
DART: A Data Acquisition and Repairing Tool

Bettina Fazzinga, Sergio Flesca, Filippo Furfaro, and Francesco Parisi

DEIS - Università della Calabria
Via Bucci - 87036 Rende (CS) ITALY

{bfazzinga, flesca, furfaro, fparisi}@deis.unical.it

Abstract. An architecture is proposed providing robust data acquisition facili-
ties from input documents containing tabular data. This architecture is based on
a data-repairing framework exploiting integrity constraints defined on the input
data to support the detection and the repair of inconsistencies in the data arising
from errors occurring in the acquisition phase. In particular, a specific but expres-
sive form of integrity constraints (steady aggregate constraints) is defined which
enables the computation of a repair to be expressed as a mixed integer linear
programming problem.

1 Introduction

The need to acquire data from different sources of information often arises in many ap-
plication scenarios, such as e-procurement, competitor analysis, business intelligence.
In several cases these sources are heterogenous documents, possibly represented ac-
cording to different formats, ranging from paper documents to electronic ones (PDF,
MSWord, HTML files). In order to be exploited to provide valuable knowledge, infor-
mation must be extracted from the original documents and re-organized into a machine-
readable format. The problem of defining efficient and effective approaches accom-
plishing this task is a challenging issue in the context of Information Extraction (IE).
Most of traditional IE techniques focus on efficiency, providing unsupervised extraction
algorithms which automatically extract records from documents. However, it frequently
happens that some of the extracted records are not correctly recognized, i.e. the value of
one (or more) field has been misspelled. In several contexts (such as balance analysis)
extracted information must be 100% error free in order to be profitably exploited, thus
unsupervised approaches are not well-suited. In these cases, data transcription from in-
put documents into a machine-readable format requires massive human intervention,
thus compromising efficiency and making valuable resources be wasted. Human inter-
vention is mainly devoted to verifying the correctness of acquired data by comparing
them with the content of source documents.

Indeed, if integrity constraints are defined on the input data, this kind of human
intervention can be reduced by automatically verifying whether acquired data satisfy
these constraints, thus limiting manual corrections to those pieces of acquired data
which do not satisfy them. In fact current approaches exploiting integrity constraints
on source documents require inconsistent acquired data to be manually edited by a hu-
man operator. This editing task is likely to be onerous, since a large amount of data in
the input documents need to be accessed and compared with the acquired ones.



The idea underlying this paper is that human intervention can be reduced by exploit-
ing some repairing technique to suggest the “most likely” way of fixing inconsistent
data. We introduce the architecture of a system (namely, DART - Data Acquisition and
Repairing Tool) based on this idea. The motivation of this work and the contribution
provided by this system can be better understood after reading the following example,
describing a specific application scenario (that is, data acquisition from balance sheets).

Example 1. The balance sheet is a financial statement of a company providing informa-
tion on what the company owns (its assets), what it owes (its liabilities), and the value
of the business to its stockholders. A thorough analysis of a company balance sheet is
extremely important for both stock and bond investors, since it allows potential liquid-
ity problems to be detected, thus determining the company financial reliability as well
as its ability to satisfy financial obligations.

Figure 1 is a portion of a document containing two cash budgets for a firm, each of
them related to a year. Each cash budget is a summary of cash flows (receipts, disburse-
ments, and cash balances) over the specified periods.

Receipts beginning cash 20
cash sales 100
receivables 120
total cash receipts 220

Disbursements payment of accounts 120
2003 capital expenditure 0

long-term financing 40
total disbursements 160

Balance net cash inflow 60
ending cash balance 80

Receipts beginning cash 80
cash sales 100
receivables 100
total cash receipts 200

Disbursements payment of accounts 130
2004 capital expenditure 40

long-term financing 20
total disbursements 190

Balance net cash inflow 10
ending cash balance 90

Fig. 1. An input document

This cash budget satisfies the following integrity constraints:

a) for each year, the sum of cash sales and receivables in section Receipts must be
equal to total cash receipts;

b) for each year, the sum of payment of accounts, capital expenditure and long-term
financing must be equal to total disbursements (in section Disbursements);

c) for each year, the net cash inflow must be equal to the difference between total cash
receipts and total disbursements;

d) for each year, the ending cash balance must be equal to the sum of the beginning
cash and the net cash inflow;

Generally balance sheets like the ones depicted in Figure 1 are available as pa-
per documents, thus they cannot be automatically processed by balance analysis tools,
since these work only on electronic data. In fact, some companies do business acquir-
ing electronic balance data and reselling them in a format suitable for being processed
by commercial analysis tools. Currently electronic versions are obtained by means of
either human transcriptions or OCR acquisition tools. Both these approaches are likely
to result in erroneous acquisition, thus compromising the reliability of the analysis task.

An example of numerical value recognition error occurring during the acquisition
phase is the recognition of the value 250 instead of 220 for “total cash receipts” in the



year 2003. Consequently, some constraints are not satisfied on the acquired data for
year 2003:

i) in section Receipts, the value of total cash receipts is not equal to the sum of values
of cash sales and receivables;

ii) the value of net cash inflow is not to equal the difference between total cash receipts
and total disbursements.

Furthermore, some symbol recognition errors in non-numerical strings may occur
in the acquisition phase. For instance, the item “bgnning cesh” could be recognized
instead of “beginning cash”. ��

DART is a system supporting the acquisition of heterogeneous documents and the
supervised repairing of the acquired data. With respect to Example 1, DART will sug-
gest to change the “total cash receipts” value for year 2003 from 250 (i.e. the acquired
value) to 220, thus reducing the human intervention, as the human operator is no longer
required to access the whole input document to fix acquisition errors making integrity
constraints violated. In particular, DART is based on the notion of card-minimal repair
introduced in [16], where the problem of repairing numerical data which are incon-
sistent w.r.t. aggregate constraints is addressed. Aggregate constraints defined in [16]
can express constraints like those defined in the context of balance-sheet data. The no-
tion of card-minimal repair is well-suited for our context, where data inconsistency
is due to bad symbol recognition during the acquisition phase. Indeed, applying the
card-minimal semantics means searching for repairs changing the minimum number
of acquired values, which corresponds to the assumption that the minimum number of
errors occurred in the acquisition phase.

This work stems from a specific application context, where data to be acquired are
balance sheets. In this scenario, the relevant information is formatted according to a
tabular layout. Therefore, our acquisition approach is targeted to tabular data. However,
observe that this feature does not limit DART to the acquisition of balance sheets, as
tabular data often occur in many different application contexts, such as web sites pub-
lishing product catalogs.

Related Work
The most widely used notion of repair and consistent query answer on inconsistent data
is that of [2]: a repair of an inconsistent databaseD is a databaseD′ satisfying the given
integrity constraints and which is minimally different from D. The consistent answer
of a query q posed on D is the answer which is in every result of q on each repair D′.
Different approaches to the problem of extracting reliable information from inconsistent
data had been introduced in [1, 8].

