
Efficiently Processing XML Queries over Fragmented
Repositories with PartiX

Alexandre Andrade1, Gabriela Ruberg1, Fernanda Baião2, Vanessa P. Braganholo1,
and Marta Mattoso1

1 Computer Science Department, COPPE/Federal Univ. of Rio de Janeiro, Brazil
2 Applied Informatics Department, University of Rio de Janeiro, Brazil

{alexsilv,gruberg,vanessa,marta}@cos.ufrj.br,
fernanda.baiao@uniriotec.br

Abstract. The data volume of XML repositories and the response time of query
processing have become critical issues for many applications, especially for those
in the Web. An interesting alternative to improve query processing performance
consists in reducing the size of XML databases through fragmentation techniques.
However, traditional fragmentation definitions do not directly apply to collections
of XML documents. This work formalizes the fragmentation definition for collec-
tions of XML documents, and shows the performance of query processing over
fragmented XML data. Our prototype, PartiX, exploits intra-query parallelism on
top of XQuery-enabled sequential DBMS modules. We have analyzed several ex-
perimental settings, and our results showed a performance improvement of up to
a 72 scale up factor against centralized databases.

1 Introduction

In the relational [15] and object-oriented data models [4], data fragmentation has been
used successfully to efficiently process queries. One of the key factors to this success
is the formal definition of fragments and their correctness rules for transparent query
decomposition. Recently, several fragmentation techniques for XML data have been
proposed in literature [1, 2, 6–8, 12]. Each of these techniques aims at a specific sce-
nario: data streams [7], peer-to-peer [1, 6], Web-Service based systems [2], etc.

In our work, we focus on high performance of XML data servers. In this scenario,
we may have a single large document (SD), or large collections of documents (MD)
over which XML queries are posed. For this scenario, however, existent fragmentation
techniques [1, 2, 6–8, 12] do not apply. This is due to several reasons. First of all, they
do not clearly distinguish between horizontal, vertical and hybrid fragmentation, which
makes it difficult to automatically decompose queries to run over the fragments. Sec-
ond, none of them present the fragmentation correctness rules, which are essential for
the XML data server to verify the correctness of the XML fragments and then apply the
reconstruction rule to properly decompose queries. Also, for large XML repositories, it
is important to have a fragmentation model close to the traditional fragmentation tech-
niques, so it can profit as much as possible from well-known results. Third, the query
processing techniques are specific for the scenarios where they were proposed, and thus
do not apply to our scenario. For instance, the model proposed in [7] for stream data

does not support horizontal fragmentation. The same happens in [2], where fragmenta-
tion is used for efficient XML data exchange through Web services. Finally, the lack of
distinction between SD and MD prevents the distributed query processing of the MD
collection [6, 12].

Thus, to efficiently answer queries over large XML repositories using an XML data
server, we need a precise definition of XML fragmentation and a high performance
environment, such as a cluster of PCs. This way, queries can be decomposed in sub-
queries which may run in parallel at each cluster node, depending on how the database
is fragmented. In this paper, we are interested in the empirical assessment of data frag-
mentation techniques for XML repositories. We formalize the main fragmentation al-
ternatives for collections of XML documents. We also contribute by defining the rules
that verify the correctness of a fragment definition. Our fragmentation model is formal
and yet simple when compared to related work. We consider both SD and MD reposito-
ries. To address the lack of information on the potential gains that can be achieved with
partitioned XML repositories, we present experimental results for horizontal, vertical
and hybrid fragmentation of collections of XML documents. The experiments were run
with our prototype named PartiX. Sketches of algorithms for query decomposition and
result composition are available at [3]. Our results show substantial performance im-
provements, of up to a 72 scale up factor compared to the centralized setting, in some
relevant scenarios.

This paper is organized as follows. In Section 2, we discuss related work. Section 3
presents some basic concepts on XML data model and query language, and formalizes
our fragmentation model. Section 4 shows the architecture of PartiX. Our experimental
results and corresponding analysis are presented in Section 5. Section 6 closes this work
with some final remarks and research perspectives.

2 Related Work

In this section, we briefly present related work. A more detailed discussion can be found
in [3]. Foundations of distributed database design for XML were first addressed in [8]
and [12]. Ma and Schewe [12] propose three types of XML fragmentation: horizontal,
which groups elements of a single XML document according to some selection crite-
ria; vertical, to restructure a document by unnesting some elements; and a special type
named split, to break an XML document into a set of new documents. However, these
fragmentation types are not clearly distinguished. For example, horizontal fragmenta-
tion involves data restructuring and elements projection, thus yielding fragments with
different schema definitions.

