
Context Consistency Management Using Ontology
Based Model �

Yingyi Bu, Shaxun Chen, Jun Li, Xianping Tao, and Jian Lu

National Laboratory for Novel Software Technology, Nanjing University
Nanjing City, P.R.China, 210093

byy@ics.nju.edu.cn,buyingyi@nju.org.cn

Abstract. Inconsistent contexts are death-wounds which usually result in context-
aware applications’ incongruous behaviors and users’ perplexed feelings, there-
fore the benefits of context-aware computing will become less believed. This
problem occurs in most sensor based applications due to the intrinsic drawbacks
of fallible physical sensors which can only detect some evidence of real world’s
situations rather than global views of them. In this paper, we extend ontology
based context modeling approach with some descriptive information added to
contexts, modify reasoners to support time information, bring in a context life-
cycle management strategy, establish a context exploitation mechanism, and pro-
pose an inconsistency resolution algorithm, fostering timely, exact and conflict-
free contexts. Besides, evaluations and a case study are carried out to attest our
design principles.

1 Introduction

Context-awareness which aims at decreasing people’s attentions to various computa-
tional devices is an attractive feature of pervasive computing paradigms. Context in-
forms both recognition and mapping by providing a structured, unified view of the
world in which the system operates [1]. However, context is different from knowledge
in traditional views because of its dynamic, transient, and fallible characteristics.

It is widely acknowledged that a good context model can lead to well designed
and easily understood context-aware applications. Recently emerging ontology based
context modeling approach [2][3][4] is an elegant solution towards context sharing,
reasoning and reusing. However, in practice, context-aware applications are so fragile
that their behaviors often make users bewildered, due to mismatching between contexts
in computer systems and contexts in real world. Concretely speaking, inconsistent con-
texts often appear in context-aware systems on account of failures from either physical
sensors or software infrastructures. For example, contexts like “Tom is giving a lecture”
and “Tom is talking to Jim on the Aisle” may appear at the same time. How do we know
which context is correct? Our previous work [5][6] focuses on context model and fu-
sion infrastructure design, but context management and conflict resolution are simply
considered so that applications based on the infrastructure are not so robust.

� This work is funded by NSFC (60233010, 60273034, 60403014), 973 Program of China
(2002CB312002), 863 Program of China (2005AA113160) and NSF of Jiangsu Province
(BK2002203, BK2002409).

2 Yingyi Bu et al.

Nevertheless, we find ontology based context model can largely facilitate incon-
sistency detection and resolution. In this work, we first extend ontology based context
model by adding some descriptive information such as time, frequency and state to con-
texts. Based on the context model, a context management device is established, which
not only aims at timely and accurate contexts but also facilitates inconsistency reso-
lution. Then, we design an inconsistency resolution algorithm to provide correct and
consistent contexts. Through experiments and an application case study, we find that
our modified approach is rather acceptable for fetching up those disadvantages in pre-
vious work and the quality of contexts is largely improved.

The rest of this paper is organized as follows. In Section 2, we discuss some related
work. The extended context model is presented in Section 3. Our context management
mechanism is proposed in Section 4. Section 5 introduces our context inconsistency
resolution algorithm CIR. The evaluations are given in Section 6. Section 7 presents a
case study to verify our design principles. Finally, we conclude in Section 8.

2 Related Work

In the past decade, many context-aware systems are developed both in research commu-
nities and industrial companies which all contribute a lot to context-aware computing.

Active Badge [7] is the earliest context-aware applications that redirects phone calls
based on people’s locations. Salber developed Context-Toolkit [8] which is a well de-
signed object-oriented framework supporting context-aware computing. Context Fabric
[9] is an infrastructure for building context-aware applications, which provides a con-
text specification language. Solar [10] is a middleware system that consists of various
information sources such as sensors, gathering physical or virtual context information,
together with filters, transformers and aggregators modifying context to offer the ap-
plication usable context information. CoBrA [11] is an agent-based architecture em-
ploying ontology based context model for smart room environments. SOCAM [4][3]
proposed an ontology based context model addressing context sharing, reasoning and
knowledge reusing, and built a service oriented middleware infrastructure for applica-
tions in a smart home. Cooltown [12] is a web based context-aware system. The COR-
TEX [13] project has built a context-aware middleware based on the Sentient Object
Model, in which there is an event-based communication mechanism supporting loose
coupling between sensors, actuators and application components. CASS [14] enables
developers to overcome the memory and processor constraints of small mobile com-
puter platforms with supporting a large number of low-level sensor and other context
inputs, and opens the way for context-aware applications configurable by users. Con-
text Cube [15] gives a good context management mechanism based on the techniques of
data warehousing and data mining. Siren [16] is a good real-time context-aware system
used in fire fighting domain. Sparkle [17] is a flexible platform to support context-aware
services with migrations on difference type of devices.

