ActiveXQBE: A Visual Paradigm
for Triggers over XML Data

Daniele Braga!, Alessandro Campi?,
Davide Martinenghi?, and Alessandro Raffio!

L Politecnico di Milano
Dip. di Elettronica e Informazione
p-zza L. da Vinci 32, 20133 Milano, Italy
{braga,campi,raffio}@elet.polimi.it
2 Free University of Bozen/Bolzano
Faculty of Computer Science
p-zza Domenicani, 3, 39100 Bolzano, Italy
martinenghi@inf.unibz.it

Abstract. While XQuery is becoming a standard, the W3C is cur-
rently discussing the features of an update language for XML, and its
requirements. Therefore, time is ripe for designing and defining the lan-
guage features and extensions that are usually needed when updates are
supported: reaction policies to constraint violations, business rules, and
more. In the past years, several languages have been proposed for updates
as well as for triggers in XML, such as XUpdate and Active XQuery.

In this paper, we propose a visual approach to the formulation of active
rules building on XQBE, a graphical query language for XML data. Our
approach is motivated by the need to provide unskilled users with the
ability to express business rules in an intuitive fashion. Visual triggers
are then translated into statements that can be interpreted by query
engines.

1 Introduction

According to a well-known classification [6], data semantics can be represented
declaratively under the form of normative rules, constructive (or passive) rules,
and reactive (or active) rules.

Normative rules, also known as integrity constraints in the terminology of
databases, are properties that the data must always satisfy. In the context of
XML data, some forms of integrity constraints can be expressed through schema
definition languages, such as DTDs and XML Schema. Although some attempts
exist (e.g., [3]), a universally accepted paradigm for specifying general constraints
(in the sense of SQL assertions) still seems to be missing for XML.

Constructive rules (views in databases) allow one to specify how to derive
new data from data already available. Integrity constraints can also be expressed
in this form and, thus, evaluated as constructive rules. Again, there is no stan-
dard for the specification of constructive rules in XML, although some support

to views is intrinsically available in XQuery. The issues concerning the materi-
alization and maintenance of views in XML are discussed, for instance, in [1].

Finally, reactive rules specify how data should change depending on the cur-
rent state of the store and, possibly, on events.

The above rules eventually serve the purpose of formally specifying process
flows or business level requirements of the system to be described. According to
good design principles, these so-called business rules should be expressed as part
of the schema, so that the knowledge they carry is decoupled from the rest of the
application. Business rules are used to describe the operations and constraints
that apply to organizations. As such, they should be business owned and oriented
and should be specified in the easiest and most intuitive way, so as to appeal to
the broadest audience. Ideally, it should be possible to allow users to maintain
the rules without the intervention of an IT professional. In this regard, an intu-
itive visual paradigm can simplify the specification, via user-friendly interfaces,
of essential data management features and policies, such as queries and updates,
of requirements of compliance with data constraints, and of consistency repair-
ing actions that ought to take place upon violations of constraints. Complex
rules are best specified by domain experts, who, however, may lack knowledge
in data definition and manipulation languages. A number of applications can be
envisaged, where XML is already established as the de facto data representa-
tion model, e.g., in the medical domain, where health care professionals sharing
information stored in clinical records may need to impose constraints, say, on
treatments and compatibility between medicines and patients’ profiles.

The ActiveXQBE paradigm presented in this paper stands out from previous
attempts for incorporating a visual approach with an emphasis on usability and
intuitiveness, yet without heavily sacrificing generality and expressiveness. In
particular, to achieve these goals, we designed and propose the visual tool Ac-
tiveXQBE for the specification of active rules, building on XQBE [5], a graphical
query language for XML. XQBE as well as ActiveXQBE are based on annotated
trees, so as to adhere to the hierarchical nature of the XML data model. Both
XQBE and ActiveXQBE have a quite steep learning curve; although no formal
tests were performed, our experience with under-graduated students has shown
that a couple of lessons are enough to get acquainted with the visual paradigm.

Visual ActiveXQBE triggers can be translated into textual representations
to be executed by external rule engines. To this end, we provide an algorithm
for translating visual triggers into Active XQuery rules [4].