Based on the notions of repair and consistent query answer introduced in [2], several
works investigated more expressive classes of queries and constraints. In [3] extended
disjunctive logic programs with exceptions were used for the computation of repairs,
and in [4] the evaluation of aggregate queries on inconsistent data was investigated. A
further generalization was proposed in [19], where the authors defined a sound and com-
plete technique (in presence of universally quantified constraints) based on the rewrit-
ing of constraints into extended disjunctive rules with two different forms of negation



(negation as failure and classical negation). In [9, 10] a practical framework for com-
puting consistent query answer for large relational database has been presented, and the
system Hippo supporting projection-free relational algebra queries and denial integrity
constraints was presented.

All the above-cited approaches assume that tuple insertions and deletions are the
basic primitives for repairing inconsistent data. More recently, in [11] a repairing strat-
egy using only tuple deletions was proposed, and in [7, 24, 25] repairs consisting of also
value-update operations were considered. The latter are the first approaches performing
repairs at the attribute-value level.

In [6] the problem of repairing databases by fixing numerical data at attribute level
was investigated in presence of both denial constraints (where built-in comparison pred-
icates are allowed) and a non-linear form of multi-attribute aggregate constraints (when
constraints of this form are defined, the repair existence problem was shown to be unde-
cidable). In [16] the problem of repairing and extracting reliable information from data
violating a given set of aggregate constraints was investigated. These constraints consist
of linear inequalities on aggregate-sum queries issued on measure values stored in the
database. This syntactic form enables meaningful constraints to be expressed, such as
those of Example 1 as well as other forms which often occur in practice.

In this work we define a restricted class of aggregate constraints and provide a
method to compute a card-minimal repair defined in [16] (according to the card-minimal
semantics, a repaired databaseD′ minimally differs from the original databaseD iff the
number of value updates yielding D′ is minimum w.r.t. all other possible repairs). We
exploit this computation method in the DART system where data are acquired by means
of acquisition tool and information is extracted and transformed by a wrapping system.

There has been a lot of research work related to web information extraction. Spe-
cialized information extraction procedures, called wrappers, represent an effective so-
lution to capture text contents of interest from a source-native format and encode such
contents into a structured format suitable for further application-oriented processing.
Web wrappers typically exploit markup-tag and lexical token information to infer the
template structuring the contents in a web page.

Traditional issues concerning wrapper systems are the development of powerful
languages for expressing extraction patterns and the ability of generating these pat-
terns with the lowest human effort [5, 13]. Several systems for generating web wrappers
have been recently proposed. We mention here DEByE [20], XWRAP [21], Lixto [5],
SCRAP [15, 17], RoadRunner [13]. All these systems do not provide any facility for ef-
fectively handling tabular data. Indeed, there are no systems that address data extraction
from HTML tables in a satisfactory way. In [14] data extraction from HTML tables with
unknown structure is addressed. This system fails when dealing with small tables and in
finding mappings related to numeric attributes. A wrapper-learning system called WL2
is presented in [12]. It uses very specific extraction rules which can be applied only to
documents which are structurally similar to the documents in the training example.

Main contributions

In this work we introduce a system architecture aiming at supervised acquiring of in-
formation encoded into tabular data inside documents with possibly heterogeneous for-
mats. Main novelties of our proposal are the following:



1. Our system embeds a wrapping module for extracting information from tabular
data. This module can manage tables having “variable” structures, i.e. tables whose
cells can span multiple rows and columns, according to no pre-determined scheme.
This is a valuable feature, as all existing wrapping techniques do not work at all or
are far from being satisfactory on tabular data without a “rigid” structure.

2. A framework for computing card-minimal repairs on wrongly acquired data is in-
troduced to drive the data validation process. This framework exploits a specific
form of aggregate constraints (namely, steady aggregate constraints) defined on
the source documents to check the consistency of the acquired data and computing
a repair.

Describing our wrapping technique in detail is out of the scope of this paper. Here
we will focus on presenting the architecture of our system and the technique adopted
for computing repairs.

2 DART in a nutshell

DART (Data Acquisition and Repairing Tool) is a system providing robust data ac-
quisition facilities. It takes as input documents containing tabular data, and it exploits
integrity constraints defined on the input data to support the detecting and the repairing
of inconsistencies due to errors occurring in the acquisition phase. If acquisition errors
are detected, the system proposes a way to correct these errors. Proposed corrections
are validated by means of human intervention. In order to detect and repair inconsis-
tencies, integrity constraints are considered expressing algebraic relations among the
numerical data reported in the cells of the input tables. These constraints are exploited
only to fix the acquired numerical values. Moreover, a dictionary of the terms used in
the specific scenario which the input documents refer to is exploited to provide spelling
error corrections on non-numerical strings.

Two kinds of user interact with DART, namely the acquisition designer and the
operator. The former is an expert on the application context and specifies the metadata
which are used to support both the extraction of tabular data and the repairing process.
The latter interacts with the system during the acquisition of each document: if the
acquired data need to be corrected, he is prompted to validate proposed corrections.

As shown in Figure 2, DART consists of two macro-modules. The first module takes
as input documents containing tabular data and returns a relational database where the
extracted tabular data are stored. It performs three steps: it loads the input document
and convert it in HTML format, it extracts the tabular data from the HTML document
and it transforms them into a database instance. This module exploits metadata speci-
fied by the acquisition designer, which describe the structure and the semantics of the
input documents1. The second module takes as input the database instanceD generated
by the acquisition and extraction module. It locates possible inconsistencies in D and
returns a repair for D. Both the inconsistency detection and the repair computation are

1 As it will be clear in the following, designing an extraction module taking as input HTML doc-
uments will make it possible to exploit its features also in Web applications, where the problem
of automatically extracting information from HTML pages often arises in many scenarios.



accomplished according to a set of aggregate constraints AC defined by acquisition de-
signer and represented in the metadata. In more detail, the repairing module transforms
the problem of finding a card-minimal repair2 for D w.r.t. AC into an MILP instance
(Mixed-Integer Linear Programming problem) and solves it providing a repair for D.
The proposed repair is then validated by the operator, who either accepts it or requires
to compute a different repair. In fact, it can be the case that the proposed repair is un-
satisfactory since the operator realizes that it consists of value updates which do not
correspond to the actual content of the source document. In this case the operator in-
serts further constraints on the acquired data. Basically, he drives the repairing process
by specifying the exact values that some pieces of the repaired data must take.

