
A2A: An Architecture for Autonomic
Management Coordination

Alexander V. Konstantinou1 and Yechiam Yemini2

1 IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532, USA

avk@us.ibm.com
2 Columbia University

New York, NY 10027, USA
yemini@cs.columbia.edu

Abstract. A central challenge of autonomic systems is how to discover,
monitor, analyze and control configuration data to assure operational
integrity. Current architectures for configuration data management focus
on federating repositories that are loosely synchronized, and do not offer
autonomic coordination services. We present A2A, a novel autonomic
peering architecture which delivers a unified and consistent view of actual
element configuration for autonomic systems and managers, and provides
synchronization primitives enabling policy coordination and mediation.
We discuss the different synchronization semantics and protocols used
by systems and managers to access and manipulate configuration data
stored in a distributed Modeler. We show how dependent or conflicting
policy actions can be automatically detected, correlated and brought
to mediation. The A2A architecture has been partially implemented in
a large prototype system that has been successfully demonstrated in
security, network configuration, and active network applications.

1 Introduction

In traditional manager-agent architectures [1–5] configuration data is stored in
a Configuration Management Database (CMDB). The CMDB is populated by
discovery agents which loosely synchronize its data with the actual configura-
tion state of the systems being managed. In a typical ITIL [6] process man-
agers trigger discovery to populate the CMDB and then compare the authorized
(expected) configuration against the actual (discovered) configuration. When
unauthorized configuration drifts are detected a Request for Change (RFC) is
generated to update the primary local configuration of the effected systems. At
the next discovery cycle these changes are picked up and verified so that the
RFC ticket can be closed.

An autonomic system is one that is self-configuring, self-optimizing, self-
healing and self-protecting. The manager-agent approach to configuration man-
agement is particularly ill-suited for such systems. The self-management actions
of autonomic systems quickly invalidate the discovered information stored in



the CMDB, complicate the determination of what represents an unauthorized
drift, and can immediately override any RFC actions which conflict with their
policies. Autonomic system policies are often driven by changes in the state of
other systems. Therefore a central challenge of an autonomic system is how to
discover, monitor, analyze and control configuration data to assure operational
integrity. An autonomic system may be misled by outdated configuration data
in the CMDB. It may thus be unable to synchronize its configuration change
transactions with the underlying managed systems and the models of their state
stored in the CMDB. Furthermore, the autonomic system may be unable to
coordinate its configuration changes with similar actions by other autonomic
systems. These various potential inconsistencies between the state of the sys-
tem, the CMDB model of this state, and actions by autonomic components may
lead to significant self-configuration errors and loss of operational integrity.

In this paper we introduce a novel peering architecture for autonomic configu-
ration management. In our A2A architecture the traditional roles of manager and
agent are unified as peers accessing a distributed configuration model. Managed
elements maintain a local object repository (Modeler) which is accessed through
a unified set of transactional local or remote interfaces. In this approach, even
though management functions may continue to be distributed across local agents
and remote managers, their interactions can be monitored, coordinated and me-
diated. Recent works [7–9] have considered applications of peering technologies
to support discovery and distribution of management data. The primary con-
tribution of this paper is in extending peering semantics beyond discovery and
access of shared data, to support safe distributed configuration access for policy
verification and configuration propagation.

In Section 2 we present our A2A autonomic peering architecture in relation
to the current manager-agent architecture. In Section 3 we elaborate on the
semantic coordination functions of the A2A Modeler. In Section 4 we link the
architecture to patterns for building manageability by design, and declarative
policies supporting static analysis. In Section 5 we briefly discuss the NESTOR
prototype implementation. Section 6 discusses related work, followed by some
brief conclusions in Section 7.

2 A2A Peering Architecture

We will use a simple configuration propagation example to describe the architec-
ture and operations of the A2A peering architecture and contrast it with current
manager-agent solutions. The propagation in our example will be the port and
address configuration of a web-server to its clients. As depicted in Figure 1 the
operating system C1 hosts an HTTP server B1, requiring client A1 to configure
the host and port through which they access the service.

