
Querying Semistructured Temporal Data

Carlo Combi1, Nico Lavarini2, and Barbara Oliboni1

1 Dipartimento di Informatica, Università degli Studi di Verona
2 Creactive Consulting S.p.A.

Abstract. In this paper we propose the GEM Language (GEL), a SQL-
like query language, which is able to extract information from semistruc-
tured temporal databases represented according to the Graphical sEmistruc-
tured teMporal (GEM) data model.

1 Introduction

In the last years the database research community has devoted some efforts to the
development of methods for representing and querying semistructured data [1]
(i.e., data that have no absolute schema fixed in advance, and whose structure
may be irregular or incomplete). In this context, several approaches have been
proposed, in which labeled graphs are used to represent semistructured data [9,
11]. Recently, it has been recognized and emphasized that time is an important
aspect to consider also in the semistructured data context; thus, the problem of
representing and querying changes in semistructured data has been considered
in the database research field and some temporal data models, based on labeled
graphs [5–7], have been studied.

In this work, we consider the Graphical sEmistructured teMporal (GEM)
data model [6], which is general enough to include the main features of semistruc-
tured data representation. GEM allows one to model either valid or transaction
times: the valid time (VT) of a fact is the time when the fact is true in the
modeled reality, whereas the transaction time (TT) of a fact is the time when
the fact is current in the database and may be retrieved [10].

In this paper we propose the GEM Language (GEL), a SQL-like query
language, which is able to extract information from semistructured temporal
databases represented by means of the GEM data model. GEL is a language
designed for semistructured data and, similarly to Lorel [2], can be seen as an
extension of OQL [4]. In particular, the most important features which add some
novelty to GEL, with respect to the other main proposal, namely Chorel [5], are
the following: we allow for querying databases which manage either valid time
— and we will focus on it in the rest of the paper — or transaction time, while
most of the others only allow for managing transaction time; we can exploit the
generality of the GEM model, and thus build and query about general relation-
ships between objects: it provides expressive power both to the model and to
the language, without constraining the database to be tree-shaped and to use
just the containment relationship; we introduce suitable temporal predicates and
specific clauses and keywords for allowing the user to manage temporal aspects
of data.

2 Related Work

In [2], the authors propose the Lorel query language, a semistructured query
language based on the Object Exchange Model (OEM) [11]. OEM is a simple
graph-based data model, with objects as nodes and object-subobject relation-
ships represented as labeled arcs. Nodes are not labeled, labels are represented
only on the edges and represent the node the edge point to. In the OEM data
model each entity is represented by means of an object with an oid (object
identifier). Lorel queries are intuitive, based on a syntax similar to that of the
statement SELECT FROM WHERE of OQL [4], and use Path Expressions. A path
expression represents a path on the graph, and thus it identifies the objects
composing the path itself.

Chorel (Change Lorel) [5] is a query language for semistructured temporal
data and is an extension of the Lorel query language. The Chorel query lan-
guage is based on the DOEM (Delta-OEM) [5] data model, which is a temporal
extension of OEM. Change operations (i.e., node insertion, update of node val-
ues, addition and removal of labeled arcs) are represented in DOEM by using
annotations on nodes and arcs of an OEM graph for representing the history.
Intuitively, annotations are the representation of the history of nodes and edges
as it is recorded in the database: indeed, this proposal takes (implicitly) into
account the transaction time dimension. DOEM and Chorel are implemented
by means of a method that encodes DOEM databases as OEM databases and
translates Chorel queries into equivalent Lorel [2] queries over the OEM en-
coding. Chorel queries are similar to Lorel queries, and can contain annotation
expressions. For example, the query

SELECT Guide.<add>restaurant;

requires the restaurants having an add annotation, i.e., those restaurants which
have been added to the database after its creation.

Chorel is a very flexible and powerful language, but is limited by the data
model it is based on. As an example, neither OEM nor DOEM allow for the
representation of general relationships: they represent only the containment re-
lationship.

