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Abstract. A data stream management system executes a large number
of continuous queries in parallel. As stream characteristics and query
workload change over time, the plan initially installed for a continuous
query may become inefficient. As a consequence, the query optimizer will
re-optimize this plan based on the current statistics. The replacement of
the running plan with a more efficient but semantically equivalent plan
at runtime is called dynamic plan migration. In order to have a sound
semantic foundation for query optimization, we investigate dynamic plan
migration for snapshot-equivalent plans. We develop a general method for
dynamic plan migration that treats the old and new plan as snapshot-
equivalent black boxes. This enables the query optimizer to apply the
conventional transformation rules during re-optimization. As a conse-
quence, our approach supports the dynamic optimization of arbitrary
continuous queries expressible in CQL, whereas existing solutions are
limited in their scope.

1 Introduction

Dynamic query optimization at runtime is important for a data stream man-
agement system (DSMS) because the subscribed queries are long-running and
the underlying stream characteristics such as arrival rates and data distributions
may vary over time. In addition, the query workload may gradually change. In
this case, dynamic query optimization may be useful to enable a DSMS to save
system resources by subquery sharing.

There are two major steps in dynamic query optimization. First, the query
optimizer needs to identify a plan with optimization potential. For this purpose,
a DSMS keeps a plethora of runtime statistics, e. g., on stream rates, and selec-
tivities. In the second step, the query optimizer replaces the currently running,
inefficient plan by a semantically equivalent but more efficient new plan. This
transition at runtime is called dynamic plan migration [1]. Dynamic plan mi-
gration is easy as long as query plans only consist of stateless operators, such
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as selection and projection, and inter-operator queues. In order to perform the
migration, it is sufficient to pause the execution of the old plan first, drain out
all existing elements in the old plan afterwards, replace the old plan by the new
plan, and resume the execution finally. In contrast to stateless operators, state-
ful operators like join and aggregation must maintain information derived from
previously received elements as state information to produce correct results. Mi-
gration strategies for query plans with stateful operators are complex because
it is non-trivial to appropriately transfer the state information from an old plan
to a new plan.

Besides the essential requirement of correctness, a migration strategy should
take the following performance objectives into account. It should (i) not stall
query execution for a significant timespan as catching up with processing could
cause system overload afterwards, (ii) continuously produce results during migra-
tion — the smoother the output rate the better, and (iii) minimize the migration
duration and migration overhead in terms of system resources like memory and
CPU costs.

To the best of our knowledge, dynamic plan migration has only been ad-
dressed in [1] so far. The authors proposed two different migration strategies,
moving states (MS) and parallel track (PT). MS computes the state of the new
plan instantly from the state of the old plan at migration start. Afterwards the
old plan is discarded and the execution of the new plan is started. In order to
apply MS, the query optimizer requires a detailed knowledge about the oper-
ator implementations because it needs to access and modify state information.
Despite the fact that it may be possible to define those transitions correctly for
arbitrary transformation rules involving joins, aggregation, duplicate elimination
etc., the implementation will be very complex and inflexible. For that reason, we
prefer the second strategy proposed in [1], namely PT, as starting point for our
black box migration approach. In contrast to MS, PT runs both plans in parallel
for a certain timespan to initialize the new plan gradually with the required state
information. Although [1] claims that PT is generally applicable to continuous
queries over data streams, we identified problems if stateful operators other than
joins occur in a plan, e. g., duplicate elimination and aggregation. In this paper
we develop a general migration strategy which overcomes these deficiencies.

The basis of our approach is the temporal semantics for continuous queries
over data streams defined in [2]. The algebraic transformation rules known from
conventional database systems can be transferred to the stream algebra in [2] be-
cause the stream-to-stream operators are snapshot-reducible [3, 4] to their coun-
terparts in the extended relational algebra. Snapshot-reducibility is also the rea-
son why the semantics and stream algebra in [2] are in accordance with CQL [5],
an extension of SQL for continuous queries. Based on this semantic founda-
tion, our migration strategy requires for correctness that both plans — the old
and new — produce snapshot-equivalent results. Note that applying conventional
transformation rules guarantees this property for the algebra in [2].

As we generalize PT, we treat the old and new plan as snapshot-equivalent
black boxes which can consist of arbitrary operators. The basic idea of our



approach is to define a split time. For all time instants before the split time,
results are computed by the old plan, whereas the new plan computes the results
for all other time instants. The migration is finished as soon as the timestamps
of the elements in all input streams reached the split time.

