supported by grant 311221/2006-8 from the Brazilian
Research Agency (CNPq).

References

1. Lawton, G.: Moving the OS to the Web. Computer 41(3) (2008) 16–19

2. Buco, M.J., Chang, R.N., Luan, L.Z., Ward, C., Wolf, J.L., Yu, P.S.: Utility Com-
puting SLA Management based upon Business Objectives. IBM Systems Journal
43(1) (2004) 159–178

3. Livny, M., Raman, R.: Enterprise Resource Management: Applications in Research
and Industry. In Foster, I., Kesselman, C., eds.: The Grid. 2nd edn. Morgan
Kaufmann (2003)

4. Kumar, V., Schwan, K., Iyer, S., Chen, Y., Sahai, A.: The state-space approach
to SLA-based management, 11th IEEE/IFIP NOMS (2008)

5. Sall, M., Bartolini, C.: Management by Contract, 9th IEEE/IFIP NOMS (2004)
6. Bouillet, E., Mitra, D., G.Ramakrishnan, K.: The Structure and Management

of Service Level Agreements in Networks. IEEE Journal on Selected Areas in
Communications, 20(4) (May 2002) 691–699

7. Abraho, B., Almeida, V., Almeida, J.: Self-Adaptive SLA-driven Capacity Man-
agement for Internet Services, 17th IEEE/IFIP DSOM (2006)

8. Taylor, R., Tofts, C.: Death by a Thousand SLAs: A Short Story of Commercial
Suicide Pacts. (2006)

9. Bentley, J.L.: Multidimensional Binary Search Trees Used For Associative Search-
ing. Communications of the ACM 18(9) (1975) 509–517

10. Robinson, J.T.: The K-D-B-Tree: A Search Structure for Large Multidimensional
Dynamic Indexes. In Lien, Y.E., ed.: Proceedings of the 1981 ACM SIGMOD
International Conference on Management of Data, Ann Arbor, Michigan, April 29
- May 1, 1981, ACM Press (1981) 10–18

11. Leff, A., Rayfield, J.T., Dias, D.M.: Service-Level Agreements and Commercial
Grids. IEEE Internet Computing (July-August 2003) 44–50

12. Harrington, D., Presuhn, R., Wijnen, B.: An Architecture for Describing Simple
Network Management Protocol (SNMP) Management Frameworks (2002) Request

for Comments 3411.
13. Stallings, W.: SNMP, SNMPv2, SNMPv3 and RMON1 and 2. 3rd edn. Addison-

Wesley Longman Publishing Co., Inc. (1998)
14. Leinwand, A., Conroy, K.F.: Network Management a Pratical Perspective. 2nd

edn. Addison-Wesley Longman Publishing Co., Inc. (1996)
15. Verma, D.: Supporting Service Level Agreements on IP Networks. Macmillan

Technical Publishing (1999)
16. Molina-Jimenez, C., Shrivastava, S., Crowcroft, J., Gevros, P.: On the Monitoring

of Contractual Service Level Agreements (2004) Technical Report series CS-TR-
835 April 2004 School of Computing Science, University of Newcastle upon Tyne.

17. Dinda, P.A., Lu, D.: Nondeterministic Queries in a Relational Grid Information
Service. In: SC ’03: Proceedings of the 2003 ACM/IEEE Conference on Supercom-
puting, Washington, DC, USA, IEEE Computer Society (2003) 12–26

18. Bentley, J.L.: Multidimensional Binary Search in Database Applications. IEEE
Transactions on Software Engineering 4(5) (1979) 333–340

19. Gaede, V., Gunther, O.: Survey on Multidimensional Access Methods (Revised
Version). ACM Computing Surveys 30(2) (june 1998) 170–231

20. : The NET-SNMP Project Home Page (2003) http://net-snmp.sourceforge.

net, Accessed in July 2009.
21. Waldbusser, S., Grillo, P.: Host Resources MIB (2000) Request for Comments 2790.
22. : A Transparent Parallel I/O Environment (2003) http://www.cs.duke.edu/

TPIE/, Accessed in July 2009.
23. : The libkdtree++ Project (2004) http://freshmeat.net/projects/libkdtree/,

Accessed in July 2009.