Fig. 2. Data flow in DART

3 Preliminaries

We assume classical notions of database scheme, relational scheme, and relations. In
the following we will also use a logical formalism to represent relational databases,
and relational schemes will be represented by means of sorted predicates of the form
R(A1 :∆1, . . . , An :∆n), where A1, . . . , An are attribute names and ∆1, . . . , ∆n are
the corresponding domains. Each ∆i can be either Z (infinite domain of integers), R

(reals), or S (strings). Domains R and Z will be said to be numerical domains, and
attributes defined over R or Z will be said to be numerical attributes. Given a ground
atom t denoting a tuple, the value of attribute A of t will be denoted as t[A].

Given a database scheme D, we will denote as MD (namely, Measure attributes)
the set of numerical attributes representing measure data. That is, MD specifies the
set of attributes representing measure values, such as weights, lengths, prices, etc. For
instance, in Figure 3, MD consists of the only attribute Value.

3.1 Aggregate constraints

Given a relational scheme R(A1 : ∆1, . . . , An : ∆n), an attribute expression on R is
defined recursively as follows:

- a numerical constant is an attribute expression;
- each Ai (with i ∈ [1..n]) is an attribute expression;
- e1ψe2 is an attribute expression on R, if e1, e2 are attribute expressions on R and ψ is

an arithmetic operator in {+,−};
- c×(e) is an attribute expressions on R, if e is an attribute expression on R and c a

numerical constant.
2 As it will be shown in Section 3.2, a card-minimal repair for a database is a repair changing

the minimum number of values w.r.t. all possible repairs.



Let R be a relational scheme and e an attribute expression on R. An aggregation
function on R is a function χ : (Λ1 × · · · × Λk) → R, where each Λi is either Z, or R,
or S, and it is defined as follows:

χ(x1, . . . , xk) = SELECT sum(e)
FROM R

WHERE α(x1, . . . , xk)

where α(x1, . . . , xk) is a boolean formula on x1, . . . , xk, constants and attributes of R.

Example 2. Consider the database scheme D consisting of the single relation scheme
CashBudget(Year, Section, Subsection, Type, Value), and its instance reported in Fig-
ure 3. This instance represents a possible output of the acquisition and extraction mod-
ule when DART takes as input the document in Figure 1 (it results from the case that a
symbol recognition error occurred in the acquisition phase, so that the acquired value of
total cash receipts is 250 instead of 220). Values ‘det’, ‘aggr’ and ‘drv’ in column Type
stand for detail, aggregate and derived, respectively. In particular, an item of the table
is aggregate if it is obtained by aggregating items of type detail of the same section,
whereas a derived item is an item whose value can be computed using the values of
other items of any type and belonging to any section.

Year Section Subsection Type Value

2003 Receipts beginning cash drv 20
2003 Receipts cash sales det 100
2003 Receipts receivables det 120
2003 Receipts total cash receipts aggr 250
2003 Disbursements payment of accounts det 120
2003 Disbursements capital expenditure det 0
2003 Disbursements long-term financing det 40
2003 Disbursements total disbursements aggr 160
2003 Balance net cash inflow drv 60
2003 Balance ending cash balance drv 80
· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
2004 Receipts beginning cash drv 80
2004 Receipts cash sales det 100
2004 Receipts receivables det 100
2004 Receipts total cash receipts aggr 200
2004 Disbursements payment of accounts det 130
2004 Disbursements capital expenditure det 40
2004 Disbursements long-term financing det 20
2004 Disbursements total disbursements aggr 190
2004 Balance net cash inflow drv 10
2004 Balance ending cash balance drv 90

Fig. 3. A cash budget

The following aggregation functions are defined on the relational scheme CashBud-
get:
χ1(x, y, z) = SELECT sum(Value)

FROM CashBudget

WHERE Section=x

AND Year=y AND Type=z

χ2(x, y) = SELECT sum(Value)
FROM CashBudget

WHERE Year = x

AND Subsection=y

Function χ1 returns the sum of Value of all the tuples having Section x, Year y and
Type z. For instance, χ1(‘Receipts’, ‘2003’, ‘det’) returns 100 + 120 = 220, whereas
χ1(‘Disbursements’, ‘2003’, ‘aggr’) returns 160. Function χ2 returns the sum of Value of
all the tuples where Year=x and Subsection=y. In our running example, as the pair
Year, Subsection is a key for the tuples of CashBudget, the sum returned by χ2 is
an attribute value of a single tuple. For instance, χ2(‘2003’, ‘cash sales’) returns 100,
whereas χ2(‘2004’, ‘net cash inflow’) returns 10. ��
Definition 1 (Aggregate constraint). Given a database scheme D, an aggregate con-
straint on D is an expression of the form:



∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑
i=1

ci · χi(Xi) ≤ K

)
(1)

where:
1. c1, . . . , cn,K are constants;
2. φ(x1, . . . , xk) is a conjunction of atoms containing the variables x1, . . . , xk;
3. each χi(Xi) is an aggregation function, where Xi is a list of variables and con-
stants, and variables appearing in Xi are a subset of {x1, . . . , xk}.

Given a database D and a set of aggregate constraints AC, we will use the notation
D |= AC [resp. D �|= AC] to say that D is consistent [resp. inconsistent] w.r.t. AC.
Observe that aggregate constraints enable equalities to be expressed as well, since an
equality can be viewed as a pair of inequalities. For the sake of brevity, in the following
equalities will be written explicitly.

Example 3. Constraints a) and b) defined in Example 1 can be expressed as: for each
section and year, the sum of the values of all detail items must be equal to the value of
the aggregate item of the same section and year, that is:
Constraint 1:
∀ x, y, s, t, v CashBudget(y, x, s, t, v) =⇒ χ1(x, y, ‘det’) − χ1(x, y, ‘aggr’) = 0

��
For the sake of simplicity, in the following we will use a shorter notation for denot-

ing aggregate constraints, where universal quantification is implied and variables in φ
which do not occur in any aggregation function are replaced with the symbol ‘ ’. For
instance, Constraint 1 of Example 3 can be written as:
CashBudget(y, x, , , ) =⇒ χ1(x, y, ‘det’) − χ1(x, y, ‘aggr’) = 0

Example 4. Constraints c) and d) of Example 1 can be expressed as follows:
Constraint 2: CashBudget(x, , , , ) =⇒

χ2(x, ‘net cash inflow’) − (χ2(x, ‘total cash receipts’) − χ2(x, ‘total disbursements’)) = 0

Constraint 3: CashBudget(x, , , , ) =⇒
χ2(x, ‘ending cash balance’) − (χ2(x, ‘beginning cash’) + χ2(x, ‘net cash balance’)) = 0

3.2 Repairing inconsistent databases

Updates at attribute-level will be used in the following as the basic primitives for repair-
ing data violating aggregate constraints. Given a relational scheme R in the database
scheme D, let MR = {A1, . . . , Ak} be the subset of MD containing all the attributes
in R belonging to MD .

Definition 2 (Atomic update). Let t = R(v1, . . . , vn) be a tuple on the relational
scheme R(A1 : ∆1, . . . , An : ∆n). An atomic update on t is a triplet < t,Ai, v

′
i >,

where Ai ∈ MR and v′i is a value in ∆i and v′i �= vi.