Consider first a federated solution based on the proposed Configuration Man-
agement Database Federation (CMDBf)[5] architecture shown in Figure 1. A
Manager, depicted at the top left, needs to enforce the configuration policy by
propagating configuration changes on the web-server to its respective clients. The



Manager must first discover the clients and servers whose configurations may be
mismatched. This is accomplished through a federated CMDB (1). The CMDB,
in turn, accesses Management Data Repositories (MDRs) to obtain the required
configuration data. The MDR collects configuration data from the managed ele-
ments (A1, B1 and C1) through various Discovery Agents (3) which use a variety
of protocols (4) (WSDL, SNMP and SSH) to discover managed elements and ex-
tract the configuration data from their internal configuration repositories. Once
the Manager obtains the configuration data, it needs to propagate the policy
changes to the managed elements via respective Provisioning Agents (6) which
may in turn utilize a variety of protocols and subsystems to effect configuration
changes at the client A1.

B1 : Apache

port=80

Mgmt Agent

httpd.tcp.in.port=80

HTTP Proxy

Discovery Agent

outPort=80

outHost=www

A1 : Client

serverPort=80

Mgmt Agent

Apache

Discovery Agent

A1 address &

credentials

B1 address &

credentials

C1: SUSE Linux

hostname=wwwserverHost=www

tcp.out.port=80

tcp.out.host=www JM
X

Ja
v

a

Internal API

WSDL
C

+
+

Internal

API

Host

os.hostname=www M
IB

Internal

API

A1 : Proxy

inPort=80

B1: Apache

name=www

C1 : OS
MDR

Manager (PEP)

A1.outPort B1.inPort

A1.outHost B1.host.name

Type A

Provisioning Agent

SUSE Linux

Discovery Agent

C1 address &

credentials

SNMP

WMI

Federating

CMDB

(1) (2)

(3)

(4)

(5)

(6)

C

Host

Fig. 1. Manager-Agent Architecture Example

It is simple to see that this fragmented process can be highly sensitive to
the flow of configuration data and changes, resulting in complex failures. The
MDR data may be outdated, leading to erroneous Manager decisions and ac-
tions. Synchronizing the data collection activities of the Discovery Agents with
the Manager decision processes and the configuration changes by the Provision-
ing Agent is impractical. The configuration changes effected by the Manager
may conflict with concurrent configuration changes by other Managers. Worse,
configuration changes by the Manager may conflict with internal configuration
control processes of the managed elements. The configuration changes by the
Manager may trigger a cascade of additional configuration changes by other
Managers and elements. Such cascading can lead to cyclical loops of changes
and non-deterministic operational behaviors, which may trigger problem man-
agement activities. For example, a self-configuration action on the client to use a
well-known port may be triggered if its port is changed and immediately override



the value. On the next discovery cycle the Manager would re-detect the drift and
reconfigure, leading to a cycle. It is thus practically impossible to establish se-
mantically consistent self-configurations through a manager-agent architecture.

Our A2A autonomic peering management architecture, considered first in [10]
is depicted in Figure 2. The A2A architecture organizes autonomic peers, typ-
ically, but not necessarily embedded in managed elements, into a two-layer ar-
chitecture. At the bottom layer, a distributed object Modeler, similar to the
CMDB, provides a consolidated element data repository, including configuration,
relationship, state and performance attributes as well as their behavior events.
Modeler objects are instances of classes declared in a unified management Model,
such as CIM [11]. The Modeler provides a local North-South API to transac-
tionally access and manipulate the managed data, and subscribe for events. This
enables the management layer, above, to access a unified data model, interpret its
behavior and activate autonomic control functions. The remote East-West API
is used to federate with other Modelers to support access to configuration infor-
mation in remote object repositories. Existing P2P management protocols [7–9,
12] can be used to affect discovery and DHT-based sharing of distributed con-
figuration data.