The contributions of this paper can be summarized as follows:

— We show that PT fails to cope with plans involving stateful operators other
than joins.

— We propose our general solution for dynamic plan migration of arbitrary
CQL queries, called GenMig, prove its correctness, and discuss implementa-
tion issues. Besides a straightforward implementation, we suggest two opti-
mizations.

— We analyze the performance of GenMig with regard to the objectives men-
tioned above, and compare it to PT.

The rest of this paper is organized as follows. Section 2 introduces semantic
foundations and briefly summarizes implementation techniques for continuous
queries over data streams. In Section 3, we demonstrate that PT fails for plans
with other stateful operators than joins. Our general plan migration strategy is
presented in Section 4. Section 5 shows the results of our experimental studies.
Related work is discussed in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

In order to understand the rationale of our approach, it is important to know
the underlying semantics and compatible implementations. In analogy to tra-
ditional database management systems, we distinguish between a logical and a
physical operator algebra. The logical stream algebra defines the semantics of
the operations, whereas the physical algebra provides implementations.

2.1 Semantic Foundations

Time The notion of time is of utmost importance in stream processing. As com-
mon in most approaches, we assume each stream element to be equipped with a
timestamp, and streams to be ordered by this timestamp attribute. Furthermore,
we assume that only a finite number of elements has the same timestamp. Let
T = (T, <) be a discrete time domain with a total order <. We use T to model
the notion of application time, not system time. For the sake of simplicity, let T’
be the non-negative integers {0,1,2,3,...}.

Sliding Window Queries Sliding window queries are the most common and
important type of continuous queries in DSMS. Without loss of generality, we
assume time-based sliding window queries in this paper. A sound semantics for
this query type has been established in recent years [2, 5] based on the operations
of the well-known extended relational algebra [6, 7].
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Fig. 1. Snapshot reducibility

The operators in [2] can be classified into two categories: window operators
and standard operators. The window operators model the sliding window se-
mantics. In a logical query plan, a window operator is placed downstream of
each source for which a window has been specified in the corresponding query
representation, e. g., CQL [5]. The rest of the plan consists of standard operators
borrowed from the temporal relational algebra [3]. The standard operators are
snapshot-reducible to their relational counterparts and are used in the same way.

Definition 1 (Snapshot-Reducibility). We denote a stream-to-stream oper-
ation opr with inputs S1,...,Sy as snapshot reducible if for each time instant
t € T, the snapshot at t of the results of opr is equal to the results of applying
its relational counterpart op to the snapshots of S1,...,S, at time instant t.

Figure 1 illustrates the temporal concept of snapshot reducibility [3,4]. A snap-
shot of a stream at a time instant ¢ can be considered as a relation since it
represents all tuples valid at that time instant.

Definition 2 (Snapshot-Equivalence). Two streams are snapshot-equivalent
if for all time instants t, the snapshots at t of both streams are equal.

We denote two query plans as equivalent if they produce snapshot-equivalent re-
sults. Note that conventional transformation rules applied to snapshot-reducible
operators preserve snapshot-equivalence [3]. Snapshot equivalence is the reason
why the common relational transformation rules are still applicable to the stream
algebra [2] and make query optimization feasible.

Remark 1. Figure 1 can also be used to motivate that [2] and [5] basically have
the same expressiveness. The abstract semantics proposed for STREAM trans-
forms the input streams into relations, uses operations of the relational alge-
bra for processing, and transforms the output relations back into streams. The
window specifications are included in the mappings from streams to relations.
Hence, the stream-to-stream approach in [2] works completely on the left side of
Figure 1, whereas STREAM goes the way round on the right side.

2.2 Interval-based Implementation

There currently exist two major implementation techniques compatible with
the semantics introduced above: the interval-based implementation [2,8], and



the positive-negative tuple approach [5,9]. We describe the implementation of
GenMig for the interval-based approach, but additionally outline how it can be
adapted to the positive-negative approach.

The stream-to-stream operator algebra in [2] relies on so-called physical
streams.

Definition 3 (Physical Stream). A physical stream S is a potentially infinite,
ordered sequence of elements (e, [ts,tg)) composed of a tuple e belonging to the
schema of S and a half-open time interval [tg,tg) where tg,tp € T. A physical
stream s non-decreasingly ordered by start timestamps.

The interpretation of a physical stream element (e, [tg,tg)) is that a tuple e is
valid during the time interval [tg,tg).