Update u =< t,Ai, v
′
i > replaces t[Ai] with v′i, thus yielding the tuple u(t) =

R(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn).

Observe that atomic updates work on the set MR of measure attributes, as our
framework is based on the assumption that data inconsistency is due to errors in the
acquisition phase. Therefore we only consider repairs aiming at re-constructing the cor-
rect measure data.



Example 5. Update u =< t,Value, 130 > issued on the following tuple:
t = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100)
returns the tuple: u(t) = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 130). ��

Given an update u, we denote the pair < tuple, attribute> updated by u as λ(u).
That is, if u = < t, Ai, v > then λ(u) =< t,Ai >.

Definition 3 (Consistent database update). LetD be a database andU = {u1, . . . , un}
be a set of atomic updates on tuples of D. The set U is said to be a consistent database
update iff ∀ j, k ∈ [1..n] if j �=k then λ(uj) �= λ(uk).

Informally, a set of atomic updates U is a consistent database update iff for each
pair of updates u1, u2 ∈ U , u1 and u2 do not work on the same tuples, or they change
different attributes of the same tuple.

The set of pairs< tuple, attribute > updated by a consistent database update U will
be denoted as λ(U) = ∪ui∈U{λ(ui)}.

Given a databaseD and a consistent database update U , performing U onD results
in the database U(D) obtained by applying all atomic updates in U .

Definition 4 (Repair). Let D be a database scheme, AC a set of aggregate constraints
on D, and D an instance of D such that D �|= AC. A repair ρ for D is a consistent
database update such that ρ(D) |= AC.

Example 6. A repair ρ for CashBudget w.r.t. constraints 1), 2) and 3) consists in de-
creasing attribute Value in the tuple: t = CashBudget(2003, ‘Receipts’, ‘total cash
receipts’, ‘aggr’, 250) down to 220; that is, ρ = { < t,Value, 220 > }. ��

If a repair exists, different repairs can be performed on D yielding a new database
consistent w.r.t. AC, although not all of them can be considered “reasonable”. For in-
stance, if a repair exists for D changing only one value in one tuple of D, any repair
updating all values in all tuples ofD can be reasonably disregarded. To evaluate whether
a repair should be considered “relevant” or not, we use an ordering criteria stating that
a repair ρ1 is preferred w.r.t. a repair ρ2 if the number of changes issued by ρ1 is less
than ρ2.

Example 7. Another repair for CashBudget is: ρ′ = {〈t1, Value, 130〉, 〈t2, Value, 70〉,
〈t3, Value, 190〉}, where:

t1 = CashBudget( 2003, ‘Receipts’, cash sales’, ‘det’, 100),
t2 = CashBudget( 2003, ‘Disbursements’, ‘long-term financing’, ‘det’, 40),
t3 = CashBudget ( 2003, ‘Disbursements’, ‘total disbursements’, ‘aggr’, 160).

Observe that ρ < ρ′, where ρ is the repair defined in Example 6. ��

Definition 5 (Card-minimal repair). Let D be a database scheme, AC a set of aggre-
gate constraints on D, and D an instance of D. A repair ρ for D w.r.t. AC is card-
minimal repair iff there is no repair ρ′ for D w.r.t. AC such that |λ(ρ′)| < |λ(ρ)|.

Example 8. Repair ρ of Example 6 is a card-minimal repair. ��



Given a database D which is not consistent w.r.t. a set of aggregate constraints
AC, different card-minimal repairs can exist on D. In our running example, repair ρ of
Example 6 is the unique card-minimal repair.

In [16] the problem of repairing and extracting reliable information from data vio-
lating a given set of aggregate constraints has been investigated. It has been shown that
1) given a databaseD violating a set of aggregate constraints, deciding whether a repair
for D exists is NP-complete, and 2) given a database D violating a set of aggregate
constraints and a repair ρ for D, deciding whether ρ is a card-minimal repair is coNP-
complete. Furthermore, the consistent query answer under both the set-minimal and the
card-minimal semantics has been studied.
Observe that, as the repair-existence problem is NP-complete, there is no ε-approximation
algorithm A [23] for the computation of a card-minimal repair for D, unless P = NP .
Otherwise, running A would result in obtaining a possible repair for D (not necessarily
a card-minimal one) in polynomial time.

4 Steady aggregate constraints
In this section we introduce a restricted form of aggregate constraints, namely steady
aggregate constraints. On the one hand, steady aggregate constraints are less expressive
than (general) aggregate constraints, but, on the other hand, computing a card-minimal
repair w.r.t. a set of steady aggregate constraints can be accomplished by solving an
instance of an MILP (Mixed Integer Linear Programming) problem. This allows us to
adopt standard techniques addressing MILP problems to accomplish the computation of
a card-minimal repair (as it will be clear in the following, this would not be possible for
general aggregate constraints). However, observe that the loss in expressiveness is not
dramatic, as steady aggregate constraints suffice to express relevant integrity constraints
in many real-life scenarios. For instance, all the aggregate constraints introduced in our
running example can be expressed by means of steady aggregate constraints.

Before providing the formal definition of steady aggregate constraint, we introduce
some preliminary notations.

Given a relational scheme R(A1, . . . , An) and a conjunction of atoms φ containing
the atom R(x1, . . . , xn), we say that the attribute Aj corresponds to the variable xj ,
for each j ∈ [1..n]. Given an aggregation function χi, we will denote as W(χi) the
union of the set of the attributes appearing in the WHERE clause of χi and the set of
attributes corresponding to variables appearing in the WHERE clause of χi. Given an
aggregate constraint κ where the aggregation functions χ1, . . . , χn occur, we will de-
note as A(κ) the set of attributes

⋃n
i=1 W(χi). Given an aggregate constraint κ, we will

denote as J (κ) the set of attributes such that for each A ∈ J (κ) there are two atoms
Ri(xi1 , . . . , xin

) and Rj(xj1 , . . . , xjm
) in φ(x1, . . . , xk) satisfying both the following

conditions:

1. there are il ∈ [i1..in] and jh ∈ [j1..jm] such that xil
= xjh

;
2. A corresponds to either xil

or xjh
.

Basically, J (κ) contains attributes A corresponding to variables shared by two
atoms in φ.

The reason why sets A(κ) and J (κ) have been introduced is that they allow us to
detect a useful property. In fact, in the case that A(κ) ∪ J (κ) does not contain any



measure attribute, the tuples in the database instance D which are “involved” in κ (i.e.
the tuples where φ and the WHERE clauses of the aggregation functions in κ evaluate
to true) can be detected without looking at the values of their measure attributes. As it
will be clear in the following, if this syntactic property holds we can translate κ into
a set of linear inequalities and then express the computation of a card-minimal repair
w.r.t. κ as an instance of MILP.