Autonomic SystemManagement

Layer

Data

Modeling

Layer
Object Repository

TransactionsEvents

Security/Views

P
ee

ri
n

g
 A

P
ILocal API

Manager

Object Repository

TransactionsEvents

Security/Views

P
ee

ri
n

g
 A

P
I Local API

Modeler Modeler

Fig. 2. A2A Architecture

An A2A architecture removes the primary storage of a system’s configuration
from the system’s code and maintains it in the Modeler. It then offers a common
set of transactional semantic interfaces to the Modeler enabling peers to access
and manipulate configuration data and coordinate these transactions among
them. This creates a peering relationship among all processes, both local and
remote, wishing to transact with element configuration data based on common
semantic abstractions of configuration objects and their manipulations.

We use Figure 3 and the scenario of enforcing the simple propagation policy
of Figure 1 to illustrate our A2A mechanisms. The first key difference is that
the managed elements do not store their configuration internally. Instead they
retrieve and update it in a transactional manner from their local Modeler. For
example, the B1 Apache HTTP server system will bind its server socket to
the port based on its configuration in the Modeler. Should that configuration
change, it subscribes for an event that will trigger a rebinding of the socket. In
the A2A architecture management functions can be flexibly distributed among
systems. The function to maintain consistent configuration between the client



A1 and the web-server B1 can be evaluated and maintained on the client system
itself as a self-management action, or in an external manager. In either case,
the verification will be associated with a transaction to change the configuration
of A1 or B1 and synchronously ensure that any change is propagated to the
client. The propagation policy may be programmed declaratively using an object-
spreadsheet language such as OSL[13]. Once the A1 manager has computed the
appropriate policy decisions it will join the update transaction and set the value
of the host and port configuration for A1. This update will generate a Modeler
event, which the system implementation code will trap to trigger a rebinding of
the client socket to the correct host and port.

C1 ModelerA1 Modeler

outPort=80

outHost=www

A1 : Client

B1 Modeler

inPort=80

B1: Apache

name=www

C1 : Linux
host

A1 Client System

transaction {

new Socket(

A1.getOutPort(),

A1.getOutHost());

}

B1 Apache System

transaction {

openSocket(

B1.getInPort(),

B1.getHost().getName());

subscribe(B1, B1.getHost()) {

reopenSocket(…);

}

}

depend

C1 OS System

subscribe(A1, B1, C1, sync) {

A1.outPort = 

A1.dependency.inPort;

A1.outHost =

A1.dependency.host.name;

}

host

subscribe(C1, sync) {

allHostedPortsUnique()

}

Fig. 3. A2A Architecture Example

This semantic peering architecture for autonomic systems offers several sig-
nificant advantages over the traditional manager-agent (client-server) organi-
zation. It moves configuration data from local internal repositories to a uni-
fied distributed modeling layer and eliminates the need to maintain replicated
repositories at systems, agents and CMDBs, and to synchronize them across
different data models and access protocols. The common transactional seman-
tics, provided by the Modelers, enable direct shared access to configuration data
among all interested components, whether local or remote. This permits coordi-
nation and synchronization by distributed systems and management components
of configuration access and changes. Furthermore, the shared transactional se-
mantics enable checkpointing of configuration states, analysis of failures and
recovery. The peering architecture permits flexible scaling and changes of con-
figuration management. New elements, managers, systems components and au-
tonomic policies can be easily joined, or removed involving modular relatively
simple changes. Moreover, the peering architecture permits robust operations
of autonomic management. The management system can continue to operate
under dynamic changes, failures and partitioning of the network. It can effect



autonomic policies that gracefully reduce unavailable services and reconfigure
resources to support self-healing of services that may be sustained through the
failure. The unification of the traditional roles of manager and element allows
management functions to be flexibly distributed at different elements, supporting
autonomic behavior. In what follows we describe in details the A2A mechanisms
for semantic peering.

3 Distributed Modeler

A central function of the A2A architecture is to enable peer managers to access,
share and manipulate distributed configuration data. This function is primarily
handled by the distributed Modeler. The Modeler provides (a) a repository of
object-relationship data models and meta-models; (b) mechanisms for repository
access and manipulations supporting view abstractions and security protections;
(c) mechanisms to support distributed transactions by local and remote man-
agers, and (d) publish/subscribe mechanisms to handle events.