In [14], the authors extend the XPath [13] data model and query language
to include valid time. In particular, they extend XPath’s data model by adding
to each node a list of disjoint intervals or instants representing valid time, and
impose that the valid time of a node is constrained to be a subset of the valid time
of a node’s parent. Moreover, a valid-time axis is added to the query language
to retrieve nodes according a valid time view. The valid-time axis of a node
contains the valid-time information of the node itself. The main focus of [14] is
the extension of the XPath data model to represent valid time, and thus the
authors do not introduce any extension of XPath with temporal predicates and
aggregates.

In [8], the author presents an extension of XPath to support transaction
time. The proposed extension allows the representation of the history of an
XML document as a sequence of XML documents representing the versions of
the considered XML document. According to the data model extension, the

author extends the query language to query the transaction time. At this aim
several new axes, node tests, and temporal constructs are added.

3 Representing temporal semistructured data

In this work, we suppose to represent temporal semistructured data by means
of the Graphical sEmistructured teMporal data model (GEM), which represents
semistructured temporal data by means of rooted, connected, directed, labeled
graphs, where the temporal dimension is explicitly reported on node and edge
labels and is described as an interval. GEM allows the database designer to model
either transaction or valid times, by properly defining suitable constraints [6].

In designing GEL, we focus on the valid time dimension, as we want to focus
on query aspects related to changes in the represented real world. In this section,
we briefly describe the data model, by considering an example taken from a
medical scenario. Figure 1 shows a GEM graph, representing information about
the patient David Johnson.

Angina CAD Low Digoxin

<Description, [01/02/03;10:00,

<Demo, [04/02/03;10:00,now]>

David Johnson

<Drug, [12/03/03;08:30,

<Therapy, [12/03/03;08:30,15/03/03;08:30]>

 15/03/03;08:30]>

<D_Name, [12/03/03;08:30,15/03/03;08:30]>

<Name, [12/03/03;08:30,
 15/03/03;08:30]>

<Pathology, [12/03/03;08:05,now]>
<Possible_Pathology,

<Patient, [04/02/03;10:00,now]>

[12/03/03;08:05,now]>

<Diagnosis, [12/03/03;08:05,now]>

<P_Name, [12/03/03;08:05,now>

<Name, [12/03/03;08:05,now]>

<Name, [04/02/03;10:00,now]>

<P_Situation, [05/02/03;10:00,now]>

<Symptom, [01/02/03;10:00,
 03/02/03;15:00]>

 03/02/03;15:00]>

<S_Name, [01/02/03;10:00,03/02/03;15:00]>
<P_Severity, [13/03/03;08:05,14/04/03;08:00]>

<Severity, [13/03/03;08:05,
 14/04/03;08:00]>

Fig. 1. An example of a GEM graph

A GEM graph is composed by two kinds of nodes: complex and simple nodes.
The former represent abstract entities, whereas the latter represent primitive
values and are leaves. Complex nodes are depicted as rectangles, while simple
nodes are depicted as ovals. In the GEM data model [6], the symbol now is
used to define respectively the objects that are valid at the present time in the
considered reality, when considering the valid time dimension. Considering the
example depicted in Figure 1, the node Patient is a complex node, while the
node Name (child of Patient) is a simple node having value David Johnson.

In Figure 1, the nodes Patient and Name, and the edge Demo have valid time
interval1 [04/02/03;10:00,now]. The time interval represents that David Johnson
becomes a Patient from 10:00 of 04/02/03, and he is still a Patient.

Several constraints and relationships could exist between valid times of nodes
and edges: as an example, the valid time of a simple node could be contained in
1 In this paper we adopt the format DD/MM/YY;HH:mm for timestamps.

the valid time of the related complex node: indeed, the simple node represents a
property of the related complex node. Figure 1 depicts the simple node Severity
having a valid time interval contained into the valid time of its related complex
node Pathology. As a further example, the valid time of the node Symptom starts
before the valid time of the related node Patient (i.e., the symptom appeared
before the patient was enrolled), and the valid time of the edge between Pa-
tient and Symptom represents the fact the symptom has been reported after the
patient was enrolled.