Our definition of vertical XML fragmentation is inspired in the work of Bremer and
Gertz [8]. They propose an approach for distributed XML design, covering both data
fragmentation and allocation. Nevertheless, their approach only addresses SD reposi-
tories. Moreover, their formalism does not distinguish between horizontal and vertical
fragmentation, which are combined in a hybrid type of fragment definition. They max-
imize local query evaluation by replicating global information, and distributing some
indexes. They present performance improvements, but their evaluation focuses on the
benefits of such indexes.

Different definitions of XML fragments have been used in query processing over
streamed data [7], peer-to-peer environments [1, 6], and Web-Service based scenarios
[2]. However, they either do not present fragmentation alternatives to SD and MD [6],
or do not distinguish between the different fragmentation types [1, 2, 6, 7]. In PartiX,
we support horizontal, vertical and hybrid fragmentation of XML data for SD and MD
repositories. Furthermore, we have implemented a PartiX prototype, and performed
several tests to evaluate the performance of these fragmentation alternatives. No work
in the literature presents experimental analysis of the query processing response time
on fragmented XML repositories.

3 XML Data Fragmentation

3.1 Basic Concepts

XML documents consist of trees with nodes labeled by element names, attribute names
or constant values. Let L be the set of distinct element names, A the set of distinct
attribute names, and D the set of distinct data values. An XML data tree is denoted by
the expression ∆ := 〈t, �, Ψ〉, where: t is a finite ordered tree, � is a function that labels
nodes in t with symbols in L ∪ A; and Ψ maps leaf nodes in t to values in D. The root
node of ∆ is denoted by root∆. We assume nodes in ∆ do not have mixed content; if
a given node v is mapped into D, then v does not have siblings in ∆. Notice, however,
that this is not a limitation, but rather a presentation simplification. Furthermore, nodes
with labels in A have a single child whose label must be in D. An XML document is a
data tree.

Basically, names of XML elements correspond to names of data types, described
in a DTD or XML Schema. Let S be a schema. We say that document ∆ := 〈t, �, Ψ〉
satisfies a type τ , where τ ∈ S, iff 〈t, �〉 is a tree derived from the grammar defined by
S such that �(root∆) → τ . A collection C of XML documents is a set of data trees. We
say it is homogeneous if all the documents in C satisfy the same XML type. If not, we
say the collection is heterogeneous. Given a schema S, a homogeneous collection C is
denoted by the expression C := 〈S, τroot〉, where τroot is a type in S and all instances
∆ of C satisfy τroot.

Figure 1(a) shows the Svirtual_store schema tree, which we use in the examples
throughout the paper. In this Figure, we indicate the minimum and maximum cardi-
nalities (assuming cardinality 1..1 when omitted). The main types in Svirtual_store are
Store and Item, which describe a virtual store and the items it sells. Items are associ-
ated with sections and may have descriptive characteristics. Items may also have a list
of pictures to be used in the virtual store, and a history of prices. Figure 1(b) shows the
definition of the homogeneous collections Cstore and Citems, based on Svirtual_store.

We consider two types of XML repositories, as mentioned in [17]. An XML repos-
itory may be composed of several documents (Multiple Documents, MD) or by a single
large document which contains all the information needed (Single Document, SD). The
collection Citems of Figure 1(b) corresponds to an MD repository, whereas the collec-
tion Cstore is an SD repository.

A path expression P is a sequence /e1/. . ./{ek | @ak}, where ex∈ L, 1 ≤ x ≤ k, and
ak∈ A. P may optionally contain the symbols “∗” to indicate any element, and “//”

Item

Code

Name

Description

Section

Release

Characteristics

PictureList Picture

Name

Description

ModificationDate

OriginalPath

ThumbPath

Description

PricesHistory PriceHistory Price

ModificationDate
1..n

1..n

0..n

0..1

0..1

Store Sections Section Code

Name
Items Item

1..n

1..n

Employees Employee 1..n

Item

Code

Name

Description

Section

Release

Characteristics

PictureList Picture

Name

Description

ModificationDate

OriginalPath

ThumbPath

Description

PricesHistory PriceHistory Price

ModificationDate
1..n

1..n

0..n

0..1

0..1

Store Sections Section Code

Name
Items Item

1..n

1..n

Employees Employee 1..n

(a) (b)