We illustrate the Modeler operations using an autonomic policy maintenance
scenario depicted in Figure 4. In response to a change in the environment or its
policy an autonomic manager (mgr2) determines that the outPort of B1 should
be changed from 80 to 81. Mgr2 creates a write transaction (t2) to update the
state of B1.inPort in the Modeler b1m. A second autonomic manager mgr1 has
a synchronous event subscription on this property and will join the transaction
t2. Once mgr1 has joined, the set operation of mgr2 returns, and mgr2 indicates
that it is prepared to commit. In parallel, mgr1 evaluates its own policy which
computes a change in A1.outPort. Mgr1 contacts Modeler a1m which also joins
the transaction t2. Modeler a1m records the change to A1.outPort in the context
of transaction t2. The change does not involve mgr2, and thus the propagation is
complete and all parties can vote “prepared” to commit. The transaction manager
will inform the participants of their joint decision to commit, and collect their
acknowledgments.

3.1 Object-Relationship Repository

The use of object-relationship models for the configuration of systems[14] and
networks[15] has been widely adopted in industry[16, 17], and applied to auto-
nomic systems[18]. Autonomic object models can encapsulate both configuration
as well as performance instrumentation data, as described in [10]. For example,
a model for an IP interface can represent both configuration information, such
as address and netmask, as well as performance information, such as number
and average size of transmitted packets. Relationships express configuration,
and hence operational, dependencies between systems. The network data model
has been studied extensively in the context of database systems[19]. The A2A
object-relationship repository can thus be implemented over proven distributed
object-oriented database technologies.



Fig. 4. Configuration Propagation Example

Management repositories model physical and software systems that can be
moved, rewired, or fail. For example, the network cable connecting a server to
a switch can be moved to another port. A hard drive in a RAID array can fail,
reducing the overall reliability of that system. One can therefore consider man-
aged systems as being described by a number of models. One model is that of the
actual configuration which represents the current state of the system. Another
model represents the authorized configuration, which represents the expected
state of the system. Due to physical reconfigurations or failures, the authorized
configuration may not match the actual configuration, and a traditional database
rollback may not be feasible. In such cases, it is necessary to enter a mediation
process to compute a desired state model[20, 21] which represents a new valid
actual state. Provisioning of this desired state model may involve automated
and manual tasks for reconfiguring existing systems and deploying new ones as
reported in [22].

3.2 Distributed Transactions and Events

Autonomic systems and managers must assure semantic consistency of configu-
rations. This requires evaluation of self-configuring policies over a consistent view
of configuration. Managers must also coordinate configuration changes used to
enforce their policies.

In contrast to traditional DBMS, a range of transactional semantics must be
supported to access the different configuration models. The actual configuration
model can only be modified by local instrumentation code, and cannot be locked
by managers. For example, the instrumentation of a system’s Ethernet port will
update the MAC address of its peer in the Modeler. Negotiation over the desired
state model can be performed atomically, in isolation, and persisted durably, but
may not be isolated from concurrent changes in the actual model. For example,
in the process of evaluating a security policy based on the MAC address of an



Ethernet port, the connection may be physically severed. Finally, in the process
of provisioning a desired state model, uncontrolled threads of change and failures
may invalidate design assumptions, or partially configure the desired state.

When policies are evaluated against the actual configuration model, they
must be protected against controlled as well as uncontrolled changes. Policy
evaluation does not change the actual model, and thus is inherently re-entrant.
An optimistic concurrency approach can therefore be taken, whereby the policy
is reevaluated if a change is detected during policy evaluation. In the Ethernet
port example, the optimistic lock on the configuration of the peer’s address will
fail, and the policy will need to be reevaluated over the new value. Any number
of optimistic concurrency control algorithms can be used for this purpose[19].

Policy violations will involve reconfiguration actions by the autonomic sys-
tems and managers. These actions must be coordinated to prevent inconsisten-
cies and propagation loops. For example, a policy to propagate the port of a
server to all clients may conflict with a policy to use well-known ports for client
communication. In the A2A architecture, coordination is achieved in the context
of a distributed transaction over the desired state model. The shared transaction
becomes a Space[23] which autonomic systems can query for other systems and
managers, their planned configuration actions, and the policies which triggered
them. Policy conflicts can be detected, correlated to their source, and mediated.
The specific mechanisms used for mediation are beyond the scope of this paper.