2 XQBE: a visual XML query language

XQBE (XQuery By Example) [5] is a graphical query language for XML de-
signed to be intuitive and capable of running on top of XQuery engines. XQBE
includes most of the expressive power of XPath, allows for arbitrarily deep nest-
ing of XQuery FLWOR expressions, supports the construction of new XML el-
ements, and permits to restructure existing documents. Figure 1 shows a query
reading “List books published by Addison-Wesley after 1991, including their year

www.bn.com/bib.xml <bib>
{ for $b in
doc ("www.bn.com/bib.xml")/
bib/book

where $b/publisher=
"Addison-Wesley"

and $b/@year>1991
return
<book year="{ $b/@year }">

publisher

> 1991 { $b/title }
O A </book> }
Addison-Wesley </bib>

Fig. 1. XQBE and XQuery versions of the same query

and title”. All XQBE queries have a vertical line in the middle, separating the
source part (on the left) from the construct part (on the right); both parts con-
tain labeled graphs that represent XML fragments and express properties of
such fragments: the source part specifies the properties of the XML data to be
included in the result, while the Construct Part describes the structure of the
result in terms of newly generated XML items, together with the projection of
the elements extracted from the source documents. The correspondence between
the components of the two parts is expressed by means of explicit binding edges
across the vertical line; these edges connect the nodes of the Source Part to the
nodes that will take their place in the output document. The paths that branch
out of a bound node in the Construct Part indicate which of its sub-items are
to be retained, thus “projecting” the node. All the XML elements in the Source
Part of the target documents are represented as labeled rectangles; attributes
are represented as black circles, with the attribute name on the arc between the
rectangle and the circle; PCDATA content is represented as an empty circle. At-
tribute and PCDATA nodes in the Source Part may be labeled, so as to express
conditions on the values they represent.

In Figure 1 the Source Part matches all the book elements with a year at-
tribute whose value is greater than 1991 and a publisher sub-element whose
PCDATA content equals “Addison-Wesley”. By means of a binding edge, the
selected books are sent to the Construct Part, where only the title and pub-
lication year are retained. Note the use of the triangular node to project the
entire fragment rooted in the title element. The binding edge between the book
nodes states that the query result shall contain as many book elements as those
matched in the Source Part. Rectangular nodes in the Construct Part represent
XML elements in direct correspondence with some XML data extracted from the
source documents (either by a direct binding or by projection and renaming).
Elements with no counterpart in the source documents are rendered by means
of trapezoidal nodes, such as the bib node in the Construct Part of the example.

somedoc xml e) f) \ g) \name h) i)
label \ O o -
Iabel Newly generated Containment piebel tiebel]
Yy & relationship Entire PCDATA Attributes Binding
edges

Elements Root elements elements ransitive
closure] fragments content

Join

Fig. 2. Summary of the core XQBE constructs

Other nodes allow one to express more complex queries with joins, aggregates,
sorting, negation and more. Figure 2 shows all the defined constructs. For a full
and formal description of the language, refer to [5].

3 ActiveXQBE

b) c)

Event target (tagged with operation type)
(tagged with event type)

x @

Delete element Stop

Fig. 3. Summary of the ActiveXQBE constructs

ActiveXQBE extends XQBE: while XQBE uses two regions to extract data
and construct results, ActiveXQBE uses three regions (Figure 3a):

S: the region on the left is the Source Part (S); the graphs in this region
locate the XML nodes on which the triggering events are defined, as well as
the conditions that apply to such nodes for the rules to be triggered. Any valid
XQBE source graph is allowed in S; besides, one (and only one) node in this
region must be tagged as the node on which the event occurs (the event node).
One action arrow can go out of a node and point to an element in the action
part A, described below.

C: the region on the right is the Construct Part (C); the trees contained in
this region, when present, define the constructed data structures to be inserted
into suitable documents (as defined by the third region 4); such insertions may
implement the actions of the active rules. If C is not empty, an action arrow
must connect the root of the tree in C and a node in A. Any regular XQBE
construction tree is allowed in C.

