Hash-Based Structural Join Algorithms

Christian Mathis and Theo Héarder

University of Kaiserslautern**

Abstract. Algorithms for processing Structural Joins embody essential build-
ing blocks for XML query evaluation. Their design is a difficult task, because
they have to satisfy many requirements, e. g., guarantee linear worst-case run-
time; generate sorted, duplicate-free output; adapt to fiercely varying input sizes
and element distributions; enable pipelining; and (probably) more. Therefore, it
is not possible to design the structural join algorithm. Rather, the provision of
different specialized operators, from which the query optimizer can choose, is
beneficial for query efficiency. We propose new hash-based structural joins that
can process unordered input sequences possibly containing duplicates. We also
show that these algorithms can substantially reduce the number of sort operations
on intermediate results for (complex) tree structured queries (twigs).

1 Introduction

Because XML data is based on a tree-structured data model, it is natural to use path
and tree patterns for the search of structurally related XML elements. Therefore, ex-
pressions specifying those patterns are a common and frequently used idiom in many
XML query languages and their effective evaluation is of utmost importance for every
XML query processor. A particular path pattern—the twig—has gained much attention
in recent publications, because it represents a small but frequently used class of queries,
for which effective evaluation algorithms have been found [1,3,7,11, 14, 16].

Basically, a twig, as depicted in Fig. 1, is
a small tree, whose nodes N represent sim-
ple predicates p,, on the content (text) or the
structure (elements) of an XML document,
whereas its edges define the relationship be-
tween the items to match. In the graphical no-
tation, we use the double line for the descen-
dant and the single line for the child relation-
ship. For twig query matching, the query pro-
cessor has to find all possible embeddings of
the given twig in the queried document, such

a) Queries
Q1) //book|title="XML"]//author[.//city="Rome"]/name
Q2) for $b in //book, $a in $b//author
where $b//title="XML" and $a//city="Rome"
return ($a, $a/name)

b) Twig for Q1 and Q2

o book
T
title rauthor)
[l
"XML" éﬁy

"Rome"

Fig. 1. Sample Query and Twig

that each node corresponds to an XML item and the defined relationship among the
matched items is fulfilled. The result of a twig is represented as an ordered' sequence

** Database and Information Systems, D-67653 Kaiserslautern, Germany.

{mathis|haerder } @informatik.uni-kl.de

! Here, “ordered” means: sorted in document order from the root to the leaf items.

of tuples, where the fields of each tuple correspond to matched items. Usually, not all
nodes of a twig generate output, but are mere (path) predicates. Therefore, we use the
term extraction point [7] to denote twig nodes that do generate output (the boxed nodes
in Fig. 1).

1.1 Related Work

For twig query matching, a large class of effective methods builds on two basic ideas:
the structural join [1] and the holistic twig join [3]. The first approach decomposes the
twig into a set of binary join operations, each applied to neighbor nodes of the twig (for
an example, see Fig. 2). The result of a single join operation is a sequence of tuples Sy,
whose degree (number of fields) is equal to the sum of the degrees of its input tuples
from sequences S;, 4 and S;, 5. Sou: May serve as an input sequence for further join
operations. In the following, we denote the tuple fields that correspond to the twig nodes
to join as the join fields. The underlying structural join algorithms are interchangeable
and subject to current research (see the discussion below).

In [3], the authors argue that, intrinsic for the structural join approach, intermediate
result sizes may get very large, even if the final result is small, because the intermediate
result has to be unnested. In the worst case, the size of an intermediate result sequence is
in the order of the product of the sizes of the input sequences. To remedy this drawback,
twig join algorithms [3,7] evaluate the twig as a whole, avoiding intermediate result
unnesting by encoding the qualifying elements on a set of stacks.

Of course, holistic twig join algorithms are good candidates for physical opera-
tors supporting query evaluation in XDBMSs. However, they only provide for a small
fraction of the functionality required by complete XPath and XQuery processors (e. g.,
no processing of axes other than child and descendant; no processing of order-based
queries). Therefore, the development of new structural join algorithms is still valuable,
because they can act as complemental operators in case the restricted functionality of
twig joins is too small, or as alternatives if they promise faster query evaluation.