In previous systems and researches, many context modeling approaches are pro-
posed, either formal or informal, including key-value, object, XML, ER-UML, ontol-
ogy and so on [18]. Ontology based context model and reasoning mechanism proposed
in [2][4][3] displays its potential value for most non-time-critical applications. Kalyan

Context Consistency Management Using Ontology Based Model 3

[19] presented a hybrid context model based on multilevel situation theory and ontology
to handle complex user’s queries by creating simple entity specific situations and enable
efficient context reasoning. Strimpakou [20] built a well designed context management
architecture in distributed environments.

But none of the works above concern context conflict resolution in one compu-
tational node nor introduce their conflict resolution algorithm. Dey [21] gave a novel
solution for ambiguity resolution by user mediation, while Xu established a context con-
sistency management mechanism by providing a sophisticated architecture for inconsis-
tency detection and resolution [22], and using a well-designed incremental consistency
checking approach [23]. But differently, our intention is to resolve context ambiguity
automatically in software infrastructure layer. Although Myllymaki [24] proposed a
good solution for resolving conflicts in location information, the strategy is difficult to
be extended for inconsistency detection and resolution of various contexts.

In addition, our modifications of ontology based context model is totally different
from temporal databases [25] because we deal with time constraints during context
fusions upon ontology based model, and those time constraints are used in inconsistency
resolution .

3 pvCM−The Extended Context Model

3.1 Conceptual Model

Our modeling approach is still ontology based, but for convenient context management
and inconsistency resolution, some extensions are brought in. The extended context
model called pvCM consists of 2 parts: ontology and its instances(including both per-
sistent contexts and dynamic contexts). The ontology is a set of shared vocabularies
of concepts and the interrelationships among these concepts. Persistent contexts are
instances of the ontology and they can be combined with dynamic contexts during in-
ferences. Triples described as (subject, predicate, object) are used to model persistent
contexts which can last a long period. For example, the context “Tim is a student” is
modeled as (Tim, type, Student). Dynamic contexts with transient characteristics only
have a short life in the system, such as “Jimmy in NJU”. Octuples (subject, predicate,
object, ttl, starttime, updatetime, frequency, state) are used to represent them. Ttl means
the life period of the context. “Starttime” is the UNIX time when the context begins
existing in the system while “updatetime” denotes the UNIX time when the context
is lately updated. A more important element of dynamic contexts is the “frequency”
value which indicates how many times the context is updated from its first appearance.
The “state” value describes contexts’ life status: “Beginning”, “Updated”, “Inert”, or
“Disappearing”, the details of which will be explained in Section 4.

3.2 Implementations

The ontology of pvCM is constructed by OWL-Lite1. Fig. 1 shows part of our ontology
for laboratory office domain. Persistent contexts are serialized in RDF2 files. For exam-

1 OWL reference: http://www.w3.org/TR/owl-ref
2 RDF reference: http://www.w3.org/TR/rdf-ref

4 Yingyi Bu et al.

Entity

Computer

PlaceBandWith Furniture

WebSite

ServiceOrganizationPerson

PhysicsEntity
ComputationalEntitySocialEntity

To
p-

le
ve

l o
nt

ol
og

y LocateIn
contains

workFor

doActivityTo

owns

owns

Th
e

do
m

ai
n

on
to

lo
gy

The Laboratory Office Domain

Student

Teacher

Worker

Lab

Institute

Department Road

Building

Aisle

Chair

Desk

Room
OfficeRoom

ClassRoom

MeetingRoom

The application specific ontology

The Home Domain

Scheme

shemeSubjectschemeObject

schemeLocation

String

DateTime

schemeActity
schemeTime

objectProfile

dataProfile

String

inherit property class

behaveWith

Fig. 1: Part of Our Ontology

ple, persistent context triple (Tom, type, Teacher) is a piece of RDF file like Fig. 2. Dy-
namic contexts are messages containing both RDF messages and other descriptive infor-
mation. Dynamic context octuple (Tom, giveLecture, Room305, 15s, 116943354000,
116943388123, 2, Updated) is implemented like Fig. 3. This means context “Tom gives
a lecture in Room305” is updated for the 2nd time at the UNIX time 116943588123,
and if it doesn’t be updated in the next 15 seconds, its state will become “Inert”.