Citems := 〈Svirtual_store,
/Store/Items/Item〉,

Citems is MD

Cstore := 〈Svirtual_store, /Store〉,
Cstore is SD

Citems := 〈Svirtual_store,
/Store/Items/Item〉,

Citems is MD

Cstore := 〈Svirtual_store, /Store〉,
Cstore is SD

Fig. 1. (a) Svirtual_store schema (b) Specification of collections CStore and CItems

to indicate any sequence of descendant elements. Besides, the term e[i] may be used
to denote the i-th occurrence of element e. The evaluation of a path expression P in a
document ∆ represents the selection of all nodes with label ek (or ak) whose steps from
root∆ satisfy P . P is said to be terminal if the content of the selected nodes is simple
(that is, if they have domain in D). On the other hand, a simple predicate p is a logical
expression: p := P θ value | φv(P) θ value | φb(P) | Q, where P is a terminal
path expression, θ ∈ {=, <, >, �=,≤,≥}, value ∈ D, φv is a function that returns
values in D, φb is a boolean function and Q denotes an arbitrary path expression. In the
latter case, p is true if there are nodes selected by Q (existential test).

3.2 XML Fragmentation Techniques

The subject of data fragmentation is well known in relational [15] and object databases
[4]. Traditionally, we can have three types of fragments: horizontal, where instances
are grouped by selection predicates; vertical, which “cuts” the data structure through
projections; and/or hybrid, which combines selection and projection operations in its
definition. Our XML fragmentation definition follows the semantics of the operators
from the TLC algebra [16], since it is one of the few XML algebras [9, 10, 18] that
uses collections of documents, and thus is adequate to the XML data model defined in
Section 3.1. In [3], we show how fragment definitions in PartiX can be expressed with
TLC operators. In XML repositories, we consider that the fragmentation is defined over
the schema of an XML collection. In the case of an MD XML database, we assume that
the fragmentation can only be applied to homogeneous collections.

Definition 1. A fragment F of a homogeneous collection C is a collection represented
by F := 〈C, γ〉, where γ denotes an operation defined over C. F is horizontal if γ
denotes a selection; vertical, if operator γ is a projection; or hybrid, when there is a
composition of select and project operators.

(b)
F1good := 〈Citems, σcontains(//Desciption, “good”)〉
F2good := 〈Citems, σnot(contains(//Desciption, “good”))〉 (a)

F1CD := 〈Citems, σ/Item/Section=”CD”〉
F2CD := 〈Citems, σ/Item/Section≠”CD”〉

(c)
F1with_pictures := 〈Citems, σ/Item/PictureList〉
F2with_pictures := 〈Citems, σempty(/Item/PictureList)〉

Fig. 2. Examples of three alternative fragments definitions over the collection Citems

Instances of a fragment F are obtained by applying γ to each document in C. The
set of the resulting documents form the fragment F , which is valid if all documents
generated by γ are well-formed (i.e., they must have a single root).

We now detail and analyze the main types of fragmentation in XML. However, we
first want to make clear our goal in this paper. Our goal is to show the advantages of
fragmenting XML repositories in query processing. Therefore, we formally define the
three typical types of XML fragmentation, present correctness criteria for each of them,
and compare the performance of queries stated over fragmented databases with queries
over centralized databases.

Horizontal Fragmentation. This technique aims to group data that is frequently ac-
cessed in isolation by queries with a given selection predicate. A horizontal fragment F
of a collection C is defined by the selection operator (σ) [10] applied over documents in
C, where the predicate of σ is a boolean expression with one or more simple predicates.
Thus, F has the same schema of C.

Definition 2. Let µ be a conjunction of simple predicates over a collection C. The
horizontal fragment of C defined by µ is given by the expression F := 〈C, σµ〉, where
σµ denotes the selection of documents in C that satisfy µ, that is, F contains documents
of C for which σµ is true.

Figure 2 shows the specification of some alternative horizontal fragments for the
collection Citems of Figure 1(b). For instance, fragment F1good (Figure 2(b)) groups
documents from Citems which have Description nodes that satisfy the path expres-
sion //Description (that is, Description may be at any level in Citems) and that
contain the word “good”. Alternatively, one can be interested in separating, in different
fragments, documents that have/have not a given structure. This can be done by us-
ing an existential test, and it is shown in Figure 2(c). Although F1with_pictures and
Citems have the same schema, in practice they can have different structures, since
the element used in the existential test is mandatory in F1with_pictures. Observe that
F1with_pictures cannot be classified as a vertical nor hybrid fragment.

Notice that, by definition, SD repositories may not be horizontally fragmented, since
horizontal fragmentation is defined over documents (instead of nodes). However, the
elements in an SD repository may be distributed over fragments using a hybrid frag-
mentation, as described later in this paper.