4 A query language for semistructured temporal data

Semistructured (temporal) data may be irregular and incomplete and do not
necessarily conform to a fixed schema, thus flexibility in querying is needed.
GEL is able to manage irregularity by means of flexible statements and allows
one to extract and evaluate temporal information. Moreover, GEL supports the
filtering of query results based on temporal information.

GEL is similar to Lorel [2] and to OQL [4], and has a SQL-like syntax.
GEL queries are composed through the classical clauses SELECT, FROM, WHERE.
The expressions specified in each clause are path expressions, i.e., expressions
representing paths, which allows one to reach a given object on the GEM graph.

In an OEM graph [11], edges between nodes represent only the containment
relationship, thus Lorel path expressions are based on this kind of relation-
ship, and use the “dot notation”; in a GEM graph, edges represent different
relationships and thus in the GEL syntax we decided to adopt the object-
oriented notation related to methods. For example, the GEL path expression
Patient.has(Symptom) can be read as “the Patient has the Symptom”, and
more formally, “the object Patient is related, by means of the relationship has,
to the object Symptom”.

An example of a GEL query is the following:

SELECT Patient.Demo(Name)

FROM Patient

WHERE Patient.P_situation(Symptom).S_name(Description) = "Angina"

Intuitively, this query requires to extract the Name object, identified by the path
expression in SELECT clause, starting from the object reported in the FROM clause,
but only if the required object satisfies the constraint imposed in the WHERE
clause. Temporal clauses TIME-SLICE and MOVING WINDOW can be used to specify
temporal features of required data, as detailed in Section 4.5.

As for the type system, in the semistructured data context flexibility is
needed. In order to convert data having different types, GEL adopts the Lorel [2]
approach, based on type coercion.

The FROM clause could be left implied in the GEL queries. This characteristic,
rising from Lorel [2], derives from the fact that usually the value of this clause
is the object from which the path expressions, in the SELECT clause, start. If the
FROM clause is not specified, then it is automatically produced from the SELECT
clause, introducing in the FROM clause a path expression for each path expression

in the SELECT clause. If the FROM clause is implied, then all the path expressions
in the SELECT clause must start with the root of the graph. For example, the
query

SELECT Patient.Diagnosis(Pathology)

WHERE Patient.Demo(Name) = "Smith"

becomes

SELECT Patient.Diagnosis(Pathology)

FROM Patient

WHERE Patient.Demo(Name) = "Smith"

In this way, the queries can be simplified leaving implied the FROM clause.

4.1 GEL statements

A GEL query is based on the SELECT statement, as for OQL and SQL [4, 12].
In the same way as OQL and SQL, in GEL the expression in the SELECT clause
states for the objects of the database which have to be retrieved, the expression
in the FROM clause specifies the objects to consider in the search, and the expres-
sion in the WHERE clause represents the constraints the retrieved objects have to
satisfy. Obviously, like in other syntactically similar languages, when there is no
constraint to be used in the WHERE clause, the whole clause itself can be missing.
In the following, we will adopt a current semantics for the query evaluation [12],
i.e., the query will return only the current objects which satisfy the query, for
all the cases where time dimensions are not referred to in the query. When vari-
ables are used in the query to refer to the temporal dimensions of nodes/edges,
the adopted semantics will be the non-sequenced one [12]: all the objects of the
database, even the non current ones, will be considered for the query evaluation.

The result of a GEL query is a multiset or bag of tuples of attribute values.
Each value can be either an atomic value or a node identifier; each attribute is
named according to the content of the SELECT clause. It is possible to use set
operators (intersect, union, except) to combine different queries (SQL-style).

4.2 Attribute naming

In GEL, attributes can be renamed, as in SQL statements:

SELECT P.Diagnosis(Pathology).P_name(Name) as Path_name

FROM Patient P

in this case, Path name is the label of the retrieved object, i.e., in the origi-
nal graph the pathology name is labeled Name, while in the result it is labeled
Path name.