Input Stream Conversion Input streams of many stream applications provide
elements with a timestamp attribute, but no time interval. As those streams are
usually ordered by timestamps, a physical stream can be generated easily by
mapping each incoming element e with its internal timestamp ¢ to (e, [t,t + 1)),
where 41 indicates a time period at finest time granularity.

Window Operator The window operator assigns a validity according to its
window size to each element of its input stream. For a time-based sliding win-
dow, the window size w € T represents a period in application time. For each
element (e, [ts,ts + 1)), the window operator extends its validity by adding the
window size to its end timestamp, i.e., (e, [ts,ts + 1 + w)). This is intuitive for
a time-based sliding window query since a stateful operation downstream of a
window operator has to consider an element for additional w time instants. In
the general case, where nesting of continuous sliding window queries is permit-
ted, the window operator produces for each incoming element (e, [ts,tg)) a set
of elements by extending the validity of each single time instant by the window
size w. Note that a window operator does not affect stateless operations, such
as selection and projection.

Query Plans Query plan construction is basically the same as in conventional
database systems, except that the query optimizer has to place the window oper-
ators in addition. The window operators are placed downstream of the source for
which a window has been specified. This placement is performed by the query op-
timizer when transforming the posed query into the corresponding logical query
plan. Thereafter, the query optimizer computes the physical plan by choosing a
physical operator for each logical one.

Temporal Expiration Besides the desired semantics, windowing constructs
(i) restrict the resource usage and (ii) ensure non-blocking behaviour of stateful
operators over infinite streams [10]. For stateful operators like joins, elements in
the state expire due to the validity assigned by the window operator. A stateful



operator considers an element (e, [ts,tg)) in its state as expired if it is guaranteed
that it will not be involved in the result production any more. That means,
no element in one of its input streams will arrive in the future whose time
interval will overlap with [tg,tg). According to the total order maintained for
each physical stream, this condition holds if the minimum of all start timestamps
of the latest incoming element from each input stream is greater than tg. A
stateful operator can delete all expired elements from its state. In those cases
where application-time skew between streams and latency in streams becomes
an issue, heartbeats [11] can be used to explicitly trigger additional expiration
steps.

Examples Our examples throughout the paper are based on two stateful op-
erators: join and duplicate elimination. The snapshot-reducible join satisfies the
following conditions [2,8]: (a) for two participating stream elements, the join
predicate has to be fulfilled and (b) their time intervals have to intersect. The
time interval associated with the join result is set to the intersection of the
two participating time intervals. The snapshot-reducible duplicate elimination
removes duplicate tuples at each single snapshot. That means, the output must
not contain two elements with identical tuples and intersecting time intervals.

2.3 Positive-Negative Implementation

Another common implementation technique for continuous queries is the Positive-
Negative (PN) tuple approach, used in STREAM [12] and Nile [9] for instance.
The PN implementation is based on streams with elements of the following for-
mat: a tuple e, a timestamp ¢ € T, and a sign, + or —. A stream is ordered
by timestamps. The signs are used to define the validity of elements. The stan-
dard operators are modified to handle positive and negative tuples, in particular
with regard to temporal expiration. For each incoming stream element with ap-
plication timestamp ¢, the window operator sends a positive element with that
timestamp, and after w + 1 (window size + 1) time units, a negative element is
sent with timestamp ¢ + w + 1 to signal the expiration. For further details, we
refer the reader to [9,12].

A pair consisting of a positive and its corresponding negative element can
be used to express a stream element in the interval-based approach. Namely,
(e,[ts,tr)) can be implemented by sending a positive element (e,tg,+) and
negative element (e, tg, —). Hence, positive elements refer to start timestamps,
whereas negative elements refer to end timestamps. Even at this physical level,
the semantic equivalence of both approaches becomes obvious. However, the
interval approach does not have the drawback of doubling stream rates due to
sending positive and negative tuples.

3 Problems of the Parallel Track Strategy

After outlining PT, we demonstrate that PT produces incorrect results if applied
to plans involving stateful operators other than joins. Note that the authors



in [1] claim that their migration strategies are generally applicable. We assume
a global time-based window of size w as in [1]. We use the term boz to refer to
the implementation of a plan, i.e., the physical query plan actually executed.

3.1 Parallel Track Strategy

At migration start PT pauses the processing only shortly to plug in the new
box. Then, it resumes the old box and runs both boxes in parallel. The results
of both plans are merged. Finally, when the states in the old box solely consist
of elements that arrived after migration start, the migration is over and the old
box can be safely removed. This implies that all elements stored in the state
before migration start have been purged due to temporal expiration.