Definition 6 (Steady aggregate constraint). Let D be a database scheme, MD the set
of measure attributes of D and κ an aggregate constraint on D. An aggregate constraint
κ is said to be a steady aggregate constraint if:

(A(κ) ∪ J (κ)) ∩MD = ∅ (2)

Example 9. Consider a database schemeD containing the relational schemesR1(A1, A2,
A3) and R2(A4, A5, A6), where MD = {A2, A4}. Let κ be the following aggregate
constraint on D:

∀ x1, x2, x3, x4, x5 (R1(x1, x2, x3), R2(x3, x4, x5) =⇒ χ(x2) ≤ K) (3)

where:
χ(x) = SELECT sum(A6)

FROM R2
WHERE A5 = x

We have that A(κ) = {A5, A2} and J (κ) = {A3, A4}, therefore κ is not a steady
aggregate constraint.

Consider Constraint 1 of our running example. We have that A(Constraint 1) =
{Y ear, Section, Type} and J (Constraint 1) = ∅. Since MD = {V alue}, Constraint
1 is a steady aggregate constraint. Similarly, it is straightforward to show that also con-
straints 2) and 3) are steady aggregate constraints. ��

5 Computing a card-minimal repair

Several theoretical issues regarding the consistent query answer (CQA) problem have
been widely investigated for different classes of constraints, and some techniques for
evaluating the CQA have been proposed too (see Related Work section). It can be shown
that all complexity results (characterizing either the repair existence problem and the
consistent query answer problem) given in [16] (where general aggregate constraints
were considered) are still valid for our restricted class of aggregate constraints.

Indeed, in our specific application scenario, we are more interested in computing a
repair (fixing all the acquired values) than evaluating whether a single acquired value is
“reliable”. The main contribution of this section is the definition of a technique for com-
puting a card-minimal repair for a database w.r.t a set of steady aggregate constraints,
which is based on the translation of the repair-evaluation problem into an instance of
a mixed-integer linear programming (MILP) problem [18]. Our technique exploits the
restrictions imposed on steady aggregate constraints w.r.t. general aggregate constraints
to accomplish the computation of a repair. As it will be clear later, this approach does
not work for (general) aggregate constraints.



Consider a database scheme D and a set of steady aggregate constraints AC on D. In
this case, we can model the problem of finding a card-minimal repair as MILP problem
(if the domain of numerical attributes is restricted to Z then it can be formulated as an
ILP problem).

We first show how a steady aggregate constraint can be expressed by a set of linear
inequalities.

Consider the steady aggregate constraint κ:

∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑
i=1

ci · χi(yi1 , . . . , yimi
) ≤ K

)
(4)

where ∪n
i=1{yi1 , . . . yimi

} is a subset of {x1, . . . , xk} and for each i ∈ [1..n]:

χi(yi1 , . . . yimi
) = SELECT sum(ei)

FROM Rχi

WHERE αi(yi1 , . . . , yimi
)

Without loss of generality, we assume that each attribute expression ei occurring in
the aggregation function χi is either an attribute or a constant.

We associate a variable zt,Aj
to each database value t[Aj ], where t is a tuple in the

database instanceD and Aj is an attribute in MD . zt,Aj
is defined on the same domain

as Aj . For every ground substitution θ of x1, . . . , xk such that φ(θx1, . . . , θxk) is true,
we will denote as Tχi

the set of the tuples involved in the aggregation function χi, that
is Tχi

= {t : t |= αi(θyi1 , . . . , θyimi
)}.

The translation of χi, denoted as P(χi), is defined as follows:

P(χi) =



∑

t∈Tχi
zt,Aj

if ei = Aj ;

ei · |Tχi
| if ei is a constant.

Starting from P(χi), the whole constraint κ can be expressed as a set S of lin-
ear inequalities as follows. For every ground substitution θ of x1, . . . , xk such that
φ(θx1, . . . , θxk) is true, S contains the following inequality:

n∑
i=1

ci · P(χi) ≤ K (5)

Observe that this construction is not possible for a non-steady aggregate constraint
since, given a database instance D and an aggregation function χi in the constraint, we
cannot determine Tχi

: changing a measure value might result in changing the set of the
tuples involved the aggregation function.

For the sake of simplicity, in the following we associate to each pair 〈t, Aj〉 an
integer index i, therefore we write zi instead of zt,Aj

. If we assume that the number
of values involved in constraints in AC concerning the given database instance D is N
then the index i will take values in [1..N ].

As shown above, we can translate each steady aggregate constraint into a system
linear inequalities. The translation of all aggregate constraints in AC produces the sys-
tem of linear inequalities A · Z ≤ B, where Z = [z1, z2, . . . , zN ]T . This system will
be denoted as S(AC).



Example 10. Consider the database scheme D of our running example, the database
instance in Figure 3 and the set of aggregate constraints AC consisting of constraints
1), 2) and 3). The values involved in constraints in AC w.r.t. the given database instance
in Figure 3 are as many as the number of tuples, that is N = 20. Therefore, zi, with
i ∈ [1..20] is the variable associated to the database value t[V alue], where t is the i-th
tuple in Figure 3. For instance, z2 is the variable associated with the value of attribute
Value in the tuple t = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100).

The translation of constraints 1), 2) and 3) is the following, where we explicitly
write equalities instead of inequalities:

1)



z2 + z3 = z4
z5 + z6 + z7 = z8
z12 + z13 = z14
z15 + z16 + z17 = z18

2)
{
z4 − z8 = z9
z14 − z18 = z19

3)
{
z1 − z9 = z10
z11 − z19 = z20

S(AC) consists of the system obtained by assembling all the equalities reported above
(basically, it is the intersection of systems 1,2,3). ��
In the following we will denote the current database value corresponding to the vari-
able zi as vi. That is, if zi is associated with t[Aj ], then vi = t[Aj ]. Every solution s of
S(AC) corresponds to a (possibly non-minimal) repair ρ(s) of D w.r.t. AC. In particu-
lar, for each variable zi which is assigned a value different from vi, repair ρ(s) contains
an atomic update assigning the value zi to the database item corresponding to zi.

In order to decide whether a solution s of S(AC) corresponds to a card-minimal
repair, we must count the number of variables of s which are assigned a value different
from the corresponding source value in D. This is accomplished as follows. For each
i ∈ [1..N ], we define a variable yi = zi − vi on the same domain as zi. Consider the
following system of linear inequalities, which will be denoted as S ′(AC):{

AZ ≤ B
yi = zi − vi ∀i ∈ [1..N ] (6)

As shown in [22], if a system of equalities has a solution, it has also a solution where
each variable takes a value in [−M,M ], where M is a constant equal to n · (ma)2m+1,
wherem is the number of equalities, n is the number of variables and a is the maximum
value among the modules of the system coefficients. It is straightforward to see that
S ′(AC) can be translated into a system of linear equalities in augmented form with
m = N + r and n = 2 ·N + r, where r is the number of rows of A3.