4.3 Variables

Variables can be used also inside an expression and can have different roles. GEL
allows one to use variables (i) as aliases to avoid to repeat long expressions, and
(ii) to identify each element to be instantiated in the query evaluation.

SELECT P.P_name(Name) as Path_name

FROM Patient.Diagnosis(Pathology) P

In this case, the variable P is used to identify the Pathology object, in order to
avoid to refer to it repeating all the expression, as for example:

SELECT Patient.Diagnosis(Pathology).P_name(Name) as Path_name

FROM Patient.Diagnosis(Pathology)

The variables inside the path allow for retrieving (and for naming) the needed
objects, without the need of repeating the common portions of the path for each
expression we want to name, as in the following example.

SELECT P.Diagnosis(Pathology)<T>.P_name(Name)<N>

FROM Patient P

WHERE T.P_Severity(Severity)="high" AND N="CAD"

This query allows one to retrieve the objects T and N, without specifying two
similar expressions in the FROM clause; at the same time T and N are used as
names for the corresponding objects.

The query without using Intra-path variables should be

SELECT P.Diagnosis(Pathology) as T,

P.Diagnosis(Pathology).P_name(Name) as N

FROM Patient P, P.Diagnosis(Pathology) T,

P.Diagnosis(Pathology).P_name(Name) N

WHERE T.P_Severity(Severity)="high" AND N="CAD"

Variables in the path expressions can be used to force two expressions to be
distinct. For example, the query

SELECT P.Demo(Name)

FROM Patient P

WHERE P.Diagnosis(Pathology).P_name(Name) = "CAD" AND

P.Diagnosis(Pathology).P_name(Name) = "Pneumonia"

cannot be used to extract the patients who suffer of CAD and Pneumonia, because
the two paths in the WHERE clause have a common prefix (in this case the complete
path expression) and thus they are instantiated on the same objects. For this
reason the previous query does not retrieve the desired result.

It is possible to assign two distinct variables to the two desired results, thus
they are instantiated separately on the two paths of the graph, related to two
(possibly) different nodes with label Name (if they exist), in the following way:

SELECT P.Demo(Name)

FROM Patient P

WHERE P.Diagnosis(Pathology)<X1>.P_name(Name) = "CAD" AND

P.Diagnosis(Pathology)<X2>.P_name(Name) = "Pneumonia"

In this way, the two paths P.Diagnosis(Pathology).P name(Name), which are
considered as distinct by the user, are not forced to be the same path.

The variables can be used also to identify a constraint expressing the fact
that an object must be reachable on several paths. Indeed a GEM database, as
the one in Figure 1, is not expressed as a tree, but as a DAG (Directed Acyclic
Graph): in our case, for example, edges Possible Pathology and Diagnosis
are directed to the same node Pathology. In this case, we can use variables to
define queries on objects with several ingoing edges:

SELECT Patient.Demo(Name)

FROM Patient.Diagnosis(Pathology)<X>,

Patient.P_Situation(Symptom).Possible_Pathology(Pathology)<X>

The previous query asks for the name of patients having a diagnosed pathol-
ogy and presenting also a connected symptom.

4.4 Wildcards

The path expression power, with respect to objects and paths representation,
can be increased by using wildcards.

The simplest type of wildcard comes directly from SQL, and is represented
by the special characters ‘#’2 and ‘%’.

As in SQL, these characters can be considered “special” in the pattern match-
ing between the query strings and the labels of GEM graph elements, as they
can be used for comparisons with string literals and also, differently from SQL,
as wildcards for the edge labels.

The ‘#’ character represents any character. The ‘%’ character represents a
sequence of characters with an arbitrary length. These wildcards can be used
in the node and edge names contained in the path expressions, or instead of
their names. Moreover, in a path expression, specifying an edge/node, having
label “%”, means “an edge/node with any label”. For example, the path expres-
sion Patient.%(Pathology) means that we are looking for a node with label
Patient, linked by means of any edge, to a node with label Pathology. In the
same way, the path expression Patient.%(%).P name(Name) means that we are
looking for a node with label Patient linked by means of any edge to any node,
which has an outgoing edge with label P name ending in a node with label Name.
Since in the path expressions, nodes and edges are represented in different ways,
when a node or an edge is only represented by the wildcard ‘%’ we can abbreviate
it with an empty string.