Fig. 2: The Serialized Format of
A Persistent Context

Fig. 3: The Serialized Format of
A Dynamic Context

4 Context Management Mechanism

4.1 Context Reasoning

For reasoning high-level semantic contexts, we apply rule based reasoning and ontology
based reasoning orderly on low-level contexts. The rules for reasoning are just horn

Context Consistency Management Using Ontology Based Model 5

clauses for the consideration of system performance. Whereas the process is similar to
[3], some significant improvements are brought in.

Firstly, time information is added to high-level contexts during inferences because
this information is obviously important toward timely and accurate contexts. But how
do we know exactly the starttime, updatetime and ttl value of each high-level inferred
context? There are only intersection operations among a horn clause formed rule’s an-
tecedents without negation and union operations so that if a premise context become
demoded, the inferred context should also correspondingly disappear from the sys-
tem. Therefore, an approximate approach is implemented. When a high-level context
contexti is inferred by raw contexts and a rule, we select the earliest dying one which
has the smallest value of ttl plus updatetime from contexti’s premises corresponding
with the rule, and finally set the contexti’s ttl and updatetime the same as the selected
one. The default starttime, state and frequency of contexti are respectively set as its
updatetime, “Beginning” and 1.

Secondly, the two reasoners are configured as traceable. Because derivation infor-
mation is often needed for both judging which contexts will be discarded during incon-
sistency resolution and preventing future conflicts, the reasoning process is stored in the
memory until a inconsistency resolution algorithm is performed.

Rule Reasoner

R

Ontology Reasoner
R

Dynamic low-level contexts

(Tom,behaveWith, Jim, 20, 1116943567510,
1116943567510, 1, Beginning) OR4

produced by R1,O1

(Room311,type,MeetingRoom)P5
Produced by O4,P4

(lectureDesk31, type, LectureDesk)P3

(Tom, type, Student)P2

(Room311, locateIn, BuildingM)P1

Ontology
(talkWith, subPropertyOf, behaveWith)O1

(talkWith, range, Person)O3

(locateIn, type, TransitiveProperty)O2

(Jim,type, Person, 20, 1116943567510,
1116943567510, 1, Beginning) OR3

produced by R1,O3

(Jim,locateIn,BuildingM,20, 1116943567590,
1116943567590, 1, Beginning) OR2

produced by D2,O2,P2

(Tom,locateIn,BuildingM,20,1116943567510,
1116943567510, 30, Updated) OR1

produced by D1,O2,P2

(Tom, talkWith, Jim, 20, 1116943567510,
1116943567510, 1, Beginning) R1
produced by TalkRule,D1,D2,D3

(Tom,giveLecture,Room311, 20, 1116943567510,
1116943567510, 1, Beginning) R2

produced by LectureRule,D4,P3,P4,R1

 (MeetingRoom, subClassOf, Room)O4

(Room311, type, MeetingRoom)P4

(Tom,locateIn,Room311,20,111694000700,
1116943567510, 30, Updated) D1

(Tom, sound,high,30, 11169435600340,
1116943567540, 2, Updated) D3

(Jim, locateIn, Room311,20, 1116943567590,
1116943567590, 1, Beginning) D2

(Tom, near, lectureDesk31, 40, 1116943357430,
1116943567550, 5, Updated) D4

Contexts Reasoned by ontology reasoner

Contexts Reasoned by rule reasoner
Persistent contexts

Fig. 4: Context Reasoning Example

An example of our modified reasoning flow is shown in Fig. 4. According to the
first modification, inferred context R1,R2,OR1, OR3, OR4’s ttl and updatetime are set
the same as D1, the similar processes are applied on high-level contexts OR2.