Vertical Fragmentation. It is obtained by applying the projection operator (π) [16] to
“split” a data structure into smaller parts that are frequently accessed in queries. Observe
that, in XML repositories, the projection operator has a quite sophisticated semantics:
it is possible to specify projections that exclude subtrees whose root is located in any
level of an XML tree. A projection over a collection C retrieves, in each document of

(a)
F1items := 〈Citems, π/Item, {/Item/PictureList}〉
F2items := 〈Citems, π/Item/PictureList, {}〉

(b)
F1sections := 〈Cstore, π/Store/Sections, {}〉
F2section := 〈Cstore, π/Store, {/Store/Sections}〉

Fig. 3. Examples of vertical fragments definitions over collections Citems and Cstore

F1items := 〈Cstore, π/Store/Items, {} • σ/Item/Section=”CD”〉
F2items := 〈Cstore, π/Store/Items, {} • σ/Item/Section=”DVD”〉
F3items:=〈Cstore, π/Store/Items,{}•σ/Item/Section≠”CD”^ /Item/Section≠”DVD”〉
F4items:=〈Cstore, π/Store,{/Store/Items}〉

Fig. 4. Examples of hybrid fragments over collection Cstore

C (notice that C may have a single document, in case it is of type SD), a set of subtrees
represented by a path expression, which are possibly pruned in some descendant nodes.

Definition 3. Let P be a path expression over collection C. Let Γ := {E1, . . . , Ex} be
a (possibly empty) set of path expressions contained in P (that is, path expressions in
which P is a prefix). A vertical fragment of C defined by P is denoted F := 〈C, πP,Γ 〉,
where πP,Γ denotes the projection of the subtrees rooted by nodes selected by P , ex-
cluding from the result the nodes selected by the expressions in Γ . The set Γ is called
the prune criterion of F .

It is worth mentioning that the path expression P cannot retrieve nodes that may
have cardinality greater than one (as it is the case of /Item/PictureList/Picture,
in Figure 1(a)), except when the element order is indicated (e.g. /Item/PictureList/

Picture[1]). This restriction assures that the fragmentation results in well-formed
documents, without the need of generating artificial elements to reorganize the subtrees
projected in a fragment.

Figure 3 shows examples of vertical fragments of the collections Citems and Cstore,
defined on Figure 1(b). Fragment F2items represents the documents that contain all
PictureList nodes that satisfy the path /Item/PictureList in the collection Citems

(no prune criterion is used). On the other hand, nodes that satisfy /Item/PictureList

are exactly the ones pruned out the subtrees rooted in /Item in the fragment F1items,
thus preserving disjointness with respect to F2items.

Hybrid Fragmentation. The idea here is to apply a vertical fragmentation followed by
a horizontal fragmentation, or vice-versa. An interesting use of this technique is to nor-
malize the schema of XML collections in SD repositories, thereby allowing horizontal
fragmentation.

Definition 4. Let σµ and πP,Γ be selection and projection operators, respectively, de-
fined over a collection C. A hybrid fragment of C is represented by F := 〈C, πP,Γ • σµ〉,
where πP,Γ • σµ denotes the selection of the subtrees projected by πP,Γ that satisfy σµ.

The order of the application of the operations in πP,Γ •σµ depends on the fragmen-
tation design. Examples of hybrid fragmentation are shown in Figure 4.

3.3 Correctness Rules of the Fragmentation

An XML distribution design consists of fragmenting collections of documents (SD or
MD) and allocating the resulting fragments in sites of a distributed system, where each

collection is associated to a set of fragments. Consider that a collection C is decom-
posed into a set of fragments Φ := {F1, ..., Fn}. The following rules must be verified
to guarantee the fragmentation of C is correct:

– Completeness: each data item in C must appear in at least one fragment Fi ∈ Φ. In
the horizontal fragmentation, the data item consists of an XML document, while in
the vertical fragmentation, it is a node.

– Disjointness: for each data item d in C, if d ∈ Fi, Fi ∈ Φ, then d cannot be in any
other fragment Fj ∈ Φ, j �= i.

– Reconstruction: it must be possible to define an operator ∇ such that C := ∇Fi,
∀Fi ∈ Φ, where ∇ depends on the type of fragmentation. For horizontal fragmen-
tation, the union (∪) operator [10] is used (TLC is an extension of TAX [10]), and
for vertical fragmentation, the join (�
) operator [16] is used. We keep an ID in each
vertical fragment for reconstruction purposes.
These rules are important to guarantee that queries are correctly translated from

the centralized environment to the fragmented one, and that results are correctly recon-
structed. Procedures to verify correctness depend on the algorithms adopted in the frag-
mentation design. As an example, some fragmentation algorithms for relations guaran-
tee the correctness of the resulting fragmentation design [15]. Still others [14] require
use of additional techniques to check for correctness. Such automatic verification is out
of the scope of this paper.