In order to detect if a variable zi is assigned (for each solution of S ′(AC) bounded
by M ) a value different from the original value vi (that is, if |yi| > 0), a new binary
variable δi will be defined. δi will have value 1 if the value of zi differs from vi, 0
otherwise. To express this condition, we add the following constraints to S ′(AC):


yi ≤Mδi ∀i ∈ [1..N ]
−Mδi ≤ yi ∀i ∈ [1..N ]
δi ∈ {0, 1} ∀i ∈ [1..N ]

(7)

3 Observe that the size of M is polynomial in the size of the database, as it is bounded by
log n + (2 · m + 1) · log(ma).



The system obtained by assembling S ′(AC) with inequalities (7) will be denoted as
S ′′(AC). For each solution s′′ of S ′′(AC), the following hold: 1) for each zi which is
assigned in s′′ a value greater than vi, the variable δi is assigned 1 (this is entailed by
constraint yi ≤ Mδi); 2) for each zi which is assigned in s′′ a value less than vi, the
variable δi is assigned 1 (this is entailed by constraint −Mδi ≤ yi). Moreover, for each
zi which is assigned in s′′ the same value as vi (that is, yi = 0), variable δi is assigned
either 0 or 1.

Obviously each solution of S ′′(AC) corresponds to exactly one solution for S(AC)
(or, analogously, for S ′(AC)) with the same values for variables zi, and, vice versa, for
each solution of S(AC) whose variables are bounded byM there is at least one solution
of S ′′(AC) with the same values for variables zi. As solutions of S(AC) correspond to
repairs for D, each solution of S ′′(AC) corresponds to a repair ρ for D w.r.t. AC such
that, for each update u = 〈t, A, v〉 in ρ it holds that |v| ≤ M . Repairs satisfying this
property will be said to be M-bounded repairs.

In order to consider only the solutions of S ′′(AC) where each δi is 0 if yi = 0, we
consider the following optimization problem S∗(AC), whose goal is minimizing the
sum of the values assigned to the variables δ1, . . . , δN :

min
∑N

i=1 δi


AZ ≤ B
yi = zi − vi ∀i ∈ [1..N ]
yi −Mδi ≤ 0 ∀i ∈ [1..N ]
−yi −Mδi ≤ 0 ∀i ∈ [1..N ]
zi, yi ∈ R ∀i ∈ IR

zi, yi ∈ Z ∀i ∈ IZ

δi ∈ {0, 1} ∀i ∈ [1..N ]

(8)

where IR ⊆ {1, . . . , N} and IZ ⊆ {1, . . . , N} are the sets of the indexes of the vari-
ables z1, . . . , zN (and, equivalently, y1, . . . , yN ) defined on the domains R and Z, re-
spectively.
It is straightforward to see that any solution of S∗(AC) corresponds to an M-bounded
repair ρ for D w.r.t. AC having minimum cardinality w.r.t. all M-bounded repairs for
D w.r.t. AC. It can be shown that if there is a repair for D w.r.t. AC, then there is an
M-bounded card-minimal repair ρ∗ for D (this follows from Lemma 1 in [16]). This
implies that any solution of S∗(AC) corresponds to a card-minimal repair for D w.r.t.
AC.

Basically, the minimum value of the objective function of S∗(AC) represents the
number of atomic updates performed by any card-minimal repair, whereas the values
of variables z1, . . . , zN , y1, . . . , yN , δ1, . . . , δN corresponding to an optimum solution
s∗ of S∗(AC) define the atomic updates performed by the card-minimal repair ρ(s∗).

Example 11. The optimization problem obtained starting from the database in the Fig-
ure 3 of our running example and from the set of steady aggregate constraints consisting
of 1), 2) and 3) is shown in Figure 4. Specifically, since it is assumed that the domain
of attribute V alue of relation CashBudget is Z, then IZ = {1, . . . , 20} and IR = ∅.
The value of the constant M is 20 · (28 · 250)2·28+1.



The minimum value of the objective function of this optimization problem is 1
(only δ4 = 1). This problem admits only one optimum solution where the value of each
variable y1, . . . , y20 is 0 except for y4 that takes value −30. The card-minimal repair
corresponding to this solution is that of Example 6. ��

min
P20

i=1 δi8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

z2 + z3 = z4

z5 + z6 + z7 = z8

z12 + z13 = z14

z15 + z16 + z17 = z18

z4 − z8 = z9

z14 − z18 = z19

z1 − z9 = z10

z11 − z19 = z20

y1 = z1 − 20
y2 = z2 − 100
y3 = z3 − 120

y4 = z4 − 250
y5 = z5 − 120
y6 = z6 − 0
y7 = z7 − 40
y8 = z8 − 160
y9 = z9 − 60
y10 = z10 − 80
y11 = z11 − 80
y12 = z12 − 100
y13 = z13 − 100
y14 = z14 − 200

y15 = z15 − 130
y16 = z16 − 40
y17 = z17 − 20
y18 = z18 − 190
y19 = z19 − 10
y20 = z20 − 90
yi − Mδi ≤ 0 ∀i ∈ [1..20]
−yi − Mδi ≤ 0 ∀i ∈ [1..20]
zi, yi ∈ Z ∀i ∈ [1..20]
δi ∈ {0, 1} ∀i ∈ [1..20]

Fig. 4. MILP-problem instance for the running example

6 DART architecture
The DART architecture is shown in Figure 5, where the organization of both the Ac-
quisition and extraction module and the Repairing module of Figure 2 are described in
more detail. In the following we discuss the tasks accomplished by these modules.

6.1 Acquisition module

This module performs the task of acquiring the information contained in the (either
electronic or paper) input documents, and represents it into an electronic document
whose format is suitable for the extraction phase accomplished by the Data Extraction
Module. As the current implementation of DART embeds a wrapper working on HTML
documents, input documents which are not already in this format are converted into an
HTML document by means of a format-conversion tool (in the current implementation
this tool supports the conversion of PDF, MSWord, RTF documents). In particular, pa-
per documents are first digitized and processed by means of an OCR tool (yielding PDF
documents) whose output is then processed by the converter.

6.2 Data extraction module

The Data extraction module carries out both the information extraction and the database
generation tasks. The former task is accomplished by a wrapping sub-module which
takes as input the HTML document generated by the Acquisition module as well as a
set of extraction metadata providing information on the semantics and the structure of
data contained into the input document.

Wrapper
Data to be extracted from the input HTML document are contained into tables whose
position inside the document is specified inside the extraction metadata. The informa-
tion encoded into each table is extracted by evaluating whether its rows match some
patterns (namely row patterns) defining structure and content of the data to be extracted.



Fig. 5. The DART Architecture

Before explaining how the wrapping sub-module works, we give some details about
the set of extraction metadata.