6 Yingyi Bu et al.

4.2 Context Lifecycle Management

In our prototype, an enhanced context lifecycle management strategy is carried out for
every dynamic context. As described in Section 3, dynamic contexts have 4 life states:
“Beginning”, “Updated”, “Inert”, and “Disappearing”. “Beginning” denotes the context
is newly generated and no other replicas already exist in the system. “Updated” means
the context has been refreshed recently. The design consideration for state “Inert” is to
have those contexts which are existing in the real world but delayed in computer sys-
tems accidently due to either weakening of sensors’ physical signals or bottlenecks of
software infrastructures live for a little while. “Disappearing” means the context dis-
appears in computer’s view and will be discarded after a short period. It is obvious
that using lifecycle states can make computers’ contexts more timely and accurate so
as to largely approximate real world contexts. Another intention for employing context
lifecycle is that applications needs contexts depending on not only their contents but
also their life status, for example, an application may open slides at the beginning of
a seminar(exploiting beginning contexts) while close the slide at the end of the semi-
nar(requiring disappearing contexts).

The 9 context life state transitions in the system are shown in Fig. 5. Transition 0, 1,
3, 5 and 8 are invoked for the reason that there are new contexts generated, either low-
level ones from sensors or high-level ones from reasoning. The pseudocode for those
transitions is shown as follow.

a new context contextnew is generated.
if ∃ contexte in memory, contexte has the same S-P-O triple with contextnew

if contexte.state == “Disappearing”
contextnew substitute contexte
(Transition 8 is performed)

else
contexte.state =“Updated”,
contexte.updatetime = contextnew.updatetime
contexte.frequency = contexte.frequecny + 1
discard contextnew

(Transition 1 or 3 or 5 is performed)
else

add contextnew into memory,
(Transition 0 is performed)

A background thread runs periodically to tick the life period for every live context.
When a “Beginning” or “Updated” context contexti’s ttl is no more than zero, its state
turns to “Inert” (transition 2 or 4). After a fixed time, if contexti is still not refreshed, it
will become “Disappearing” and removed to historical context storage (transition 6 and
7). We store demoded contexts in persistent storage rather than discard them because
historical contexts may be useful for various applications.

In practice, we found that using this lifecycle management can greatly abridge the
gap between computers’ contexts and real world’s . Besides, context exploitation will
become easier and more unambiguous.

Context Consistency Management Using Ontology Based Model 7

Beginning

Inert

Disappearing Historical
Contexts

(1)

(5)
(3)

(6)(4)

(2)Updated
(7)

(0)

(8)

Fig. 5: State Transitions of Dynamic Contexts

4.3 Context Exploitation

Context Query. In our prototype system, we use RDQL3 as context query language.
But we extend RDQL for the particular features of contexts. Applications can query
contexts by specifying a RDQL sentence with a state of contexts. For instance, we can
use sentence “select ?x where (?x giveLecture Room311)(?x Type Teacher), Beginning”
to search if there is a teacher who begins giving a lecture in Room311. Also, we can
look up historical contexts conveniently by attaching time ranges to RDQL sentence.

Context Callback. Applications can exploit contexts not only by querying but also
by registering callbacks. However, context callback mechanism should be much dif-
ferent from conventional event-callback mechanisms due to particularity of contexts.
Contexts are varied with time and callbacks must exactly match to real world’s re-
quirements. For example, if a context-aware application’s function is to open slides for
lecturers automatically, with a badly designed callback mechanism, the application may
open the slides more than once so that users are confused. Focusing on this, we invokes
callbacks after every inferences and time tick, and use a replica pool to store consumed
context for every applications respectively. When the callback is being invoked, the sys-
tem check each replica pool and do not call those stored consumed contexts’ callback
function. Unless those consumed contexts have some changes, they will not be cleared
out of every replica pool. This device embraces the particularity of contexts and leads
to jarless applications in practice. The view of callback architecture is shown in Fig. 6.