Existing structural join approaches can roughly be divided into four classes by the
requirements they pose on their input sequences: A) no requirements[8, 11, 14]; B) in-
dexed input [16], C) sorted input [1, 10, 16]; D) indexed and sorted input [4]. Especially
for classes C and D, efficient algorithms have been found that generate results in lin-
ear time depending on the size of their input lists. In contrast, for class A, there is—to
the best of our knowledge—no such algorithm. All proposed approaches either sort at
least one input sequence [11], or create an in-memory data structure (a heap) requiring
O(nlogan) processing steps [14]. By utilizing hash tables that can be built and probed in
(nearly) linear time, the algorithms we introduce in this paper can remedy this problem.
Note, the strategies in [11, 14] elaborate on partition-based processing schemes, i.e.,
they assume a small amount of main memory and large input sequences, requiring their
partition-wise processing. Their core join algorithm, however, is main-memory—based,
as ours is. Therefore, our new join operators can be —at least theoretically? —combined
with the partitioning schemes proposed in these earlier works.

2 [14] uses a perfect binary tree (PBiTree) to generate XML identifiers. In real-world scenarios,
we assume document modifications that can hardly be handled with PBiTrees. Therefore, we

Answering twig (and more complex queries) using binary structural join algorithms
imposes three non-trivial problems: selecting the best (cheapest) join order (P1) to
produce a sorted (P2) and duplicate-free (P3) output. P1 is tackled in [15], where a
dynamic programming framework is presented that produces query executions plans
(QEPs) based on cost estimations. The authors assume class C (and D) algorithms,
which means that even intermediate results are required to be in document order on the
two join fields. As a consequence, sort operators have to be embedded into a plan to
fulfill this requirement. Consider for example the twig in Fig. 1. Let the circled num-
bers denote the join order selected by an algorithm from [15]. Then, three sort operators
have to be embedded into the QEP (see’ Fig. 2). Sort operators are expensive and should
be avoided whenever possible. With structural join algorithms not relying on a special
input order—like those presented in this paper—we can simply omit the sort operators
in this plan. However, a final sort may still be necessary in some cases.

Problem P3 was studied in [8]. The authors aln g
show that duplicate removal is also important for /s?)rta/mhm‘h:name
intermediate results, because otherwise, the com- “Trq

AN
a/cpq. r“Rome”

plexity of query evaluation depending on the num- ol ity
. . th .
ber of joins for a query Q can lead to an expo- Uy author
. . . PAARN
nential worst-case runtime behavior. Therefore, sorge X:“XML”

. //a
for query evaluation using binary structural joins, b PN
5N a:author

tuplewise duplicate-free intermediate result 7 N0

sequences have to be assured after each join exe-

cution. Note, due to result unnesting, even a (sin- Fig. 2. Sample Plan

gle) field in the tuple may contain duplicates. This

circumstance is unavoidable and, thus, we have to cope with it. Because duplicate
removal —like the sort operator—is an expensive operation, it should be minimized.
For example in [6], the authors present an automaton that rewrites a QEP for Q, thereby
removing unnecessary sort and duplicate removal operations. Their strategy is based on
plans generated by normalization of XPath expressions, resulting in the XPath core lan-
guage expressions. However, this approach does not take join reordering into account,
as we do. Our solution to P3 is a class of algorithms that do not produce any duplicates
if their input is duplicate free.

1.2 Contribution

We explore the use of hash-based joins for path processing steps of XML queries and
identify the selectivity ranges when they are beneficial. In particular, we propose a
class of hash-based binary structural join operators for the axes parent, child, ances-
tor, descendant, preceding-sibling, and following-sibling that process unordered input
sequences and produce (unordered) duplicate-free output sequences. Furthermore, we
show by extensive tests using the XTC (XML Transaction Coordinator)—our proto-
type of a native XDBMS —that our approach leads to a better runtime performance
than sort-based schemes.

The remainder of this paper is organized as follows: Sect. 2 briefly describes some
important internals of XTC, namely our node labeling scheme and an access method for

used SPLIDs (Sect. 2.1) instead. As a consequence, this “gap” had to be bridged to support the
proposed partition schemes with our ideas.

% An arrow declares the input node of a join by which the output is ordered, where important.
Possible are root to leaf, e. g., between “book” and “title”, and leaf to root, e. g., the final join.

element sequences. Sect. 3 introduces new hash-based algorithms. In Sect. 4 we present
our quantitative results before we conclude in Sect. 5.