Query Processing. By using our fragmentation definition, we can adopt a query pro-
cessing methodology similar to the relational model [15]. The query expressed on the
global XML documents can be mapped to its corresponding fragmented XML docu-
ments by using the fragmentation schema definition and reconstruction program. Then
an analysis on query specification versus schema definition can proceed with data lo-
calization. Finally global query optimization techniques can be adopted [10, 16].

Figure 5 sketches the query processing in PartiX. The overall idea is that PartiX
works as a middleware between the user application and a set of DBMS servers, which
actually store the distributed XML data. Information on data distribution is kept by Par-
tiX: when a query arrives, PartiX analyzes the fragmentation schema to properly split it
into sub-queries, and then sends each sub-query to its respective fragment. Also, PartiX
gathers the results of the sub-queries and reconstructs the query answer. Notice some
queries may involve a single fragment, and that in this case, no result reconstruction is

Fig. 5. Query Processing in PartiX

needed. In general, defining query rewriting and data localization is a complex research
issue, which can benefit from our formal fragmentation model. Yet, we leave such a
definition as future work. In the next section, we detail the PartiX architecture.

4 The PartiX Architecture

We propose an architecture to process XQuery queries in distributed XML data sets.
Our architecture uses DBMS with no distribution support, and applies our XML frag-
mentation model, shown in Section 3. The goal of this architecture, named PartiX, is to
offer a system which coordinates the distributed processing of XQuery queries. In our
distributed environment, a sequencial XML-enabled DBMS is installed at all nodes,
which are coordinated by PartiX. In this way, there is no need of buying a specific
distributed DBMS.

Generally speaking, PartiX intercepts an XQuery query before it reaches the XML
DBMS. PartiX analyzes the definition of the fragments and rewrites the query as sub-
queries accordingly (see details for horizontal fragmentation in [3]). Then, it sends these
sub-queries to the PartiX components installed in the corresponding DBMS nodes, and
collects the partial results. Our architecture is illustrated in the PartiX system, shown
in Figure 6. It is composed of three main parts: (i) catalog services, which are used to
publish schema and distribution metadata; (ii) publishing service for distributed XML
data; and (iii) distributed query service.

The XML Schema Catalog Service registers the data types used by the distributed
collections, while the XML Distribution Catalog Service stores the fragment definitions.
The Distributed XML Data Publisher receives XML documents from users, applies the
fragmentation that was previously defined to the collections, and sends the resulting
fragments to be stored in the remote DBMS nodes. XQuery queries are submitted to the
Distributed XML Query Service, which analyzes their path expressions and identifies
the fragments referenced in each query. It writes the sub-queries that are sent to the
corresponding DBMS nodes, constructs the result, and sends it to the user.

Our architecture considers that there is a PartiX Driver, which allows accessing
remote DBMSs to store and retrieve XML documents. This driver provides a uniform
communication interface between the PartiX modules and the XML DBMS nodes that

Fig. 6. PartiX Architecture

host the distributed collections. The PartiX driver allows different XML DBMSs to
participate in the system. The only requirement is that they are able to process XQuery.

The proposed architecture is implemented in a prototype of the PartiX system. We
have developed a PartiX driver to the eXist DBMS [13]. The Data Publisher inter-
prets loading scripts and stores the documents of a collection in the XML DBMSs. In
the PartiX prototype, we did not implement automatic query decomposition, and we
consider that data location is provided along with sub-queries. However, given a de-
composed query, the query service is capable of coordinating the distributed execution
of the sub-queries annotated with the location of the required data fragments.

In the next section we show a performance evaluation of queries over fragmented
repositories using PartiX.

5 Experimental Evaluation

This section presents experimental results obtained with the PartiX implementation for
horizontal, vertical and hybrid fragmentation. We evaluate the benefits of data fragmen-
tation for the performance of query processing in XML databases. We used a 2.4Ghz
Athlon XP with 512Mb RAM memory in our tests. We describe the experimental sce-
nario we have used for each of the fragmentation types: horizontal, vertical and hybrid,
and show that applying them in XML data collections have reduced the query process-
ing times.