A: a new region, the Action Part (A) is placed below S and C, where the
action of the trigger is represented. ActiveXQBE supports different kinds of

<dept> <!ELEMENT dept

<budget>1000000</budget> (budget, manager, emp*)>
<manager> <!ELEMENT manager
<name>Smith</name> (name, salary, numOfEmps)>
<salary>10000</salary> <!ELEMENT emp (name, salary)>
<num0fEmps>9</num0fEmps> <!ELEMENT name (#PCDATA)>
</manager> <!ELEMENT numOfEmps (#PCDATA)>
<emp> <name>Jones</name> <!ELEMENT salary (#PCDATA)>
<salary>8000</salary> </emp>
</dept>

Fig. 4. An XML document and its DTD schema

actions: insertions, updates, deletions and denials. If the action is a denial of
the operation, a stop sign is placed in this region (Figure 3e). For the other
three kinds of action, a tree in A4 expresses the selection of the XML fragments
which must be affected. Such tree can be either rooted in a Root Element, or
in a Rectangular Element bound to a node in S. If the action of the rule is an
update or an insertion, then the target of the action is the node reached by the
action arrow (described below), which is tagged with the type of operation. If
the action is a deletion, then a red cross identifies the element to be deleted.
ActiveXQBE triggers can only perform one action, so at most one action arrow
can reach A, either originating from S or C.

Figure 3b shows the syntax for specifying the target of the event: a blue oval
surrounds the target node (which can be either an Element, an attribute or a
PCDATA node), and a tag specifies the type of event.

The syntax for actions is shown in Figure 3c, d, and e: an action arrow is used
to insert or update an element with data extracted from the original document,
or built on purpose. The arrow starts from the element to be inserted and reaches
the element that will be updated (or below which the new item will be inserted).
The tag on the arrow specifies the kind of action to be performed (insert-before,
insert-after®, update). A red cross is used to mark a node that must be deleted.
A stop sign is used to indicate that the event should be prevented. In other
words, if the trigger is evaluated before the event, then the action is stopped so
that the update that activates the trigger is not even executed; if the trigger is
evaluated after the event, then a rollback is performed that cancels the effect of
the event itself.

In order to describe our approach, we show some triggers that apply to an
XML data set exemplified in Figure 4.

Ezample 1 (Rollback).

As a first example, consider the trigger of Figure 5(a), which blocks insertion
of salaries greater than 40000$ to an employee. In this example the Construct
Part is empty, since there is no need to build any new elements; the symbol in
the action part states that the insertion is to be undone.

3 As in the XML update language proposal XUpdate [16], the “before” and “-after”
suffixes are to be interpreted with respect to the position of the pointed node.

g wwwcompany.comideps c S www.company.com/deps

O
200000

Fig. 5. (a) Trigger 1: denying too high salaries (b) Trigger 2: updating budget

The salary node is the subject of the event: as stated by the label attached
to the oval surrounding it, the trigger is evaluated after a salary node is inserted
as a child of emp. Then, the action (in this case, a rollback of the insertion) is
performed only when all the conditions of the source graph apply, i.e., only when
the value of the salary is greater than 40000$. Note that the trigger would also
be evaluated after the insertion, for instance, of an emp element, because a salary
sub-element would be inserted too.

Ezample 2 (Update).

The example of Figure 5(b) extends the previous one with the addition of
a condition and an action; in particular, when a salary greater than 40000% is
inserted for an employee belonging to a department with low budget (say, less
than 100000%), this budget is updated to 2000008.

Note that the dept element in the action part is bound to the dept element
in S: the binding edge toward the action part transfers the context from S, so,
when a high salary is set to an employee, only the budget of his department
is updated. The Construct Part of this trigger is used to build a new constant
value of 2000008, that is used to update the budget of the department by means
of an action arrow.

Ezample 8 (Adding complezity).

In Figure 6 we compare the newly inserted salary of an employee with the
manager’s salary. If the manager’s salary is lower, then the employee’s salary is
updated to be the same as the manager’s. The peculiarities of this trigger are
the join node used to compare salaries (the small rhombus in Figure 6) and the
action arrow, which comes from the Source Part. The Construct Part is unused.