Another kind of wildcard allows one to specify some properties of each ele-
ment in the path expression by using some simple regular expression.

It is possible to specify how many times a given edge has to appear in a
sequence, and to give a choice between different possible labels. For example the
2 The choice of the character ‘#’ instead of the traditional SQL ‘ ’ to mean any char-

acter, is based on the fact that ‘ ’ is often used as word separator in labels for nodes
and edges, and thus it is too used to be protected by escape sequences.

path expression A.[(B)]?.(C) means that between the nodes A and C, either 0
or 1 nodes B can exist.

The | character, used between two or more elements, allows one the choice
of any element in the set. This operator is particularly effective when it is
used together with the previous one, in the characters [and]. For example
A.[(B)|(C)]*.(D) means that between the nodes A and D, a sequence exists,
and is either empty or each element of it is B or C

These regular expressions can be combined with the string wildcards to ob-
tain a powerful and flexible query system. As an example, the following query

SELECT S.%(Name)

FROM Symptom S

WHERE S.[Possible_Pathology(Pathology)]+.P_name(Name) = "Hepatitis"

extracts the Name of the Symptom (connected by any edge to the node) which is
related (to a degree) to Hepatitis. The WHERE clause actually requires the node
S to be connected by a path made of Possible Pathology edges and Pathology
nodes to the simple node labeled Hepatitis. The length of the path must be
greater than 0, so a path Symptom.p name(Name) would not make the clause
true, while a path Symptom.Possible Pathology (Pathology).P name(Name)
would do.

The following query

SELECT P.Demo(Name)

FROM Patient P

WHERE P.[P_situation(Symptom)|Diagnosis(Pathology)].%(%) = "Hemicrania"

extracts the name of a Patient for which the symptom or the pathology is con-
nected to any node labeled Hemicrania. In this case what is required is the
existence, starting from a Patient node, of the edge P situation and the node
Symptom, or of the edge Diagnosis and the node Pathology. When this condi-
tion is met, any edge connected to any simple node labeled Hemicrania would
make the clause true.

4.5 Temporal aspects

Nodes and edges of a GEM graph have in the label a time interval representing
their validity with respect to a considered time dimension (see Section 3). In
particular, in this work, we focus on the valid time dimension, i.e., the time
when the fact represented by the object is true in the considered reality.

Temporal clauses
In the WHERE clause, conditions expressing constraints that must be satisfied

by the requested objects are specified. To consider temporal aspects, we in-
troduce the new clauses TIME-SLICE and MOVING WINDOW. Moreover, temporal
constraints can be specified in the WHERE clause.

The TIME-SLICE clause allows the user to query along the temporal dimen-
sion of nodes and edges, by considering only those nodes and edges having a

valid time interval intersecting the specified interval. In general, the result of
the query will be composed by nodes (edges), requested in the SELECT clause,
satisfying general constraints expressed in the WHERE clause, and having a time
interval intersecting the time interval specified in the TIME-SLICE clause.

In the TIME-SLICE clause, the considered time interval can be specified in
different ways:

– by the FROM ... TO ... keywords it is possible to require objects inter-
secting an interval starting at a given instant, and ending at a second given
instant. For example, the query requiring the name of the patients consider-
ing only the period from 08:00 of 01/02/03 to 08:00 of 01/03/03 is:

SELECT Patient.Demo(Name)

FROM Patient

TIME-SLICE FROM 01/02/03;08:00 TO 01/03/03;08:00

– by the FROM keyword it is possible to require objects having an interval
ending after a given instant. In this case, the ending time is not specified.
For example, the query requiring the name of the patients after 08:00 of
01/02/03 is:

SELECT Patient.Demo(Name)