The following aspects guarantee the correctness of the PT strategy according
to [1]: (i) Although all elements arriving during migration are processed by both
plans, the combined output must not contain duplicates, that means results
produced by both plans for the same snapshot. This is achieved by marking the
elements with flags, old and new, which indicate if an element arrived before
and after the migration start time, respectively. For combined results, e. g., join
results, a new flag is assigned if all involved elements had a new flag. To guarantee
correctness, PT removes all results of the old box that are assigned with a new
flag as those are additionally produced by the new box. (ii) In order to preserve
temporal ordering, the output of the two boxes has to be synchronized. PT
simply buffers the output of the new box during migration.

3.2 Problems

The PT strategy as proposed in [1] works well for join reordering but fails if
other stateful operators are involved. We illustrate this by a concrete example.
Let us consider the migration scenario given in Figure 2 consisting of an equi-
join (1) and a duplicate elimination (§) which is pushed down for optimization
purposes. Recall that this is a standard transformation rule which holds in the
stream algebra due to our semantic foundations. Figure 2 shows the query plans
as well as the inputs and outputs of the operators.

Example 1. We have two input streams A and B delivering the elements listed
in the upper right table. The table labelled with > depicts the correct results
of the join inside the old box. The table labelled with § contains the correct
results of the duplicate elimination of the old box. The tables §7,d5, and <’
correspond to the operator results of the new box. Correctness here refers to the
snapshot-reducible semantics assumed. Although we use our notation with half-
open time intervals to denote the validity of elements, the example solely relies on
snapshot-reducible operator semantics and thus is implementation independent.
Recall that a time interval just describes a contiguous set of time instants.

All input elements are considered to be valid for 100 time units, which is
the global window size. The migration start is at time instant 40. The ele-
ment (a, [20,121)) from input B, which is marked as old, joins with the element
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Fig. 2. Plan migration with duplicate elimination

(a,[50,151)) from input A. Hence, the join result (a, [50,121)) is marked as old.
As [50,121) overlaps with the time interval of the duplicate elimination’s result
(a,[111,121)), this is also marked as old. Therefore, it definitely belongs to the
output of the old box. Unfortunately, (a,[111,121)) has a temporal overlap with
(a, [70,151)) which is a result of the new box. Consequently, the complete output
contains tuple a for the snapshots 111 to 120 twice. Thus, PT does not produce
correct results.

The reason for this problem is that the validity of results of the old box can
refer to points in time which are beyond the plan migration start time. These
time instants may additionally be addressed by the new box. Since the new
box has no information about the old box, duplicates at those time instants
may occur in the output, which is the union of both boxes. GenMig overcomes
this problem by introducing a split time which is greater than all time instants
occurring in the old box.

Note 1. The problem of PT is not restricted to duplicate elimination but arises
for other operators as well, e.g., aggregation and difference. Although join re-
ordering is a very important transformation rule which is covered by PT, there
exist rules for other stateful operators [3, 13] for which PT will fail in a similar
way as shown above.



4 A General Strategy for Plan Migration

In this section we propose GenMig which overcomes the problems of PT while
maintaining its merits, namely (i) a gradual migration from the old to the new
plan, and (ii) generating results during migration.

4.1 Logical View

We first present the basic idea of GenMig from a purely logical and semantic
perspective.

GenMig Strategy Given two snapshot-equivalent plans, the query optimizer
determines a point in application time denoted as Tsp;¢. At this time instant the
time domain is split into two partitions.

— For all time instants ¢t < T the results are produced by the old plan.
— For all time instants ¢ > Ty, the results are produced by the new plan.

The union of both plans represents the total results. Tsp;: refers to the plan
migration end because up from this point in time the new plan produces the
output by itself, and thus the old plan can be discarded. The migration duration
is the period from migration start to Tsp.

Correctness Under the assumption that the old and new plan produce a
snapshot-equivalent output, the total output of GenMig is complete. The output
is computed for every single time instant. Due to snapshot-equivalence it does
not matter if the results for a snapshot are produced by either the old or the
new plan. The duplicate elimination problem does not arise because the results
of the two plans are disjoint in terms of timestamps.

4.2 Physical View

GenMig is very clear and easy at the logical level. However, at the physical level it
is impractical to compute the query results for every single snapshot separately.

Interval-based Implementation of GenMig Algorithm 1 shows the imple-
mentation of GenMig for the interval-based approach [2, 8]. The input consists of
the old currently running box, the corresponding input streams, and the new box
without any state information. In contrast to the PT strategy, GenMig does not
start with plan migration instantly. It starts monitoring the start timestamps
instead.