Note that the action updates the newly inserted salary (i.e., the salary is
removed and inserted again). This causes the trigger to be evaluated again,
but the second time the comparison between salaries definitely fails, since the

S www.company.com/deps

(o]
=

insert
O

Fig. 6. Trigger 3: updating salary

contents of the elements selected by the paths emp/salary and manager/salary
are equal.

4 Graph translation algorithm

ActiveXQBE triggers are not interpreted by a specific engine; rather, they are
translated into Active XQuery triggers and evaluated by existing rule engines.

As with many declarative languages, there are many ways to express the same
operation in Active XQuery. Here we first define a canonical Active XQuery form
and then show how to translate an ActiveXQBE graph into such form. Note that
every well-formed ActiveXQBE graph can be translated into canonical Active
XQuery, while nothing can be stated about the contrary.

Active XQuery triggers comply with the following syntax:

1. CREATE TRIGGER Trigger-Name [WITH PRIORITY Signed-Integer-Number]
(BEFORE | AFTER) (INSERT|DELETE|REPLACE|RENAME) OF
XPathExpression (,XPathExpression)x*
[FOR EACH (NODE|STATEMENT)]
[XQuery-Let-Clauses]
[WHEN XQuery-Where-Clausel
DO XUpdate-UpdateOp

N

[o ¢, I ¢V)

The trigger can be divided into five main blocks: lines 1 and 3 are a sort of
header, where the name and priority* of the trigger are defined, as well as its
granularity®; line 2 describes the triggering event; in line 4 the variables useful
to express conditions and actions can be defined; line 5 contains the trigger

4 When the same event fires multiple rules, their actions are executed in priority order;
within the same priority level, an implicit creation order is followed. This behavior is
independent of ActiveXQBE, since it is enforced by the Active XQuery rule engine.

5 I.e., whether the trigger must react on a per-statement basis, or once for each node
affected by the event. In the latter case, the corresponding $new and $old variables
will be available.

conditions; line 6 describes the action to be performed when the rule is triggered,
which can either be an update statement written in XUpdate.

We say that a trigger is in canonical form when (a) the triggering event is
monitored for target nodes which are identified by a single path expression and
(b) the triggering conditions are expressed by stating the non-emptiness of node
sequences, defined by means of XQuery let-clauses. Any trigger can be expressed
in canonical form. We define the semantics (and perform the translation) of Ac-
tiveXQBE graphs in terms of canonical Active XQuery triggers. The translation
algorithm operates with the steps described below.

Source graph reduction. The first step is to locate and mark some nodes in
the source graph which are said to be relevant. These nodes are the event target
(the node on which the event occurs); the nodes with binding edges, both
towards the construct and the action part; the nodes involved in an action. A
variable will be generated for each such relevant node in the textual counterpart
of the trigger.

Variable generation. The event target represents the node on which the
event occurs and is implicitly associated to a variable named $new or $old,
according to the type of the event; this straightforwardly corresponds to the
notion of “transition data” in SQL triggers. This variable, available for use in any
part of the trigger, implicitly and automatically fixes the context of evaluation
for other expressions.

All the other relevant nodes will be associated to a variable by means of
suitable let clauses, which in turn can be used within other let-clauses, when-
conditions, and during action specification (see below). The construction of such
let clauses relies on topological analysis of the nodes surrounding the relevant
ones.

As the Source Part of an XQBE query is always a directed acyclic graph,
a partial order is implicitly defined over the set of relevant nodes. The nodes
are considered in an order which is compliant with such partial order (namely,
as encountered in a left-pre-ordered traversal that starts from the initial nodes,
considered in left-to-right order). Each relevant node is associated to a path ex-
pression which corresponds to a path in the graph. For the first nodes considered,
such path expression is rooted in one of the initial nodes (those corresponding to
root nodes in the XML documents). For the other nodes such paths are rooted
in the nearest ancestor chosen between the already considered relevant nodes
(which are all already bound to a variable). The selection conditions of the
XQuery statement that constitutes the body of the let clause associated to each
variable (namely: the conjuncts of a where clause) are generated considering all
the nodes reachable from the node currently under consideration, up to the not
yet visited relevant nodes. In other words, starting from each relevant node, a
set of conditions is generated, considering a subgraph that contains the current
relevant node and is limited by the other relevant nodes. Some of the considered
branches may have bifurcations at some point; in this case, an internal variable
is generated for the node with the bifurcation, which is local to one specific let

clause. Nodes with bifurcations, though, are not considered as relevant, and they
are not involved in any separated let-clauses.