2 System Testbed

XTC adheres to the well-known layered hierarchical architecture: The concepts of
the storage system and buffer management could be adopted from existing relational
DBMSs. The access system, however, required new concepts for document storage, in-
dexing, and modification including locking. The data system available only in a slim
version is of minor importance for our considerations.

2.1 Path Labels

Our comparison and evaluation of node labeling schemes in [9] recommends node la-
beling schemes which are based on the Dewey Decimal Classification [5]. The abstract
properties of Dewey order encoding—each label represents the path from the docu-
ments root to the node and the local order w.r.t. the parent node; in addition, sparse
numbering facilitates node insertions and deletions—are described in [13]. Refining
this idea, similar labeling schemes were proposed which differ in some aspects such as
overflow technique for dynamically inserted nodes, attribute node labeling, or encoding
mechanism. Examples of these schemes are ORDPATH [12], DeweyID [9], or DLN
[2]. Because all of them are adequate and equivalent for our processing tasks, we prefer
to use the substitutional name stable path labeling identifiers (SPLIDs) for them.

Here we only summarize the benefits of the SPLID concept which provides holistic
system support. Existing SPLIDs are immutable, that is, they allow the assignment
of new IDs without the need to reorganize the IDs of nodes present. Comparison of
two SPLIDs allows ordering of the respective nodes in document order, as well as the
decision of all XPath axis relations. As opposed to competing schemes, SPLIDs easily
provide the IDs of all ancestors to enable direct parent/ancestor identification or access.
This property is very helpful for navigation and for fine-grained lock management in
the XML documents. Finally, the representation of SPLIDs, e. g., label 1.3.7 for a node
at level 3 and also used as an index reference to this node, facilitates the application of
hashing in our join algorithms.

2.2 Accessing Ordered Element Sequences

A B*-tree is used as a document store .

EE book name directory
where the SPLIDs in inner B*-tree nodes author,elitle } (B~tree)
serve as fingerposts to the leaf pages. The U .

. node-reference
set of doubly chained leaf pages forms {35 {5 {37 }i(réd:ces)

= *—trees

the so-called document container where
the XML tree nodes are stored using the
format (SPLID, data) in document order. Fig. 3. Element Index
Important for our discussion, the XDBMS

each sorted in document order

creates an element index for each XML document. This index consists of a name direc-
tory with (potentially) all element names occurring in the XML document (Fig. 3). For
each specific element name, in turn, a node-reference index is maintained which ad-
dresses the corresponding elements using their SPLIDs. Note, for the document store
and the element index, prefix compression of SPLID keys is very effective because both
are organized in document order directly reflected by the SPLIDs [9].

The leaf nodes in our QEPs are either element names or values. By accessing the
corresponding node reference indexes, we obtain for them ordered lists of SPLIDs and,
if required lists of nodes in document order by accessing the document store.

3 Hash-Based Structural Join Algorithms

To be able to compete with existing structural join al- a/ngq
gorithms, we had to design our new algorithms with e Ve N Niname
special care. In particular, the use of semi-joins has bl /D(\ r:“Rome”

several important benefits. The processing algorithms b 2 cely

. a:author
become simpler and the intermediate result size is re- | .« " BV

duced (because the absolute byte size is smaller and ttifle X SXML?
we avoid unnesting). Several important design objec-
tives can be pointed out: Fig. 4. Plan for Query 1

e Design single-pass algorithms. As in almost all other structural join proposals, we
have to avoid multiple scans over input sequences.

e Exploit extraction points. With knowledge about extraction points, the query op-
timizer can pick semi-join algorithms instead of full joins for the generation of a
QEP. For example, consider the plan in Fig. 4 which embodies one way to evaluate
the twig for the XPath expression in Fig. 1. After having joined the title elements
with the content elements “XML”, the latter ones are not needed anymore for the
evaluation of the rest of the query; a semi-join suffices.

e Enable join reordering. Join reordering is crucial for the query optimizer which
should be able to plan the query evaluation with any join order to exploit given data
distributions. As a consequence, we need operators for the reverse axes ancestor
and parent, too (e.g., the semi-join operator between title and “XML” in Fig. 4
actually calculates the parent axis).