This set contains domain descriptions, row patterns and hierarchical relationships.
Domain descriptions specify a set of domains and the sets of lexical items that be-
longs to each domain. For instance, considering the balance sheet analysis context,
Section and Subsection are domains. Some lexical items belonging to the former are
“Receipts”, “Disbursements”, “Balance”, whereas some lexical items belonging to the
latter are “beginning cash”, “receivables”, “payment of accounts” and “capital expen-
diture”. In the following we will denote the set of these domains asDom. Hierarchical
relationships are relations among lexical items belonging to different domains. For in-
stance, the items “beginning cash”, “cash sales”, “receivables” and “total cash receipts”
are specializations of “Receipts”. Figure 6 depicts some domains, some lexical items
belonging to them and some hierarchical relationships represented by means of arrows.
A row pattern specifies the structure and the content of a table row. The structure is

Fig. 6. Domains and hierarchical relationships

given specifying an ordered set of cells. The content of a cell is either a domain belong-
ing to Dom or a standard domain such as Integer, String, etc. A row pattern r matches
a row rt of a table in an input document if r and rt have the same number of cells and
if the content of the i-th cell of rt matches the domain specified into the i-th cell of r.
A row pattern contains an headline indicating the semantics of the domains specified
in the cells. The headline will be exploited in the database generation task to construct
a relation scheme. In a row pattern, hierarchical relationships can be specified among



lexical items expected in some cells. For instance, it is possible to require that a lexi-
cal item expected in a cell must be a generalization of another lexical item required in
another cell.
Example 12. Consider the row pattern shown in Figure 7(a). The headline consists of
the cells with the dashed border. The row pattern indicates that the rows which must
be extracted from the input table consist of 4 cells. In particular, both the first and the
last cells specify that a value of type Integer is required, and the headline specifies that
the first value is interpreted as Year and the last as Value. The second cell indicates that
a lexical item s1 belonging to the Section domain is expected. The third cell imposes
a hierarchical relationship, indicated by an arrow. It specifies that a lexical item s2
belonging to the Subsection domain is required, and that s2 must be specialization of
s1. ��

a) b)
Fig. 7. a)A row pattern b)A row pattern instance

The wrapper takes as input a set of row patterns and the HTML document returned
by the acquisition module, and returns a set of row pattern instances. A row pattern
instance is the result of the matching between a table row and the set of row patterns.
First, for each row rt of the input table, the wrapper identifies the row pattern r that
matches rt at best, i.e. it chooses the row pattern having the most similar structure and
the most compatible content w.r.t. rt. After this choice the wrapper constructs the row
pattern instance p relative to r.

In more detail, the evaluation of the matching between a table row and a row pattern
yields a score representing the matching degree. The matching is performed comparing
the table cells and the corresponding row pattern cells. The comparison between a row
pattern cell and an input table cell yields a cell matching score. The whole row pattern
instance is associated with a score obtained by applying a suitable t-norm to all the
matching scores of its cells.

Each cell matching score results from “validating” the string s in the table cell
w.r.t the domain d specified in the cell of the row pattern. The validation of s w.r.t. d
is accomplished by identifying the item s′ in d which is the most similar 4 to s, and
returning the similarity degree between s′ and s. Given a string s and a domain d we
denote the item in d which is the most similar to s as msi(d, s). The string [resp. the
domain] contained in the i-th cell of a document row rt [resp. row pattern r] will be
denoted as rt(i) [resp. r(i)].

For each document row rt, the row pattern r for which the matching degree is
maximum is chosen. Then a row pattern instance p is constructed, where the i-th cell of
p contains the item msi(r(i), rt(i)).

Observe that the construction of the row pattern instance is a form of repair on the
input data. Indeed, incorrect items in the input tables (i.e. items which do not belong to
the corresponding domain in the specified row pattern) are transformed into the most
similar valid lexical items.

4 s′ must also satisfy the hierarchical relationships specified in the row pattern.



Finally, we obtain a set of row pattern instances such that each document row is
mapped on a row pattern instance.
Example 13. Consider the document in Figure 1 and the row pattern in Figure 7(a). As-
sume that a symbol recognition error in non-numerical string occurs, like the recogniz-
ing of the item “bgnning cesh” instead of “beginning cash”. The matching between the
first document row and this row pattern returns the row pattern instance in Figure 7(b),
where Integer in the first cell is bound to “2003”, Section to “Receipts”, Subsection to
“beginning cash” and Integer in the last cell is bound to “20”. In Figure 7(b) the match-
ing scores for the cells are also depicted. The third cell score (90%) is lower than the
others (100%), since it comes from a non-exact match.

Note that the value “2003” is coded into a multi-row cell of the input table, and it is
bound in this row pattern instance since the wrapper considers this value associated to
all the document rows which are adjacent to the multi-row cell. ��
Database generator
The Database generator sub-module takes as input the set of row pattern instances
returned by the wrapper module and returns a database instance D conforming to the
database scheme defined in the extraction metadata.

Extraction metadata specify also classification information providing classification
of lexical items depending on the role they play in aggregation constraints. For instance,
in Example 1 lexical items in the domain Subsection are classified as detail, aggregate
and derived items (the meaning of these classes has been defined in Example 2).

The definition of the database scheme contained in the extraction metadata contains
both the definition of the relational scheme (that is, the name of the relations and, for
each relation, the names of its attributes) and the correspondence between each rela-
tion scheme and the row pattern instances taken as input. For instance in our running
example the relational scheme specified in the extraction metadata consists of CashBud-
get(Year, Section, Subsection, Type, Value). Moreover, the extraction metadata contain
the specification that attributes Year, Section, Subsection, Value correspond to the cells
of the row pattern instances described by the same names in the headline, whereas the
attribute Type is determined by classification information.

Each row pattern instance taken as input is exploited to insert a new tuple in the
corresponding relation. For instance, each tuple t in Figure 3 is obtained from a row
pattern instance r returned by the wrapper. In particular, the values of the attributes
Year, Section, Subsection, Value in t are taken from the corresponding cells of the row
pattern instance r. Moreover the value of the attribute Type is implied by the value of
the attribute Subsection according to classification information.

6.3 Repairing module
The input of the repairing module is the database D obtained by the data extraction
module and a set AC of steady aggregate constraints implied by the constraint meta-
data. The repairing module returns a card-minimal repair for D w.r.t. AC. This is ac-
complished by means two phases: first, the problem of finding a card-minimal repair
for D w.r.t. AC is translated into an instance of an MILP problem (as we have shown
in Section 5), and then such an obtained MILP instance is solved by means of an MILP
solver, which is implemented using LINDO API 4.0 (available at www.lindo.com).