5 Context Inconsistency Resolution

5.1 Conflict Detection

For inconsistency resolution, the first step is to detect conflicts. Ontology based context
model can largely facilitate conflict detection. For example, if there are 2 dynamic con-
texts: d1(Tom, giveLecture, Room311, 15s,1116943120489, 1116943567511, 10, Up-
dated) and d2(Tom, giveLecture, Aisle3, 25s, 1116943111897, 1116943567599, 1, Be-
ginning), 2 persistent contexts: p1(Room311, type, Room) and p2(Aisle3, type, Aisle),

3 RDQL tutorial: http://jena.sourceforge.net/tutorial/RDQL/index.html

8 Yingyi Bu et al.

app5app4app3app2

Fig. 6: The Callback Architecture

and 2 assertions in ontology: o1(Room, disjointWith, Aisle) and o2(giveLecture, type,
FunctionalProperty), a conflict will be detected in ontology model because there is an
instance of both Room and Aisle. However, d1’s derivations and d2’s usually implicitly
conflict, therefore we need to find their derivations and resolve them completely in or-
der to prevent future conflicts. Most semantic web APIs support conflict detection like
that, and a validity report which indicate all first-hand conflicting pairs such as (d1, d2)
will be easily obtained.

5.2 Several Definitions

Conflict pair set. A set consisting of pairs such as (contexta,contextb) that contexta
conflicts with contextb is a conflict pair set.

Conflict set. Imaging a context set ContextSet, if its members are conflicting with
each other, we call ContextSet a Conflict set.

Derivation. If contexta is a premise of high-level contextb, then we call contexta
is one of contextb’s Derivation. Furthermore, the relationship of Derivation is transitive
and reflexive.

Derivation set. All of contextc’s Derivations compose a set called contextc’s Deriva-
tion Set.

Relative frequency−rf . A formula that calculates the rf value of a context contexti

is shown as follow.

contexti.rf =




contexti.ttl · contexti.frequency

currenttime − contexti.starttime
(for dynamic contexts)

infinite
(for persistent contexts)

Context Consistency Management Using Ontology Based Model 9

5.3 CIR−Context Inconsistency Resolution Algorithm

The CIR(Context Inconsistency Resolution) algorithm is shown below.

1. Initialize
1). obtain a firsthand conflict pair set CFS from conflict detection results.
2). for every pair (a,b) ∈ CFS

add both a and b into set allContext
3). for every contexti ∈ allContext

a. Construct its derivation set derivationsi

b. Construct dynamicderivationsi which only contains dynamic contexts
in derivationsi

2. Discard Contexts
while there are conflicts in allContext

1). partition allContext into several maximum
conflict sets.

2). for every conflict set conflicts
select a context contextmax with largest rf .
for every contexti ∈ conflicts (i �= max)

for every contextj ∈ dynamicderivationi

if ∃k,i �= k, contextj ∈ dynamicderivationk

reserve contextj
else

discard contextj
delete dynamicderivationi

Our design principle is that more frequent dynamic contexts are prior. However,
different sorts of contexts are hard to compare their frequencies. For example, voice
contexts may be inherently varied more frequently than temperature contexts, but we
can’t say that voice contexts have more priorities. Due to this reason, we use the rf
value to measure each context’s relative frequency because ttl value may often imply
the context is inherently frequent or infrequent. We believe that those contexts with
larger rf value emerge more relatively frequently recently, therefore they are more
possible to be correct contexts. Also, persistent contexts are ensured to be consistent
when they are been deployed to the platform so that they are always reserved.

It is ensured that after the algorithm, there is no conflict existing in the context
repository. The step of partitioning allContext uses a greedy algorithm, in which we
begin to search from a random element, and form a maximum conflict set circularly
until the partition is completely formed. Although the worst case time complexity of
CIR is polynomial with the number of total contexts, we found in experiments that it is
still such an expensive task that we can only run it periodically.

5.4 Example

Fig. 7 shows an example of the inconsistency resolution algorithm. In the example, we
have two conflict sets: conflict set A and conflict set B. We first resolve conflicts for

10 Yingyi Bu et al.

A, and then for B. Assume that in A, context1, context2, context3 and context4 are
ordered by their rf value increasingly. After A is resolved by the algorithm, there are 3
contexts−context4, contextD4, contextD6 left.

Fig. 7: An Example of the Inconsistency Resolution

6 Evaluations

During implementations, the semantic web API we choose is Jena2.24, the rules are in
the form of Jena Generic Rules, and the ontology reasoner we used is entailed by OWL-
Lite. We have modified Jena source code by adding time information to triples during
reasoning, as described in section 4. The performance and effect of CIR algorithm are
evaluated by 2 experiments.