The mechanism used to form a shared transaction between interacting au-
tonomic systems and managers is based on a synchronous event service. When
policies are verified against the current state using an optimistic transaction,
systems and managers can subscribe for changes to the actual or desired state
of the objects, attributes and relationships they have accessed. For example,
the manager verifying the policy over the use of well known ports will regis-
ter for changes to the port attribute of client types in all objects of a specific
management domain. Event subscriptions can be synchronous or asynchronous.
Synchronous event notifications are performed in the context of the transaction
which triggered them, and allow subscribers to join in that transaction. In our
example, when a management process changes the port of the server, this will
trigger a synchronous event to the manager maintaining the server to client prop-
agation policy. Failure to notify a synchronous subscriber is treated as a vote
to abort the transaction. Standard publish-subscribe architectures and protocols
can be utilized[24] for message delivery.

Arranging for all autonomic managers with policies operating on the same
changed data to join a distributed transaction is one aspect of coordination. The
second aspect is the distributed transactional protocol employed. The protocol
must be resilient to failures of systems. In our example, when the manager
enforcing the server to client port propagation policy receives a synchronous
event, it joins the transaction. Upon evaluating its policy, it determines that
the client port must be changed, and associates additional changes with the
transaction. The change to the client port will notify the manager of the well-
known client port policy who will recognize a conflict, and identify the policy



which triggered the cascading failure. At that point, the transaction can be
aborted, or mediation between the two conflicting policies can be enforced. At
any point during this transaction, one of the managers can fail. The transaction
protocol must assure consistency and recovery from such failures.

The three-phase commit protocol (3PC) supports distributed coordination
with a quorum-based recovery procedure when failures are detected[25, 26]. Fig-
ure 5 depicts a modified state diagram for a 3PC participant. Upon a change in
the actual model, or the change action of another manager over the desired state,
effected managers are joined to the transaction. All managers start in state R.
They apply their policies over the respective Modeler repositories concurrently.
Each Modeler maintains a read set and a write set for every participant. When
read → write conflict is detected, it is necessary for the policy which read the
overridden value to be reevaluated. We modify the 3PC protocol by adding a
new message called restart. A restart message to the coordinator with all partici-
pants in the R or V triggers a restart message to the participants specified in the
restart message. The identified participants in the V state will transition back
to the R state and will re-evaluate their policies. Cyclical write propagations or
otherwise inconsistent policies leading in write → write conflicts can result in
restart loops. A transaction coordinator is responsible for detecting such loops
and triggering policy mediation.

R

V

W

vote

prepared vote

abort

prepare

ack

commit

A

C

prepare

abort

abort

R

V

W

A

C

Normal Transitions Timeout Transitions

restart

Fig. 5. Restartable 3PC Protocol

The architecture of the Modeler’s event and transaction mechanisms sup-
ports a variety of optimizations. Profiling of autonomic systems and policies can
be used to optimize the evaluation order of interacting policies. The results of
conflicting policy mediation can produce composite policies that will prevent fu-
ture conflicts. Policy cycles across transactions, due to undetected propagation
paths, can similarly be correlated, triggering cross-transaction policy mediation.

3.3 Security

Access to detailed system configuration models is a major security concern. In-
truders can use such information to quickly identify architectural and system



vulnerabilities. Configuration information can also be utilized in social engineer-
ing attacks. Obtaining the ability to change configuration can usually be used
to compromise or attack a system. By separating the configuration repository
from the system’s operational code, the A2A architecture can reduce the risk
of unauthorized configuration changes. Traditional database view-based secu-
rity and policy-based security approaches[27] can then be enforced directly over
the network model layer. The A2A architecture can be used to associate role
credentials over autonomic system containment and communication paths. For
example, Modeler credentials can be communicated over secure application-level
communication channels.