WHEN clauses. All the conditions on the triggering of the rule, as rep-
resented by the query structures, have already been considered in the variable
generation process; therefore, the WHEN clause can be reduced to a conjunction
of non-emptiness statements over the node sequences returned by the previously
defined let-clauses. Note that only the conjunction of all these statements ensures
that all the conditions expressed in the Source Part will be correctly evaluated.

Action specification. The last part of the trigger is the action to be per-
formed. The Active XQuery language allows for any update language inside the
DO block. Here, we choose XUpdate.

If the action part of ActiveXQBE contains special directives, such as a ROLL-
BACK, the corresponding textual command is simply generated within the ac-
tion block. In general, when the action part contains a graph, an XUpdate vari-
able is generated to select the target elements; moreover, if the action is not a
deletion, another variable is generated to describe the elements to be inserted or
updated. These elements are obtained either from the source or the Construct
Part, based on the origin of the action arrow.

Figure 7 shows the trigger of figure 5(b) and its translation into Active
XQuery.

CREATE TRIGGER t
www.company.com/deps AFTER INSERT OF
S C doc(".
oc("...")/dept/emp/salary
5] FOR EACH NODE
let S$dept_s := (
for $dept in doc("...")/dept
where $dept/emp/salary = $new
return $dept)
let S$new_s := (
for $new in $new
where $new/text() > 40000
return $new)
let $budget_s := (
for $budget in $dept_s/budget
where $budget/text() < 100000
return $budget)
WHEN
not (empty ($dept_s)) AND
not (empty($new_s)) AND
not (empty ($budget_s))
Do (
<XUpdate:update select="$budget_s">
200000
</XUpdate:update>)

dept

AN

emp budget

o

< 100000

salary

after

> 40000

Fig. 7. An ActiveXQBE trigger and its Active XQuery translation

5 Related work

Querying XML documents content has been extensively studied within the data-
base and semi-structured data communities and, ultimately, within the W3C.

Once established, query languages have a natural extension in supporting content-
based updates or in extracting views of XML documents. XQuery has been ex-
tended to support updates as a result of a research work [20], and the first work-
ing draft on the XQuery Update Facility has been recently published®. XQuery
update operations include deletion, insertion, replacement and renaming of XML
data. The XUpdate language is described in [16]. An XQuery-based XML update
language is described in [19].

Active rules to enforce correctness of update operations and to automatically
maintain views over data have been extensively studied in database systems [9].
Several research projects have provided substantial contributions to the field of
active databases (e.g., Starburst [21], Hipac [15], Reach [8], Sentinel [10]).

Active XQuery [4], our target language, aims at emulating the trigger def-
inition and execution model of SQL3 with respect to the XML data model. It
builds on the XML update language and model defined in [20]. Other XML
trigger languages are XChange [7] and ECA rules for XML [2]. None of these
languages offers a graphical approach.

XQBE[5] comes after a long stream of research on visual and graph-based
languages, started many years ago with QBE [22]. The first graphical query
languages were G and G+ [13, 14]. Graphlog [12] is a direct descendant of G+.
A uniform notation for object databases where nodes represent objects and edges
represent relationships was used in Good [17]. A Good-like notation was used
by G-Log [18], a logic-based graphical language that allows one to represent and
query complex objects by means of directed labeled graphs. An evolution of this
language is XML-GL [11]. XQBE can be considered a successor of XML-GL,
albeit with several new features.

6 Conclusion

In this paper we presented a framework for the visual specification of active
rules for XML data. We showed that ActiveXQBE is a suitable tool for visually
designing triggers in an intuitive fashion, as was demonstrated through a number
of examples. These triggers can then be translated to Active XQuery and, thus,
executed by implemented engines.