FROM Patient

TIME-SLICE FROM 01/02/03;08:00

– by the TO keyword it is possible to require objects having an interval starting
before a given instant. For example, the query requiring the name of the
patients before 08:00 of 01/03/03 is:

SELECT Patient.Demo(Name)

FROM Patient

TIME-SLICE TO 01/03/03;08:00

The interval constraint expressed by the TIME-SLICE clause can be forced
to be either a strict containment, or a left strict containment, or a right strict
containment. For example, in the first case, the objects satisfy the requested
constraints only if they have a time interval strictly contained in the specified
time interval. This kind of containment is expressed by means of the keyword
STRICT.

SELECT Patient.Demo(Name)

FROM Patient

STRICT TIME-SLICE FROM 01/02/03;08:00 TO 01/03/03;08:00

In Figure 2 we suppose that [ti, tj] is the time interval of a node (edge)
and [th, tk] is the time interval specified in the TIME-SLICE clause, and report
examples of time intervals satisfying the temporal constraints expressed in the
TIME-SLICE clause with respect to the specified keywords.

The MOVING WINDOW clause allows the user to consider nodes and edges
through a (moving) temporal window. The window is specified in the clause and
moves along the temporal axis. The general constraints expressed in the other

th tk th tk th tk

tjti
tjtitjtj

STRICT STRICT LEFT STRICT RIGHT

Fig. 2. Examples of time intervals satisfying constraints in the TIME-SLICE clauses

clauses are checked only on the nodes and edges visible through the window,
i.e., only on the nodes and edges having a time interval satisfying the temporal
constraints expressed in the MOVING WINDOW clause. For example, the following
query requires the name of the patients having had both CAD and pneumonia
within a period of 40 days:

SELECT P.Demo(Name)

FROM Patient P

WHERE P.Diagnosis(Pathology)<X1>.P_name(Name) = "CAD" AND

P.Diagnosis(Pathology)<X2>.P_name(Name) = "Pneumonia"

MOVING WINDOW 40 days

Temporal predicates
To compare valid times of different nodes and edges, GEL provides the support

of standard comparison predicates both for intervals, instants, and for comparing
intervals and instants.

Variables can be suitably assigned both to the overall valid time and to the
starting and ending instants of the valid time. The syntax is based on the symbol
@, and is used as in the following example:

Patient.Diagnosis@[X1,X2](Pathology).P_name(Name)@[Y1,Y2]

This path expression identifies a graph element and extracts the values of the
start and end times of the element itself. In particular, it identifies the edge
Diagnosis and extracts its start and end times, and the node Name and extracts
its start and end times.

To assign a single variable to the overall valid time, the previous symbol @
must be used as in the following example:

Patient.Diagnosis@[X](Pathology).P_name(Name)@[Y]

This path expression identifies a graph element and extracts the interval values of
the valid time of the element itself. In particular, it identifies the edge Diagnosis
and extracts its time interval, and the node Name and extracts its time interval.

The variables used to extract the times could be used as selection for the
query, as in the following case:

SELECT N as PatientName, X1 as DiagStart, X2 as DiagEnd

FROM Patient.Diagnosis@[X1,X2](Pathology).P_name(Name)<N>

The result of this query is a set of tuples; each tuple is composed by the string
representing the name of the patient, the start time and the end time of the
diagnosis related to the patient itself.

This is a case, where the query evaluation considers all the nodes/edges and
not only the current ones, with the application of a non-sequenced temporal
semantics [12]: the condition in the query may involve the explicit comparison
of nodes/edges at different times.

GEL also offers the way to compose temporal predicates on time instants
and intervals in the WHERE clause. The temporal predicates can be point-point
predicates, which compare two time instants, point-interval predicates, which
compare a time instant with a time interval, and interval-interval predicates,
which compare two time intervals.

A point-point predicate is composed by a variable, a temporal comparison
operator, and a time instant, which can be either a variable or a constant. The
temporal comparison operators are: =, <>, <, <=, >, >=.