First, we test the performance of CIR on a Linux Workstation with 4G RAM and 2
Xeon CPUs, and find that the efficiency is decreasing proportionally to the increasing
of total contexts in memory. At the level of 1000−2000 contexts, the time used is 1.5
seconds−2.0 seconds, but at the level of 3000-4000, about 6 seconds are needed.

Second, for evaluating the effect of CIR, another experiment is designed. There are
3 computers involved, one Linux workstation with 4G RAM and 2 Xeon CPUs and two
PC clients, connecting through LAN. The meeting room and aisle for the experiment
are equipped with mica sensors5 to detect noise and cricket sensors6 to find persons’
locations. One of the clients plays the role of raw context provider while the other acts
as context consumer. In the experiment, a person adorning a cricket beacon stands in
a meeting room to act as giving a lecture, and during this, he/she goes out to the aisle
with immediately coming back to the meeting room at different frequencies which vary
from 10s once to 40s once at the step of 5s (horizontal axis in Fig. 8), and maintains
each frequency for 10 minutes. This activity can lead to many context conflicts among

4 Jena2 Semantic Web Toolkit: http://www.hpl.hp.com/semweb/jena2.htm
5 The Mica Sensor: http://www.xbow.com
6 The Cricket indoor location system: http://cricket.csail.mit.edu/

Context Consistency Management Using Ontology Based Model 11

high-level contexts in the system because two raw context triples: (personx, locateIn,
MeetingRoomx) and (personx, locateIn, Aislex) are obtained. Meanwhile, the con-
text consumer client continues querying contexts 10 times a minute to see the prob-
ability of context correctness(vertical axis in Fig. 8). In this way, for every going out
frequency, 100 samples about context quality can be gained. It is apparent that with the
decreasing of the person’s going out frequency, the incorrectness and inconsistency of
contexts will decline. For comparing the effect with other solutions, 3 configurations of
the context fusion infrastructure are carried out respectively: without any inconsistency
resolution(without IR), with a simplistic resolution strategy that later updated and per-
sistent contexts are prior(with SIR), with our proposed algorithm CIR(with CIR). The
results are shown in Fig. 8.

Fig. 8: Effect Analysis of the Inconsistency Resolution

Hence, although CIR is a computational intensive task, it is still necessary to run pe-
riodically. Although there are only 2 types of sensors used in the experiments, our archi-
tecture and algorithm can suit to more sensor types without modifications because they
are designed for semantic contexts rather than physical sensors. And the only thing we
need to do is to add specific raw context providers when new sensor types are brought
in.

7 Application Case Study

7.1 Scenario

In research groups, seminars are often held. When someone gives a lecture, he/she
should copy the slides to his/her flash disk, carry it to the meeting room, copy the

12 Yingyi Bu et al.

slides to the computer in the meeting room, and then open them. The work is dull and
trivial, and many of people’s attentions are consumed. In our context-aware computing
environment, the lecturer needs to do nothing other than edit his/her lecture notes. When
he/she enters the meeting room, and stands near the lectern, his/her slides will be opened
automatically. During the seminar, if some strangers come in, a warning balloon will
pop up on the screen. At the end of the seminar, the slides will be closed automatically.

7.2 Implementation

We implement two versions of the scenario, one of which is based on our context man-
agement mechanism(with CIR), the other of which is based on an earlier version which
employs a simplistic inconsistency resolution strategy that later updated and persistent
contexts are prior(with SIR).

The application called Seminar Assistant has two parts. One called User Assistant
runs at all users’ computers while the other called Meeting Assistant runs at the com-
puter in the meeting room. When the User Assistant detects the context that the user it
serves will give a lecture in the next few days, it will upload the slides he has edited re-
cently, the name of which matches the lecture to an http server. When the lecturer starts
to give the lecture in the meeting room, the Meeting Assistant will obtain the right
context, and then download and open the previous uploaded slides. Then the Meeting
Assistant starts detecting if strangers come in. When the Meeting Assistant detects the
context that the lecturer leaves the room, it will close the slides. In this application,
we’ve used the in-door location sensor Cricket to detect a person’s location in a room,
and also the Mica sensor to detect the noise in a room. Fig. 9 shows the runtime action
of Seminar Assistant when a stranger comes into the meeting room during a seminar(a
warning balloon is popped up). Part of the context reasoning process for this example
is already shown in Fig. 4.