Among the possible future directions of research, we are studying the creation
of an XQBE-based tool, to be integrated with ActiveXQBE, for the automatic
or semi-automatic generation of optimized versions of the visual triggers that
respond to given events and integrity constraints. Such tool would be designed
along the lines of optimization frameworks for integrity constraints in deductive
databases, but based on graph grammars to define rewrite rules for graphs.

6 http://www.w3.org/TR/2006/ WD-xqupdate-20060127/

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and Janet L.
Wiener. Incremental maintenance for materialized views over semistructured data.
In VLDB, pages 38-49, 1998.

. James Bailey, Alexandra Poulovassilis, and Peter T. Wood. Analysis and optimi-

sation of event-condition-action rules on xml. Computer Networks, 39(3):239-259,
2002.

Michael Benedikt, Glenn Bruns, Julie Gibson, Robin Kuss, and Amy Ng. Auto-
mated Update Management for XML Integrity Constraints. In PLAN-X, 2002.
A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active xquery. In Proc. of the 18th
ICDE, IEEE Computer Society Press, San José, California, Feb. 2002.

D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By Example): a visual interface
to the standard XML query language. ACM TODS, 30(2):398-443, 2005.
Frangois Bry and Massimo Marchiori. Ten theses on logic languages for the se-
mantic web. In W8C WS on Rule Languages for Interoperability. W3C, 2005.
Francgois Bry and Paula-Lavinia Patranjan. Reactivity on the web: paradigms and
applications of the language xchange. In SAC, pages 1645-1649, 2005.

A. P. Buchmann, H. Branding, T. Kudrass, and J. Zimmermann. Reach: A real-
time, active and heterogeneous mediator system. IEEFE Data Eng. Bull., 15(1-
4):44-47, 1992.

S. Ceri, R.J. Cochrane, and J. Widom. Practical applications of triggers and
constraints: Successes and lingering issues. In VLDB, pages 254-262, 2000.

S. Chakravarthy, E. Anwar, and L. Maugis. Design and implementation of active
capability for an object-oriented database. Technical report, Univ. Florida, 1993.
S. Comai, E. Damiani, and P. Fraternali. Computing graphical queries over xml
data. ACM TOIS, 19(4):371-430, 2001.

M. P. Consens and A. O. Mendelzon. The g+ /graphlog visual query system. In
Proc. of the 1990 ACM SIGMOD, Atlantic City, NJ, May 23-25, page 388, 1990.
I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language sup-
porting recursion. In Proc. of the ACM SIGMOD, pages 323-330, 1987.

I. F. Cruz, A. O. Mendelzon, and P. T. Wood. G+: Recursive queries without
recursion. In 2nd Int. Conf. on Expert Database Systems, pages 355—368, 1988.
U. Dayal, A. P. Buchmann, and S. Chakravarthy. Active Database Systems, chapter
The HiPAC Project, pages 177-205. Morgan Kauffmann, 1996.

Andreas Laux and Lars Matin. XUpdate working draft. Technical report, http:
//wuw.xmldb.org/xupdate, October 2000.

J. Paredaens, J. Van den Bussche, M. Andries, M. Gemis, M. Gyssens, I. Thyssens,
D. Van Gucht, V. Sarathy, and L. V. Saxton. An Overview of GOOD. SIGMOD
Record, 21(1):25-31, 1992.

J. Paredaens, P. Peelman, and L. Tanca. G-log a declarative graph-based language.
IEEE Trans. on Knowledge and Data Eng., 7(3):436-453, 1995.

Gargi Sur, Joachim Hammer, and Jerome Siméon. UpdateX - An XQuery-Based
Language for Processing Updates in XML. In PLAN-X 04, pages 40-53, 2004.

I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In ACM
SIGMOD, pages 413-424, 2001.

J. Widom.Thestarburst activedatabaserulesystem. IEEE TKDE, (4):583-595,1996.
Moshé M. Zloof. Query-by-example: A data base language. IBM Systems Journal,
16(4):324-343, 1977.