Remark 2. In contrast to [1] where a single migration start time is used, our ap-
proach maintains a migration start time for each input. This has the advantage
that GenMig does not require the scheduling to obey the global temporal order-
ing by start timestamps, which would be in conflict with sophisticated scheduling
strategies [14-16] otherwise.



Algorithm 1: GenMig

Input : streams I,...,I,, old plan with state information, new plan without
state information, global window constraint w

Output : streams O, ..., On, new plan with state information

foreach input stream I;,i € {1,...,n} do

Start monitoring the start timestamps;
Keep the most recent start timestamps of I; as ts;;

Pause the execution of the old plan as soon as tg; has been set for each input;
Toprit — maz{ts,|li € {1,...,n}}+w+1+¢;
Insert a Split operator downstream of each source of the old plan;
Insert a Coalesce operator at the top of both plans for each output stream,;
Resume the execution of the old plan and start the execution of the new plan;
while min{ts,|i € {1,...,n}} < Tspiir do

L Continue the execution of both plans;
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11 Signal the end of all input streams to the old plan;

12 Stop the execution of the old plan;

13 Pause the execution of the new plan;

14 Remove the old plan, coalesce and split operators;

15 Connect inputs and outputs directly with the new plan;
16 Resume the execution of the new plan;

After initialization, i.e., when for each input stream a timestamp tg, has been
determined, the old box is paused. The split time T, is set to the maximum
of all tg, plus the window size w plus 1 plus €. This setting ensures that T
is greater than any time instant in the old box.

Remark 3. Without loss of generality, we assume € to be chosen so that Ty
neither occurs as start nor end timestamp in any input stream. This can for
instance be achieved if Ty is expressed at a finer time granularity [17] and e
refers to a chronon according to that granularity. From the implementation side,
this assumption can be assured easily but is omitted in the algorithms due to
clarity reasons.

In addition to setting the split time, two novel operators — split and coalesce
— are inserted at the inputs and outputs, respectively. Figure 3 illustrates this
placement. For their implementations, see Algorithms 2 and 3. The stateless
split operator splits the time interval of an incoming element at T’y into two
disjoint intervals. The tuple e associated with the first interval is sent to the old
box, e associated with the second interval is sent to the new box.

The coalesce operator inverts the effects of splitting. Coalesce merges two equiva-
lent tuples, each of one input, with adjacent time intervals. Contrary to split, co-
alesce is a stateful operator because it has to maintain data structures, e. g., hash
maps, for the detection of equivalent tuples. Furthermore, a heap ordered by start
timestamps is required to ensure the ordering property of the output stream.
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The migration end is defined as the point in application time when the mon-
itored start timestamps of all input streams are equal or greater than Ty
Then, the optimizer signals the end of all input streams to the old box in order
to drain out intermediate elements. After that, the heap inside the coalesce op-
erator containing the new results can be flushed. Finally, the optimizer shortly
interrupts the processing to discard the old box as well as the split and coalesce
operators before it continues to execute the new plan stand-alone.

Algorithm 2: Split
Input :stream I, split time Tspi
Output : streams Oo1q, Onew
foreach new incoming stream element (e, [ts,tg)) € I do
if ts < Tspiir then
if tg < Tspiie then Append (e, [ts,tr)) t0 Ooid;
else
Append (e, [ts, Tspiit)) to Ooa;
Append (e, [Tspiit, tE)) to Onew;
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else
8 L Append (e, [ts,tE)) to Onew;
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Algorithm 3: Coalesce

Input : streams Iy (from old plan), I1 (from new plan), hash maps Moy, M,
heap H, split time Tspii¢
Output : stream O

1 foreach new incoming stream element (e, [ts,tr)) € I;,i € {0,1} do
2 tout — O;
3 if tg < Tsprit Vts > Tsprir then
4 L Append (e, [ts,tr)) to H;
5 else
6 if i+ =0 then
7 if (e, [ts,t)) € M1 where e = ¢’ then
8 L Append (e, [ts,t)) to H and remove it from Mj;
9 | else Insert (e, [ts,tr)) into Mo;
10 if i =1 then
11 if 3(e, [ts,ts)) € Mo where e = ¢’ then
12 Append (e, [ts,tE)) to H and remove it from Mo;
13 tout < t{S’;
14 | else Insert (e, [ts,tg)) into Ma;

15 while t,,+ > H.top.ts do
16 L Append H.top to O and remove it from H;

17 if migration finished then
18 L Flush H and append its elements to O;

4.3 Correctness

Lemma 1. GenMig produces correct results and preserves the temporal order-
mng.