We applied the ToXgene [5] XML database generator to create the Cstore and
Citems collections, as defined in Figures 1(a) and (b), and also a collection for the
schema defined in the XBench benchmark [17]. All of them were stored in the eXist
DBMS [13]. Four databases were generated for the tests: database ItemsSHor, with
document sizes of 2K in average, and elements PriceHistory and ImagesList with
zero occurrences (Figure 1(a)); database ItemsLHor, with document sizes of 80Kb in
average (Figure 1(a)); database XBenchVer, with the XBench collections, with docu-
ment sizes varying from 5Mb to 15Mb each; and database StoreHyb (Figure 1(a)), with
document sizes from 5Mb to 500Mb. Experiments were conducted varying the number
of documents in each database to evaluate the performance of fragmentation for differ-
ent database sizes (5Mb, 20Mb, 100Mb and 250Mb for all databases, and 500Mb for
databases ItemsLHor and StoreHyb). (Due to space restrictions, in this paper we show
only the results for the 250Mb database. The remaining results are available at [3].)
Some indexes were automatically created by the eXist DBMS to speed up text search
operations and path expressions evaluation. No other indexes were created.

Each query was decomposed in sub-queries (according to [3]) to be processed with
specific data fragments. When the query predicates match the fragmentation predicates,
the sub-queries are issued only to the corresponding fragments. After each sub-query
is executed, we compose the result to compute the final query answer [3]. The parallel
execution of a query was simulated assuming that all fragments are placed at different
sites and that the sub-queries are executed in parallel in each site. For instance, in Figure
7(a) with 8 fragments, we can have at most 8 sub-queries running in parallel. We have
used the time spent by the slowest site to produce the result. We measured the commu-
nication time for sending the sub-queries to the sites and for transmitting their partial
results, since there is no inter-node communication. This was done by calculating the

average size of the result and dividing it by the Gigabit Ethernet transmission speed. For
all queries we have measured the time between the moment PartiX receives the query
until final result composition.

In our experiments, each query was submitted 10 times, and the execution time
was calculated by discarding the first execution time and calculating the average of
the remaining results. We have measured the execution times of each sub-query. More
details on our experiments are available in [3].

Horizontal Fragmentation. For horizontal fragmentation, the tests were run using a set
of 8 queries [3], which illustrates diverse access patterns to XML collections, including
the usage of predicates, text searches and aggregation operations. The XML database
was fragmented as follows. The CItems collection was horizontally fragmented by the
“Section” element, following the correctness rules of Section 3.3. We varied the number
of fragments (2, 4 and 8) with a non-uniform document distribution. The fragments
definitions are shown in [3].

Figure 7(a) contains the performance results of the PartiX execution on top of
database ItemsSHor, and Figure 7(b) on database ItemsLHor, in the scenarios previ-
ously described. The results show that the fragmentation reduces the response time for
most of the queries. When comparing the results of databases ItemsSHor and Item-
sLHor with a large number of documents, we observe that the eXist DBMS presents
better results when dealing with large documents. This is due to some pre-processing
operations (e.g., parsing) that are carried out for each XML tree. For example, when us-
ing a 250Mb database size and centralized databases, query Q8 is executed in 1200s in
ItemsSHor, and in 31s in ItemsLHor. When using 2 fragments, these times are reduced
to 300s and 14s, respectively. Notice this is a superlinear speedup. This is very common
also in relational databases, and is due to reduction of I/O operations and better use of
machine resources such as cache and memory, since a smaller portion of data is being
processed at each site.

An important conclusion obtained from the experiments relates to the benefit of
horizontal fragmentation. The execution time of queries with text searches and aggre-
gation operations (Q5, Q6, Q7 and Q8) is significantly reduced when the database is
horizontally fragmented. It is worth mentioning that text searches are very common in
XML applications, and typically present poor performance in centralized environments,
sometimes prohibiting their execution. This problem also occurs with aggregation op-
erations. It is important to notice that our tests included an aggregation function (count)
that may be entirely evaluated in parallel, not requiring additional time for reconstruct-
ing the global result.

Another interesting result can be seen in the execution of Q6. As the number of
fragments increases, the execution time of Q6 increases in some cases. This happens
because eXist generates different execution plans for each sub-query, thus favoring the
query performance in case of few fragments. Yet, all the distributed configurations per-
formed better than the centralized database.

As expected, in small databases (i.e., 5Mb) the performance gain obtained is not
enough to justify the use of fragmentation [3]. Moreover, we concluded that the doc-
ument size is very important for defining the fragmentation schema. Database ItemsL-

(a) (b)

(c) (d)

Fig. 7. Experimental results for databases (a) ItemsSHor and (b) ItemsLHor - horizontal frag-
mentation; (c) XBenchVer - vertical fragmentation; (d) StoreHyb with and without transmission
times - hybrid fragmentation

Hor (Figure 7(b)) presents better results with few fragments, while database ItemsSHor
presents better results with many fragments.