4 Manager Layer

In the A2A management layer, autonomic systems and managers operate as
peers over a shared configuration model which is accessed through the Mod-
eler described in the previous section. Autonomic systems must be designed
and implemented to integrate with the Modeler. As such, all their configura-
tion attributes must be exposed through a meta-model that is instantiated and
persisted within the Modeler. Autonomic element instrumentation functions for
performance and physical configuration attributes must be separated from the
system’s autonomic functions. Beyond the instrumentation aspect, and the use
of local APIs to access the Modeler, there is no difference between the built-in au-
tonomic functions of a system and those of external managers. The management
layer does not impose any additional restrictions on the design of autonomic
systems and managers.

The distributed Modeler layer is the foundation of two key autonomic man-
ager technologies on which we have previously reported. JSpoon[10, 13] is a lan-
guage for integrating the configuration and instrumentation aspects of autonomic
agents and managers at design time. JSpoon provides native transactional and
event primitives to support patterns of instrumentation and management access.
The JSpoon runtime interfaces to the Modeler distributed transaction and event
functions to support the language features. The Object Spreadsheet Language
(OSL)[13] is a declarative expression language extending OCL[28] to encode con-
figuration propagation policies. By leveraging the A2A Modeler’s transactional
and event interfaces, a distributed incremental OSL interpreter was built with
support for static as well as dynamic propagation path conflict analysis and
mediation.

5 NESTOR Prototype

The A2A peering architecture outlined in this paper has been partially imple-
mented in a large research prototype called NESTOR[13]. The prototype includes
a custom distributed transactional object Modeler, an object-relationship mod-
eling definition language compiler, an incremental Object Spreadsheet Language
(OSL) change rule and Object Policy Language (OPL) constraint interpreter,



adapters for different management protocols and elements, and a rich manage-
ment graphical editor. The NESTOR transactional model is based on optimistic
concurrency control for instrumented configuration attributes, and 2PC for de-
sired configuration state. The R3PC algorithm presented in this paper was not
integrated into the platform. NESTOR was developed in two successive versions
which provided practical experience with different automation architectural de-
signs. NESTOR has been applied to the management of security in dynamic net-
works[29], automating configuration of network virtualization[30], instrumenting
Active Network Nodes, and configuring a distributed firewall based on security
policies[31].

6 Related Work

Several recent works [13, 12] have thus explored distributed architectures for au-
tonomic systems. A distributed management architecture, first proposed at [32],
enables autonomic components to assure consistency of their views and actions
with the actual states of managed subsystems, by directly manipulating local
repositories of these subsystems. The novelty of our approach is that we focus
on the safe distribution and transactional manipulation of element configuration
over which existing mechanisms for distributed policy enforcement and collection
can be layered.

A recent draft specification for a CMDBf federation standard[5] is an attempt
to standardize integration based on a federated architecture. In this architecture,
configuration data is aggregated in a federated database which is populated by
pull or push of data from distributed Management Data Repositories (MDRs).
The standard defines a graph-based query language for performing queries over
the federated database that can be distributed to the MDRs. The CMDBf ar-
chitecture does not challenge the basic design goals of the CMDB, and therefore
does not address transactional access, synchronization, or provisioning. The A2A
architecture refactors the federation and query concepts of CMDBf into a two-
layer peering management architecture to support autonomic services.

The challenge of data center management automation has been the subject of
a number of previous studies [18, 33]. A common assumption in a number of these
studies is that a consistent view of the world is an input to the system. Often, the
stated goal of these systems is to enforce centrally defined functional and non-
functional policy constraints. Automation is thus introduced at the management
layer and assumes that the managed systems are not self-managing or have
limited and well defined autonomic functions. Based on these assumptions the
manager can plan the changes required over the consistent world view input
to provide or optimize some function, and then schedule the provisioning of
these changes. The A2A architecture is an enabling technology for these studies,
because it provides an essential mechanism for obtaining a consistent world view.
More importantly, it will also support distributed approaches to automation
using cooperating self-managed and self-healing processes.