Fig. 9: The Runtime Effect of Seminar Assistant

Context Consistency Management Using Ontology Based Model 13

7.3 Application Error Rate Comparison

We compare the two versions of “Seminar Assistant” by investigating their average er-
ror rates. Since both of the applications are very small, they are debugged exhaustively
before our error rate comparison so that most errors occurring in the comparison should
attribute to context mismatching. For the comparison, we run the two applications re-
spectively for 20 days, use them according to the scenario for 400 times(20 times each
day), and record the error rates of each day. In the experiments, all the errors recorded
are application’s incongruous behaviors such as opening the slides before the reporter
entering the meeting room, and system failures such as out of memory error are not
included. Fig. 10 shows the results, in which the horizontal axis denotes the day while
the vertical axis denotes the error rate. It can be concluded from the experiment results
that our context consistency management mechanism(with CIR) has largely improved
context-aware applications’ robustness since over 50 percent incongruous behaviors are
reduced(from 33 errors of 400 to 16 errors of 400).

Fig. 10: Error Rate Comparison of The Two Versions

8 Conclusions and Future Work

With experiences of developing context-aware applications, we find that the inconsis-
tency of contexts is a serious problem which can threaten the prevalence of context-
aware computing. Aiming at this problem, we propose an extended ontology based
context model called pvCM, establish a context management mechanism and design an
inconsistency resolution algorithm. Through the evaluations and case study, the ne-
cessity and feasibility of our design principles are verified. The work of this paper

14 Yingyi Bu et al.

is part of our ongoing research project−FollowMe [6] which is designed towards a
workflow-driven, service-oriented, pluggable and programmable software infrastruc-
ture for context-awareness.

In the near future, we plan to explore novel approaches to improve runtime per-
formances of context reasoning, using technologies such as distributed context fusion
and so on. Also, we are working towards a better inconsistency resolution approach in
which context conflicts are resolved during the reasoning process, with sophisticated
reasoning technologies.

References

1. Joelle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Context is key. Com-
munications of ACM, 48(3):49–53, 2005.

2. Harry Chen, Timothy W. Finin, Anupam Joshi, Lalana Kagal, Filip Perich, and Dipanjan
Chakraborty. Intelligent agents meet the semantic web in smart spaces. IEEE Internet Com-
puting, 8(6):69–79, 2004.

3. Xiaohang Wang, Jin Song Dong, ChungYau Chin, SankaRavipriya Hettiarachchi, and
Daqing Zhang. Semantic space: An infrastructure for smart spaces. IEEE Pervasive Com-
puting, 3:32–39, July-September 2004.

4. Tao Gu, H. K. Pung, and Da Qing Zhang. Towards an osgi-based infrastructure for context-
aware applications in smart homes. IEEE Pervasive Computing, December 2004.

5. Yingyi Bu, Jun Li, Shaxun Chen, Xianping Tao, and Jian Lu. An enhanced ontology based
context model and fusion mechanism. In Proceedings of IFIP 2005 International Conference
on Embedded and Ubiquitous Computing (EUC2005). Nagasaki, Japan., volume 3824 of
LNCS, pages 920–929. Springer, 2005.

6. Jun Li, Yingyi Bu, Shaxun Chen, Xianping Tao, and Jian Lu. Followme: On research of
pluggable infrastructure for context-awareness. In Proceedings of the 20th International
Conference on Advanced Information Networking and Applications (AINA2006), volume 1,
pages 199–204. IEEE Computer Society, 2006.

7. Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The active badge location
system. ACM Transactions on Information Systems, 10(1):91–102, 1992.

8. Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: Aiding the devel-
opment of context-enabled applications. In Proceeding of the CHI 99 Conference on Human
Factors in Computing Systems: The CHI is the Limit (CHI99), Pittsburgh, PA, USA. ACM,
1999, pages 434–441, 1999.

9. Jason I. Hong and J.A. Landa. An infrastructure approach to context-aware computing.
Human-Computer Interaction (HCI) Journal, 16, 2001.