Point-interval predicates verify whether a time instant belongs to a time
interval. This time interval is represented with the GEL syntax by means of
a couple of time instants separated from a comma, and contained in “[” and
“]”. One or both of these instants can be replaced by a variable, which can be
extracted from another element. Thus, a point-interval predicate is composed
by a variable, an interval operator, and an interval (variable or constant). The
interval operators are in (the instant belongs to the interval) and out of (the
instant does not belong to the interval).

Interval-interval predicates verify whether two time intervals satisfy the well
known Allen’s relations (before, meets, overlaps, ...) [3].

As a final example, let us consider the following query requiring the name of
the patients having had CAD either starting or ending during pneumonia and
pneumonia holding on an interval overlapping the period from May 23, 2003 8:00
a.m. to July 21, 2003 8:00 a.m.

SELECT P.Demo(Name)

FROM Patient P

WHERE P.Diagnosis(Pathology)<X1>@[I1,I2].P_name(Name) = "CAD" AND

P.Diagnosis(Pathology)<X2>@[T].P_name(Name) = "Pneumonia" AND

(I1 in T OR I2 in T) AND

T overlaps [23/05/03;08:00,21/07/03;08:00]

5 Conclusions

In this work, we proposed the temporal query language GEL for semistructured
data, which explicitly considers the temporal dimensions of data and their com-
parison as well as specific temporal clauses and keywords. As for future work, we

plan to focus on some main topics, such as allowing the specification of a (tem-
poral) graph structure for the query result, i.e., providing the language with the
closure property, supporting several time semantics for graph-based data mod-
els, and extending the query language to deal with both valid and transaction
times, to obtain a fully fledged bitemporal query language.

References

1. S. Abiteboul. Querying Semi-Structured Data. In Proceedings of the International
Conference on Database Theory, volume 1186 of LNCS, pages 262–275, 1997.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel
query language for semistructured data. International Journal on Digital Libraries,
1(1):68–88, 1997.

3. J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123–154, 1984.

4. R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David Jordan,
Craig Russell, Olaf Schadow, Torsten Stanienda, , and Fernando Velez. The Ob-
ject Data Standard: ODMG 3.0. Series in Data Management Systems. Morgan
Kaufmann Series in Data Management Systems, 2000.

5. S. S. Chawathe, S. Abiteboul, and J. Widom. Managing historical semistructured
data. Theory and Practice of Object Systems, 5(3):143–162, 1999.

6. C. Combi, B. Oliboni, and E. Quintarelli. A graph-based data model to represent
transaction time in semistructured data. In Proceedings of DEXA 2004, volume
3180 of LNCS, pages 559–568. Springer-Verlag, Berlin, 2004.

7. C. E. Dyreson, M. H. Böhlen, and C. S. Jensen. Capturing and Querying Multiple
Aspects of Semistructured Data. In VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, pages 290–301. Morgan Kaufmann, 1999.

8. Curtis E. Dyreson. Observing transaction-time semantics with ttxpath. In WISE
(1), pages 193–202, 2001.

9. M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. STRUDEL: A web
site management system. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, volume 26,2 of SIGMOD Record, pages 549–552.
ACM Press, 1997.

10. C. S. Jensen, C. E. Dyreson, and M. H. Bohlen et al. The consensus glossary
of temporal database concepts - february 1998 version. In Temporal Databases:
Research and Practice, volume 1399 of Lecture Notes in Computer Science, pages
367–405. Springer, 1998.

11. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across
Heterogeneous Information Sources. In Proceedings of the Eleventh International
Conference on Data Engineering, pages 251–260. IEEE Computer Society, 1995.

12. R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Series
in Data Management Systems. Morgan Kaufmann, 2000.

13. World Wide Web Consortium. XML Path Language (XPath) version 1.0.
http://www.w3.org/TR/xpath.html. W3C Reccomendation 16 November 1999.

14. Shuohao Zhang and Curtis E. Dyreson. Adding valid time to xpath. In Databases
in Networked Information, volume 2544 of LNCS, pages 29–42, 2002.