Validation Interface
The Validation Interface is the component allowing the operator to interact with DART.
When a document is processed, the Validation Interface displays the repair computed by
the Repairing module by showing the suggested set of value updates. Then, the operator
examines the proposed repair by comparing every updated value with the corresponding
source value in the input document. If the operator verifies that the suggested updated
values are equal to the corresponding source values, then the repair is accepted and the
repaired data is considered as consistent. Otherwise, a new repair is computed by the
Repairing module according to operator “instructions”. That is, for each suggested up-
date u which has not been accepted by the operator, the operator can specify the actual
source value v corresponding to the database item d changed by u. Then an aggregate
constraint is added to the set of constraints inputted into the MILP transformer, forc-
ing the value of d to be equal to v. Similarly, accepting an update u on the database
item d is translated into an aggregate constraint forcing the value of d to be equal to the
value suggested by the repair. After this, a new repair is computed, corresponding to the
solution of the new MILP instance obtained by assembling the aggregate constraints re-
sulting from Constraint Metadata with those resulting from operator validation. This
process goes on until the generated repair is accepted by the operator.

At each iteration, the operator is not requested to validate values which had been
already validated in a previous iteration. Moreover, the computation of a repair can be
re-started after validating only some of the suggested updates. Every repair is proposed
to the operator by displaying its updates in a specific order. That is, an update u2 is
displayed before another update u2 if the database item d1 changed by u1 is involved
in a larger number of ground aggregate constraints than the database item d2 changed
by u2 (i.e. if the variable corresponding to d1 occurs in the MILP instance in a larger
number of inequalities than the variable corresponding to d2). This ordered displaying
is an heuristics which is useful in the case that the operator chooses to re-start the repair
computation after a small number of validations, and it aims at finding an acceptable
repair in a small number of iterations.

7 Conclusions and future works
DART is currently being developed. Both the Acquisition and extraction module and
the Repairing module have been implemented, but no user-friendly interface is cur-
rently available. Preliminary tests show that DART effectively supports the acquisition
of balance data, providing the correct repair of wrongly acquired data in a few iterations
in most cases. A more extensive experimental evaluation of system effectiveness will be
accomplished on larger data sets when a user-friendly visual interface will be available.

References
1. Agarwal, S., Keller, A. M., Wiederhold, G., Saraswat, K., Flexible Relation: An Approach for

Integrating Data from Multiple, Possibly Inconsistent Databases, Proc. International Con-
ference on Data Engineering (ICDE), 495–504, 1995.

2. Arenas, M., Bertossi, L. E., Chomicki, J., Consistent Query Answers in Inconsistent
Databases, Proc. Symposium on Principles of Database Systems (PODS), 68–79, 1999.

3. Arenas, M., Bertossi, L. E., Chomicki, J., Specifying and Querying Database Repairs using
Logic Programs with Exceptions, Proc. International Conference on Flexible Query Answer-
ing Systems (FQAS), 27–41, 2000.



4. Arenas, M., Bertossi, L. E., Chomicki, J., He, X., Raghavan, V., Spinrad, J., Scalar aggrega-
tion in inconsistent databases, Theoretical Computer Science, Vol. 3(296), 405–434, 2003.

5. Baumgartner, R., Flesca, S., Gottlob, G., Visual Web Information Extraction with Lixto,
Proc. International Conference on Very Large Data Bases (VLDB), 119–128, 2001.

6. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A., Complexity and Approximation of Fix-
ing Numerical Attributes in Databases Under Integrity Constraints, Proc. International Sym-
posium on Database Programming Languages (DBPL), 262–278, 2005.

7. Bohannon, P., Flaster, M., Fan, W., Rastogi, R., A Cost-Based Model and Effective Heuristic
for Repairing Constraints by Value Modification, Proc. ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 143–154, 2005.

8. Bry, F., Query Answering in Information Systems with Integrity Constraints, IFIP WG 11.5
Working Conference on Integrity and Control in Information Systems, 113–130, 1997.

9. Chomicki, J., Marcinkowski, J., Staworko, S., Computing consistent query answers using
conflict hypergraphs, Proc. International Conference on Information and Knowledge Man-
agement (CIKM), 417–426, 2004.

10. Chomicki, J., Marcinkowski, J., Staworko, S., Hippo: A System for Computing Consistent
Answers to a Class of SQL Queries, Proc. International Conference on Extending Database
Technology (EDBT), 841–844, 2004.

11. Chomicki, J., Marcinkowski, J., Minimal-Change Integrity Maintenance Using Tuple Dele-
tions, Information and Computation (IC), Vol. 197(1-2), 90–121, 2005.

12. Cohen, W. W., Hurst, M., Jensen, L. S., A flexible learning system for wrapping tables and
lists in HTML documents, Proc. International World Wide Web Conference (WWW), 232–
241, 2002.

13. Crescenzi, V., Mecca, G., Merialdo, P., RoadRunner: Towards Automatic Data Extraction
from Large Web Sites, Proc. International Conference on Very Large Data Bases (VLDB),
109–118, 2001.

14. Embley, D. W., Tao, C., Liddle, S. W., Automating the extraction of data from HTML tables
with unknown structure, Data & Knowledge Engineering, Vol. 54(1) 3–28, 2005.

15. Fazzinga, B., Flesca, S., Tagarelli, A., Learning Robust Web Wrappers, Proc. International
Conference on Database and Expert Systems Applications (DEXA), 736–745, 2005.

16. Flesca, S., Furfaro, F., Parisi, F., Consistent Query Answer on Numerical Databases un-
der Aggregate Constraint, Proc. International Symposium on Database Programming Lan-
guages (DBPL), 279–294 2005.

17. Flesca, S., Tagarelli, A., Schema-Based Web Wrapping, Proc. International Conference on
Conceptual Modeling (ER), 286–299, 2004.

18. Gass, S.I., Linear Programming Methods and Applications, McGrawHill, 1985.
19. Greco, G., Greco, S., Zumpano, E., A Logical Framework for Querying and Repairing In-

consistent Databases, IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol.
15(6), 1389–1408, 2003.

20. Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., DEByE - Data Extraction By Exam-
ple, Data & Knowledge Engineering, Vol. 40(2), 121–154, 2002.

21. Liu, L., Pu, C., Han, W., XWRAP: An XML-Enabled Wrapper Construction System for
Web Information Sources, Proc. International Conference on Data Engineering (ICDE),
611–621, 2000.

22. Papadimitriou, C. H., On the complexity of integer programming, Journal of the Association
for Computing Machinery (JACM), Vol. 28(4), 765–768, 1981.

23. Papadimitriou, C. H., Computational Complexity, Addison-Wesley, 1994.
24. Wijsen, J., Condensed Representation of Database Repairs for Consistent Query Answering,

Proc. International Conference on Database Theory (ICDT), 378–393, 2003.
25. Wijsen, J., Making More Out of an Inconsistent Database, Proc. International Conference

on Advances in Databases and Information Systems (ADBIS), 291–305, 2004.