A number of recent studies have focused on the application of P2P tech-
nologies to management [7–9, 12]. Their emphasis has been on P2P discovery
and DHT-based sharing to distribute data across multiple managers for scala-
bility. The use of P2P discovery techniques has been incorporated in our A2A
architecture. The approach to creating uncontrolled copies of configuration data,
however, exacerbates the synchronization challenges we have identified as a key
challenge for autonomy. Our architecture specifies detailed synchronization prim-
itives which can provide safe access to distributed peers, and enable them to join
in order to negotiate over their policies.

Autopilot [34] is an example of a new generation of data center management
systems. These systems are characterized by a small number of vertically en-
gineered applications that were designed to scale to hundreds of thousands of
homogeneous software and hardware instances. A fault-tolerant centralized de-
vice manager receives information from data center systems and monitors which
is used to update a strongly-consistent current state data model. The device
manager then uses a set of manually determined policies to compute the de-
sired data center state model. Management services and systems respectively
provision and reconfigure based on their determined desired state. The architec-
ture supports weak-consistency of the deployment state during provisioning. Our
A2A architecture can be viewed as a first attempt at bridging the manager-agent
and vertical types of data centers, supporting both strong and weak consistency
models.

7 Conclusions

The current trends towards delivery of software as a service are shifting manage-
ment complexity from client systems into mission critical data centers which are
rapidly evolving and enlarging. Within the data center there have been two fun-
damental reactions to these challenges. Enterprise data centers have focused on
applying ITIL application-lifecycle technologies capturing existing best-practice
workflows over a shared CMDB. These workflows tend to be static and human
task oriented, admitting limited automation at predetermined points. The other
reaction comes from a new generation of massive Internet applications, such as
web-search, which were designed in a vertical manner, integrating autonomic
policies for deployment, monitoring, failure recovery and migration.

These two diverging data center architectures present different challenges to
the adoption of autonomic technologies. At the Enterprise-level, the proliferation
of heterogeneous services with complex hosting and connectivity dependencies,
accessed via fragmented management functions creates a high-risk environment
for autonomy. Autonomic technologies will not be adopted without clear controls
over what can be changed, based on what information and by whom. The current
approaches towards weekly consistent CMDBs, while a big step forward, will not
deliver a platform that is safe for autonomy. Our proposed A2A semantic peering
architecture puts an emphasis on consistency and coordination, which are the



cornerstones for effective autonomic technology adoption in the Enterprise data
center.

The challenges posed to autonomy by massive Internet application data cen-
ters are less well understood at this point. We expect that the main challenge will
be in composing the autonomic functions of different vertical applications[35].
The widening offering of services, from search to mail, and now productivity
applications will challenge the vertical structure of such centers. The A2A archi-
tecture can provide a space for safe mediation of the interacting autonomic func-
tions of these vertical semi-autonomous applications. Furthermore, it promises
to unify the management architecture across types of applications, which will
become increasingly important as their domains begin to overlap.

Acknowledgments

Research sponsored in part by DARPA contract DABT63-96-C-0088.

References

1. ISO: OSI basic reference model - part 4: Management framework. Technical Report
7498-4, ISO (1989)

2. Case, J., Fedor, M., Schoffstall, M., Davin, J.: A Simple Network Management
Protocol (SNMP). Technical Report RFC 1067, IETF (1988)

3. Martin-Flatin, J.: Push vs. pull in web-based network management. In: Integrated
Management. (May 1999)

4. Schonwalder, J., Pras, A., Martin-Flatin, J.P.: On the future of internet manage-
ment technologies. IEEE Communications Magazine 41(10) (2003) 90–97

5. CMDB Federation Workgroup: CMDB federation CMDBf. Technical report (2008)

6. Office of Government Commerce: The Official Introduction to the ITIL Service
Lifecycle Book. The Stationery Office (August 2007)

7. Zach, M., Fahy, C., R.Carroll, Lehtihet, E., Parker, D., Georgalas, N., Nielsen, J.,
Marin, R., Serrat, J.: Towards a framework for network management applications
based on peer-to-peer paradigms the celtic project madeira. In: IEEE NOMS.
(April 2006)

8. Tang, C., Chang, R.N., So, E.: A distributed service management infrastructure
for enterprise data centers based on peer-to-peer technology. In: IEEE Services
Computing Conference (SCC). (September 2006)