Vertical Fragmentation. For the experiments with vertical fragmentation, we have
used the XBenchVer database and some of the queries specified in XBench [17], which
are shown in [3]. We have named them Q1 to Q10, although these names do not corre-
spond to the names used in the XBench document.

Database XBenchVer was vertically fragmented in three fragments:

– F1papers :=
〈
Cpapers, π/article/prolog

〉
,

– F2papers :=
〈
Catigos, π/article/body

〉
, and

– F3papers :=
〈
Cartigos, π/article/epilog

〉
.

Figure 7(c) shows the performance results of PartiX in this scenario. In the 5Mb
database, we had gains in all queries, except for Q4 and Q10 [3]. With vertical frag-
mentation, the main benefits occur for queries that use a single fragment. Since queries

Q4, Q7, Q8 and Q9 need more than one fragment, they can be slowed down by frag-
mentation. Query Q4 does not present performance gains in any case, except for a mi-
nor improvement in the 100Mb database [3]. We believe once more that some statis-
tics or query execution plan has favored the execution of Q4 in this database. In the
20Mb database, all queries presented performance gains (except for Q4), including Q10,
which had presented poor performance in the 5Mb database.

As the database size grows, the performance gains decreases. In the 250Mb database,
queries Q6, Q9 and Q3 perform equivalently to the centralized approach. With these
results, we can see that vertical fragmentation is useful when the queries use few frag-
ments. The queries with bad performance were those involving text search, since in
general, they must be applied to all fragments. In such case, the performance is worse
than for horizontal fragmentation, since the result reconstruction requires a join (much
more expensive than a union).

Hybrid Fragmentation. In the experiments with hybrid fragmentation, we have used
the CStore collection fragmented into 5 different fragments. Fragment F1 prunes /Store/
Items, while the remaining 4 fragments are all about Items, each of them horizontally
fragmented over /Store/Items/Item/Section. We call this database StoreHyb, and the set
of queries defined over it is shown in [3].

As we will see later on, the experimental results with hybrid fragmentation were
heavily influenced by the size of the returning documents. Because of this, we show the
performance results with and without the transmission times.

We consider the same queries and selection criteria adopted for databases ItemsSHor
e ItemsLHor, with some modifications. With this, most of the queries returned all the
content of the “Item” element. This was the main performance problem we have en-
countered, and it affected all queries. This serves to demonstrate that, besides a good
fragmentation design, queries must be carefully specified, so that they do not return un-
necessary data. Because XML is a verbose format, an unnecessary element may carry
a subtree of significant size, and this will certainly impact in the query execution time.

Another general feature we have noticed while making our tests was that the imple-
mentation of the horizontal fragment affects the performance results of the hybrid frag-
mentation. To us, it was natural to take the single document representing the collection,
use the prune operation, and, for each “Item” node selected, to generate an independent
document and store it. This approach, which we call FragMode1, has proved to be very
inefficient. The main reason for this is that, in these cases, the query processor has to
parse hundreds of small documents (the ones corresponding to the “Item” fragments),
which is slower than parsing a huge document a single time. To solve this problem, we
have implemented the horizontal fragmentation with a single document (SD), exactly
like the original document, but with only the item elements obtained by the selection
operator. We have called this approach FragMode2. As we will see, this fragmentation
mode beats the centralized approach in most of the cases.

When we consider the transmission times (FragModeX-T in Figure 7(e)), Frag-
Mode1 performs worse for all database sizes, for all queries, except for queries Q9, Q10
and Q11. Queries Q9 and Q10 are those that prune the “Items” element, which makes
the parsing of the document more efficient. Query Q11 uses an aggregation function
that presented a good performance in the 100Mb database and in larger ones. In the

remaining databases, it presented poor performance (5Mb database) or an anomalous
behavior (20Mb database) [3].

Notice the FragMode2 performs better, although it does not beat the centralized
approach in all cases. In the 5Mb database, it wins in queries Q3, Q4, Q5 and Q6, which
benefit from the parallelism of the fragments and from the use of a specific fragment.
As in the FragMode1, queries Q9 and Q10 always performs better than the centralized
case; query Q11 only looses in the 5Mb database.

As the database size grows, the query results also increase, thus increasing the total
query processing time. In the 20Mb database, query Q6 performs equivalently to the
centralized approach. In the 100Mb database, this also happens to Q3 and Q6. In the
250Mb database, these two queries perform worse than in the centralized approach.
Finally, in the 500Mb database, query Q4 also performs equivalently to the centralized
case, and the remaining ones loose.