Proof. (sketch)

1. No elements are lost during the insertion and removal of the split and coalesce
operators because the processing of the boxes is suspended during these
steps.

2. The split operator guarantees that all elements valid at snapshots smaller
than Ty are transferred to the old box, while the elements with snapshots
equal or greater than Ty;;; are processed by the new box. This matches
with the logical view of GenMig (see Section 4.1). Since no snapshot is lost
under this partitioning and each box produces snapshot-equivalent results,
the union of both plans contains the entire result.

3. PT uses a marking mechanism to detect duplicates, i. e., results at the same
snapshot produced by both plans. We showed in Section 3 that this marking
fails for stateful operators other than joins. GenMig overcomes these prob-
lems because the split operator ensures that the results of both boxes are
disjoint in terms of snapshots due to the choice of Tspiit. As Tspie is greater



than any snapshot referenced in the old box, the corresponding snapshot-
reducible operators in that box will never produce a result with a snapshot
equal or larger than Ty;;;. Moreover, the new box will never generate results
for snapshots smaller than Tsp;¢. Consequently, GenMig inherently avoids
the generation of duplicates as addressed for PT.

4. The temporal ordering is preserved as (i) all operators inside a box produce
a correctly ordered output, (ii) the split operators are stateless and do not
affect the ordering, and (iii) the coalesce operator explicitly synchronizes the
results of the old and the new box according to the start timestamp ordering.

5. The coalesce operator combines the results of both plans. It does not have
any semantic effects as coalesce preserves snapshot-equivalence [3]. Because
it merges stream elements with identical tuples and adjacent time intervals,
it rather serves as an optimization which inverts the negative effects of the
split operator on stream rates.

6. Due to the global window constraint of w time units, the maximum interval
length in a plan is limited to w time units (see window operator in Section 2).
Snapshot-reducibility implies that the time intervals in the output stream
of a standard operator can only have shorter time intervals. Hence, setting
Topiit to max{ts,|i € {1,...,n}} +w + 1 4 € ensures that Ty is greater
than any time instant occurring in the old box.

a

4.4 Performance Analysis

Given the sufficient-system-resources assumption as in [1], the difference between
system and application becomes negligible. We can thus identify durations in
application time with those in system time. The migration duration of GenMig
is determined by Ty — min{ts,} where tg, denotes the migration start time
of input . For negligible application time skew between streams and negligible
latency in streams, the migration duration is approximately w time units due to
the choice of Tspist.
Compared to PT, GenMig has the following advantages:

— For join trees with more than one join, the required time for migration is only
w time units instead of 2w. GenMig requires at most w time units because
all elements in the old plan have become outdated at Tsp;:. GenMig does
not need to wait until all old elements were purged from states in the old
box as done for PT. Consequently, the allocated memory for the old box can
be released earlier.

— GenMig does not require any mechanisms to detect duplicates at the output
of the old box. Hence, those costs for duplicate detection can be saved.

— GenMig does not need to buffer the entire results of the new box during
migration for ordering purposes. All results produced by the new box during
migration can be coalesced and emitted. The size of the heap and hash maps
inside the coalesce operator is predominantly determined by the application
time skew between the input streams. Heartbeats [11] and sophisticated



scheduling strategies can be used to minimize application time skew and
thus the memory allocation of the coalesce operator.

— According to [1], the migration for PT is finished if all old elements have
been removed from the old box. For join trees with more than one join, this
happens after 2w time units. Interestingly, the old box only produces output
during the first w time units. The other w time units are used to purge all
old elements from the states. For snapshot-reducible query plans, there will
be no output during this timespan. Therefore, PT has the following output
rate characteristics. For the first w time units, the output rate corresponds
to the output rate of the old box. The next w time units there is no output.
At the migration end there is a burst when the buffer on top of the new box
is flushed. In contrast, GenMig directly switches from the output rate of the
old box to the one of the new box at migration end (Tp;t)-

4.5 Optimizations

Optimization 1 - Reference Point Method The reference point method [18,19] is
a common technique for index structures to prevent duplicates in the output. We
can use this method as an optimization of GenMig if the following modifications
are performed. The split operator has to be modified to send the elements to the
old plan without splitting, i.e., with the full intervals. The coalesce operator is
removed and replaced by a simple selection and a union. The selection is placed
on top of the new box and drops all elements with a start timestamp equal to
Topiit- The union of the old box and the selection generates the final output.
We treat the start timestamp of results of the new box as reference point. This
reference point is compared with Ty If it is larger than Ty, the element is
not a duplicate and sent to the output.