9. Granville, L.Z., daRosa, D.M., Panisson, A., Melchiors, C., M.J.B.Almeida,
L.M.R.Tarouco: Managing computer networks using peer-to-peer technologies.
IEEE Communications Magazine (2005)

10. Konstantinou, A.V., Yemini, Y.: Programming systems for autonomy. In: IEEE
Autonomic Computing Workshop (AMS 2003), Seattle, WA (June 2003)

11. Distributed Management Task Force (DMTF): Common Information Model
(CIM) specification. Technical Report Version 2.2, DMTF (June 1999)

12. Kamienski, C., Sadok, D., Fidalgo, J., Lima, J.: On the use of peer-to-peer archi-
tectures for management of highly dynamic environments. In: 4th IEEE Int. Conf.
on Pervasive Computing and Communication. (March 2006)



13. Konstantinou, A.V.: Towards Autonomic Networks. PhD thesis, Columbia Uni-
versity (October 2003)

14. Sloman, M.: Management for open distributed processing. DCS 1(9) (1990) 25–39
15. Dupuy, A., Sengupta, S., Wolfson, O., Yemini, Y.: Netmate : A network manage-

ment environment. IEEE Network Magazine (1991)
16. DMTF: Common Information Model (CIM). Technical report, DMTF (2006)
17. W3C: Service Modeling Language, version 1.0. Technical report (2007)
18. Yemini, Y., Konstantinou, A., Florissi, D.: NESTOR: An architecture for NEtwork

Self-managemenT and ORganization. IEEE JSAC 18(5) (2000)
19. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. 5 edn. Addison-

Wesley (2006)
20. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G., Pershing, J., Agrawal, A.:

Managing the configuration complexity of distributed applications in internet data
centers. IEEE Communication Magazine 44(3) (2006) 166–177

21. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Pattern
based SOA deployment. In: ICSOC. (September 2007)

22. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M. Konstantinou, A.:
Model driven provisioning: Bridging the gap between declarative object models
and procedural provisioning tools. In: 7th Int. Middleware Conference. Volume
4290 of LNCS., Springer-Verlag (2006) 404–423

23. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1) (1985) 80–112

24. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2) (2003) 114–131

25. Skeen, D.: A quorum-based commit protocol. In: 6th Berkeley Workshop on
Distributed Data Management and Computer Networks. (February 1982)

26. Keidar, I., Dolev, D.: Increasing the resilience of atomic commit, at no addi-
tional cost. In: PODS ’95: Proceedings of the fourteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, ACM (1995) 245–254

27. Sloman, M., Lupu, E.: Security and management policy specification. IEEE Net-
work (2002)

28. OMG: Object Constraint Language specification (OCL). Technical Report ad/97-
08-08 (version 1.1), Object Management Group (OMG) (September 1, 1997 1997)

29. Konstantinou, A.V., Yemini, Y., Bhatt, S., Rajagopalan, S.: Managing security in
dynamic networks. In: USENIX Lisa. (1999)

30. Su, G., Yemini, Y.: Virtual Active Networks: towards multi-edged network com-
puting. Computer Networks 36(2/3) (2001) 153–168

31. Burns, J., Gurung, P., Martin, D., Rajagopalan, S., Rao, P., Rosenbluth, D., Suren-
dran, A.: Management of network security policy by self-securing networks. In:
(DISCEX II), Anaheim, California (2001)

32. Goldszmidt, G., Yemini, Y.: Distributed management by delegation. In: The 15th
Int. Conference on Distributed Computing Systems, Vancouver, BC, IEEE (1995)

33. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G.: Reducing the complexity
of application deployment in large data centers. (2005)

34. Isard, M.: Autopilot: Automatic data center management. Operating Systems
Review 41(2) (2007) 60–67

35. Konstantinou, A., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Snible, E.:
An architecture for virtual solution composition and deployment in infrastructure
clouds. In: 3rd Int. Workshop on Virtualization Technologies in Distributed Com-
puting (VTDC). (June 2009)