As we could see, the transmission times were decisive in the obtained results. With-
out considering this time, FragMode2 wins in all databases, in all queries, except for
query Q11 in the 5Mb database. However, FragMode1 has shown to be effective in
some cases. Figure 7(e) shows the experimental results without the transmission times
(FragModeX-NT). It shows that hybrid fragmentation reduces the query processing
times significantly.

6 Conclusions

This work presents a solution to improve the performance in the execution of XQuery
queries over XML repositories. This is achieved through the fragmentation of XML
databases. We present a formal definition for the different types of XML fragments,
and define correctness criteria for the proposed fragmentation model. By specifying the
concept of collections of XML documents, we create an abstraction where fragment
definitions apply to both single and multiple document repositories (SD and MD). These
concepts are not found in related work, and they are fundamental to perform query
decomposition and result composition.

Our experiments highlight the potential for significant gains of performance through
XML fragmentation. The reduction in the time of query execution is obtained by intra-
query parallelism, and also by the local execution, avoiding scanning unnecessary frag-
ments. The queries executed by PartiX with the eXist DBMS present an estimated ex-
ecution time up to 72 times smaller (for horizontal fragmentation) when compared to
centralized executions. The PartiX architecture [3] is generic, and can be plugged to
any XML DBMS that process XQuery queries. This architecture follows the approach
of database clusters that have been presenting excellent performance results over rela-
tional DBMSs [11].

As future work, we intend to use the proposed fragmentation model to define a
methodology for fragmenting XML databases. This methodology could be used define
algorithms for the fragmentation design [18], and to implement tools to automate this
fragmentation process. We are also working on detailing algorithms to automatically
rewrite queries to run over the fragmented database.

Acknowledgements. The authors thank CNPq for partially funding this work. V. Braga-
nholo thanks FAPERJ and G. Ruberg thanks the Central Bank of Brazil for their sup-
port. The contents of this paper express the viewpoint of the authors only.

References

1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML documents
with distribution and replication. In SIGMOD, pages 527–538, 2003.

2. S. Amer-Yahia and Y. Kotidis. A web-services architecture for efficient XML data exchange.
In ICDE, pages 523–534, 2004.

3. A. Andrade, G. Ruberg, F. Baião, V. Braganholo, and M. Mattoso. Partix: Processing
XQueries over fragmented XML repositories. Technical Report ES-691, COPPE/UFRJ,
2005. http://www.cos.ufrj.br/~vanessa.

4. F. Baião, M. Mattoso, and G. Zaverucha. A distribution design methodology for object
DBMS. Distributed and Parallel Databases, 16(1):45–90, 2004.

5. D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. ToXgene: a template-based data
generator for XML. In WebDB, pages 621–632, 2002.

6. A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath lookup queries in P2P net-
works. In WIDM, pages 48–55, 2004.

7. S. Bose, L. Fegaras, D. Levine, and V. Chaluvadi. XPath lookup queries in p2p networks. In
WIDM, pages 48–55, 2004.

8. J.-M. Bremer and M. Gertz. On distributing XML repositories. In WebDB, 2003.
9. M. Fernández, J. Siméon, and P. Wadler. An algebra for XML query. In FSTTCS, pages

11–45, 2000.
10. H. Jagadish, L. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A tree algebra for

XML. In DBPL, pages 149–164, 2001.
11. A. Lima, M. Mattoso, and P. Valduriez. Adaptive virtual partitioning for olap query process-

ing in a database cluster. In SBBD, pages 92–105, 2004.
12. H. Ma and K.-D. Schewe. Fragmentation of XML documents. In SBBD, 2003.
13. W. Meier. eXist: Open source native XML database, 2000. Available at: http://exist.

sourceforge.net.
14. S. Navathe, K. Karlapalem, and M. Ra. A mixed fragmentation methodology for initial

distributed database design. Journal of Computer and Software Engineering, 3(4), 1995.
15. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1999.
16. S. Paparizos, Y. Wu, L. Lakshmanan, and H. Jagadish. Tree logical classes for efficient

evaluation of XQuery. In SIGMOD, pages 71–82, 2004.
17. B. Yao, M. Ozsu, and N. Khandelwal. Xbench benchmark and performance testing of XML

DBMSs. In ICDE, pages 621–632, 2004.
18. X. Zhang, B. Pielech, and E. Rundesnteiner. Honey, I shrunk the XQuery!: an XML algebra

optimization approach. In WIDM, pages 15–22, 2002.