Using the reference point method makes coalescing superfluous. Hence, it
saves the memory and processing costs spent on the coalesce operator. Both
boxes produce their output correctly ordered. As we use the start timestamp
as reference point, all results from the old box have a smaller start timestamp
than those from the new box. Therefore, it is sufficient to first output the results
of the old box and afterwards those of the new box. Under the assumptions of
a global temporal scheduling as in [1], no buffer is needed to synchronize the
output of both boxes. Note that all additional operators required for GenMig
with reference point optimization (split, union, and selection) have constant costs
per element.

Optimization 2 - Shortening Migration Duration The migration duration could
be shortened if Ty is set to the maximum end timestamp inside the old box
plus 1 plus €. This setting still satisfies the correctness condition that Ty;;; has
to be greater than any time instant occurring in the old box. However, such an
optimization requires to monitor the end timestamps in addition. If a DSMS
provides this information as some kind of metadata, it could be effectively used
to reduce the migration duration and thus gain savings of system resources. This
optimization is particularly effective if the plan to be optimized is not close to



window operators. In this case, it is likely that the time intervals are significantly
shorter than the window size.

4.6 Positive-Negative Implementation for GenMig

The GenMig algorithm can easily be transferred to the positive-negative tuple
approach [9, 5]. Instead of monitoring the start timestamps, the timestamps of
the positive elements are monitored. T+ is set as proposed in Algorithm 1. The
split operator sends all incoming positive and associated negative elements to
the new box and additionally to the old box if their timestamps are smaller than
Typiit- Using the timestamp of an element, independent of its sign, as reference
point, we accept results from the old box if their timestamps are less than T+,
and from the new box if it is greater than T§y;;;. Since the results generated by
both plans are correctly ordered, it is sufficient to first output the results of the
old box and afterwards those from the new box. The migration end is reached
if all input streams passed Tpit.

5 Experimental Evaluation

Although the primary focus of this work is on the semantics, generality, and cor-
rectness of GenMig, we conducted a set of experiments that compares GenMig
with PT for join reordering. We observed that even in this case, where PT is
only applicable, GenMig is at least as efficient as PT. In addition, we validated
GenMig for a variety of transformation rules beyond join reordering. However,
those experiments only show the correctness of GenMig and point out the poten-
tial of dynamic query optimization. As these do not contribute further insights
into our approach, we omitted them due to space limitations.

We implemented PT and GenMig in our PIPES framework [20,21] with
Java 5. Our hardware was a PC with an Intel Pentium 4 processor (2.8 GHz)
and 1 GB of RAM running Windows XP Professional. To have a fair comparison
with the original PT implementation in [1], we executed the plans in a single
thread according to the global temporal ordering. Since a comparison with PT
is only possible for joins, we executed 4-way nested-loops joins as done in [1].

In our first experiment, we ensured the sufficient-system-resources assump-
tion which means that query execution can keep up with stream rates. Each
input stream delivered 5000 random numbers with a rate of 100 elements per
second. The random numbers were distributed uniformly between 0 and 500 for
streams A and B, and between 0 and 1000 for streams C and D. We performed
time-based sliding window equi-joins with a global window size of 10 seconds.
The old plan was set to the left-deep join tree ((A x B) x C') x D which was
rather inefficient due to the huge intermediate result produced by A x B. The
goal of the dynamic plan migration was to switch to the more efficient right-deep
join tree A X (B x (C x D)). The migration started after 20 seconds.

GenMig finished the migration w time units (10 seconds) after migration
start as expected. In contrast, PT requires 2w time units due to purging all
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Fig. 4. Characteristics of Parallel Track and GenMig

old elements from the old box. This complies with the analysis in [1]. During
migration the output rate of PT decreases because the results of the new box
are buffered as shown in Figure 4. For PT, after 30 seconds the output rate is
0 for 10 seconds. During this period the purging of old elements took place. At
the migration end for PT after 40 seconds (migration start + 2 - window size
=20+ 2- 10 = 40), the results of the new box which had been buffered during
migration were immediately released. This caused the significant burst in the
output rate. Such a burst may lead to a temporary system overload and should
be avoided whenever possible. In contrast to PT, GenMig produces results with
a smooth output rate during migration.
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Fig. 5. Memory usage of Parallel Track and GenMig