10. Guanlin Chen. Solar: Building a context fusion network for pervasive computing. Ph.D.
Thesis. Dartmouth College, August 2004.

11. Harry Chen, Timothy W. Finin, and Anupam Joshi. Semantic web in the context broker
architecture. In Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications (PerCom 2004), 14-17 March 2004, Orlando, FL, USA,
pages 277–286, 2004.

12. Tim Kindberg and John J. Barton. A web-based nomadic computing system. Computer
Networks, 35(4):443–456, 2001.

13. Gregory Biegel and Vinny Cahill. A framework for developing mobile, context-aware ap-
plications. In Proceedings of the Second IEEE International Conference on Pervasive Com-
puting and Communications (PerCom 2004), 14-17 March 2004, Orlando, FL, USA, pages
361–365. IEEE Computer Society, 2004.

Context Consistency Management Using Ontology Based Model 15

14. Fahy P. and Clarke S. Cass: Middleware for mobile context-aware applications. In ACM
MobiSys Workshop on Context Awareness, Boston, USA, 2004.

15. Lonnie D. Harvel, Ling Liu, Gregory D. Abowd, Yu-Xi Lim, Chris Scheibe, and Chris
Chatham. Context cube: Flexible and effective manipulation of sensed context data. In Pro-
ceedings of the Second International Conference on Pervasive Computing(Pervasive 2004),
Vienna, Austria, volume 3001 of LNCS, pages 51–68. Springer, 2004.

16. Xiaodong Jiang, Nicholas Y. Chen, Jason I. Hong, Kevin Wang, Leila Takayama, and
James A. Landay. Siren: Context-aware computing for firefighting. In Proceedings of The
Second International Conference on Pervasive Computing(PERVASIVE2004), Vienna, Aus-
tria, pages 87–105, 2004.

17. Pauline P. L. Siu, Nalini Moti Belaramani, Cho-Li Wang, and Francis C. M. Lau. Context-
aware state management for ubiquitous applications. In Proceedings of International Con-
ference on Embedded and Ubiquitous Computing, pages 776–785, 2004.

18. T. Strang and C. Linnhoff-Popien. A context modeling survey. In Workshop on Advanced
Context Modelling, Reasoning and Management as part of UbiComp 2004 - The Sixth Inter-
national Conference on Ubiquitous Computing, September 2004.

19. Anupama Kalyan, Srividya Gopalan, and V. Sridhar. Hybrid context model based on mul-
tilevel situation theory and ontology for contact centers. In Proceedings of the 3rd IEEE
Conference on Pervasive Computing and Communications Workshops (PerCom 2005 Work-
shops), 8-12 March 2005, Kauai Island, HI, USA, pages 3–7. IEEE Computer Society, 2005.

20. Maria Strimpakou, Ioanna Roussaki, Carsten Pils, Michael Angermann, Patrick Robertson,
and Miltiades E. Anagnostou. Context modelling and management in ambient-aware per-
vasive environments. In Proceedings of First International Workshop on Location- and
Context-Awareness (LoCA), Oberpfaffenhofen, Germany, May 12-13, 2005, volume 3479
of LNCS, pages 2–15. Springer, 2005.

21. Anind K. Dey and Jennifer Mankoff. Designing mediation for context-aware applications.
ACM Transactions on Computer-Human Interaction(TOCHI), 12(1):53–80, 2005.

22. Chang Xu and S.C. Cheung. Inconsistency detection and resolution for context-aware mid-
dleware support. In Proceedings of the Joint 10th European Software Engineering Con-
ference and 13th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2005), Lisbon, Portugal, pages 336–345, September 5-9 2005.

23. Chang Xu, Shing-Chi Cheung, and W. K. Chan. Incremental consistency checking for per-
vasive context. In Proceedings of the 28th International Conference on Software Engineer-
ing(ICSE 2006), Shanghai, China, May 20-28, 2006, pages 292–301, 2006.

24. Jussi Myllymaki and Stefan Edlund. Location aggregation from multiple sources. In Pro-
ceedings of the Third International Conference on Mobile Data Management (MDM 2002),
Singapore, January 8-11, 2002, pages 131–138. IEEE Computer Society, 2002.

25. Gadia and Sunil S. Nair. Temporal databases: A prelude to parametric data. In Temporal
Databases, pages 28–66. 1993.