Figure 5 shows the memory usage of GenMig and PT during the experi-
ment. For sake of comparability, we only measured the memory allocated for the
values. We omitted the overhead of timestamps — GenMig requires two time-
stamps per element (time interval), whereas PT needs up to four. Note that the
memory usage can only differ during migration. Figure 5 demonstrates that PT
continuously requires more memory than GenMig during this period. Overall,
the system has an increased memory usage during plan migration but profits
from the reduced memory usage of the new plan afterwards. This temporary
increase of memory usage is smaller for GenMig.
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Fig. 6. Performance comparison of Parallel Track, GenMig with coalesce, and GenMig
with reference point optimization

Our second experiment was aimed at comparing the total system load of
PT, GenMig with coalesce, and GenMig with reference point optimization. We
processed the same random numbers associated with the same application time-
stamps as before. But this time, we processed the input streams as fast as pos-
sible. This means, we no longer synchronized application and system time, and
the system was saturated. This is a widely accepted approach to determine the
efficiency of stream join algorithms [22]. Furthermore, we simulated a more ex-
pensive join predicate to emphasize the effects of complex join computations.
Figure 6 depicts our performance measurements. At the beginning the slope of
the curves, which corresponds to the output rate, is less steep than at the end
because the left-deep join plan is not as efficient as the right-deep plan. During
migration the slope reaches its minimum as both plans run in parallel. The total
runtimes demonstrate that GenMig is superior to PT. Moreover, the reference
point optimization improves the coalesce variant of GenMig slightly as it avoids
the CPU costs caused by the coalesce operator.



To sum up the experiments, GenMig is not only more general than PT but
also more efficient for the case of join reordering where both strategies are ap-
plicable.

6 Related Work

In recent years adaptivity issues for query processing and optimization have
attracted research attention. The following discussion is limited to work related
to stream processing. The interested reader is referred to [23] for a survey beyond
streams.

Our work directly refers to the dynamic plan migration strategies proposed
in [1] as it generalizes PT towards arbitrary continuous query plans. To the
best of our knowledge, the strategies published in [1] are the only methods for
dynamic plan migration in DSMS.

There are several papers on different topics of runtime optimizations for
DSMS but these do not tackle plan migration issues explicitly. In [24] the prob-
lem of executing continuous multiway join queries is addressed for streaming
environments with changing data characteristics. GenMig does not aim at opti-
mizing multiway join performance by materializing intermediate join views. In
contrast, it is designed more general and treats join reordering as one possible
transformation rule. Proactive re-optimization [25] is a novel optimization tech-
nique in stream processing in which the optimizer selects the initial query plan
with the background information that this plan is likely to be re-optimized in
future due to uncertainty in estimates of the underlying statistics. However, the
choice of a suitable plan is not the focus of GenMig. It rather describes how to
migrate from one plan to another snapshot-equivalent plan.

Eddies [26] perform a very flexible kind of adaptive runtime optimization for
continuous queries. Unlike traditional approaches where elements are processed
according to a given query plan until the plan is re-optimized, all operators of
a query plan are connected with the eddy. For each incoming element, the eddy
determines an individual query plan. PT and GenMig are by far not as flexible
as eddies, but the per-element routing is expensive and only profitable in highly
dynamic environments. Moreover, eddies are limited to queries with selection,
projection, and join, whereas GenMig considers more general plans.

Cross-network optimization issues for continuous queries are discussed in
[27] for the Borealis stream processing engine, but not at a semantic level with
concrete techniques for plan migration as presented in this paper. How GenMig
can be adapted to a distributed environment remains as an open issue for future
work.

7 Conclusions

In this paper we first identified shortcomings of the parallel track strategy, an
existing solution for the dynamic plan migration problem in DSMS. We showed
that this strategy fails to cope with plans involving stateful operators other than



joins. We consequently proposed a general approach to dynamic plan migration,
called GenMig, which enables a DSMS to optimize arbitrary CQL queries at
runtime. Our analysis and performance comparison shows that GenMig with its
optimizations is at least as efficient as parallel track, while being more general.
Due to the underlying semantics, the whole set of conventional transformation
rules can be applied for optimization purposes. Moreover, GenMig does not
require any specific knowledge about the operator states and implementations
because it treats the old and new plans as black boxes which only have to produce
snapshot-equivalent results to ensure correctness. Due to its generality and ease
of use, GenMig is likely to be integrated into existing and future DSMS as a
basic mechanism for the dynamic query optimization of continuous queries.
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