¢ Avoid duplicate removal and sort operations whenever possible. By using only al-
gorithms that do not generate duplicates and operate on unordered input sequences,
the query optimizer can ignore these problems. However, the optimizer has to en-
sure the correct output order, requiring a final sort operator. In some cases, this
operator can be skipped: If we assume that the element scans at the leaf nodes of
the operator tree in Fig. 4 return the queried element sequences in document order
(as, for example, our element index assures), then, because the last semi-join oper-
ator is simply a filter for name elements (see Sect. 3.1), the correct output order is
automatically established.

e Design dual algorithmsthat can hash the smaller input sequence. The construction
of an in-memory hash table is still an expensive operation. Therefore, our set of
algorithms should enable the query optimizer to pick an operator that hashes the
smaller of both input sequences and probes the other one, yielding the same result.

Table 1. Classification of Hash-Join Operators

Output

Hashed ancestor/parent | descendant/child [full join

Class 1: UpStep Class 2: TopFilter Class 3: FullTopJoin
parent /18] b] /1alb /1alb, /la[b]

Par HashA Chi | dHashA Chi | dFul | HashA
ancestor /1a[.llb] /lallb [lallb, [la].llb]

AncHashA DescHashA DescFul | HashA

Class 4: BottomFilter Class 5: DownStep Class 6: FullBottomJoin
child /1 a[b] /lalb [lalb, /la[b]

Par HashB Chi | dHashB Chi | dFul | HashB
descendant /la[.//b] Ilallb /lallb, [/a[.//Db]

AncHashB DescHashB DescFul | HashB

3.1 Classification of Algorithms

We can infer three orthogonal degrees of freedom for structural hash-join algorithms:
the axis that has to be evaluated (parent/child/ancestor/descendant); the mode of the
join (semi/full); and the choice of which input sequence to hash (A or B)*. The fol-
lowing naming scheme is used for our operators: <axi s> + <node> + <hash>:
{Par | Chi | d| Anc| Desc} {Semi | Ful |l } Hash{A] B} (“Semi” is omitted for
brevity). For example, the join operator between title and “XML” in Fig.4 is a
Par Has hB operator, because it calculates the parent axis, is a semi-join operator, and
hashes the sequence of possible children.

For an overview of all possible operators refer to Table 1: The column header defines
the input to be hashed, whereas the row header defines the output. For clarification of
the semantics, each operator is additionally described by an XPath expression where
the input sequence to hash is marked in bold face. The names of the operator classes
describe the evaluation strategy of the join. They will be discussed in the following.
Note, class 1-3 algorithms are dual to class 4-6 algorithms, i.e., they calculate the
same result as their corresponding algorithms, but hash a different input sequence.

3.2 Implementation

To abstract from operator scheduling and dataflow control, we let all operators act in the
same operating system thread and use the well-known iterator-based open-next-close
protocol as a basis for the evaluation. Each algorithm receives two input sequences of
tuples, where, due to intermediate result unnesting, duplicates on the join fields have to
be expected.

All proposed algorithms in this paper consist of two phases. In phase one, a hash
table ht is constructed using the join field of the tuples of one input sequence (either
sequence A or B). In phase 2, the join field of the other input sequence is probed against
ht . Depending on how a result tuple is constructed, the operators can be assigned to
one of the six classes: Full* Join operators return a sequence of joined result tuples just
as earlier proposals for structural join algorithms (e. g., [1]). Note, the qualifiers “Top”
and “Bottom” denote which input sequence is hashed. The remaining classes contain

* Note, in the following, A denotes the sequence of possible ancestors or parents (depending on
the context), whereas B denotes descendants or children.

I nput: TupSeq A B, Axis aixs, bool hashA 2 else if (axis == ‘Desc’ or ‘Anc’)

Qut put: TupSeq results, Local : HashTabl e ht 23 Li st | evel Ccc = getLevel sByProb(A);
24 foreach (level in Ievel Ccc)

1 // phase 1: build hash table 25 if (t.jField().anc(level) in ht)

2 if (hashA) 2 result;.add(t);

3 foreach (Tuple a in A) 2 break inner I oop;

4 hash a.jField() in ht; % .

s elseif (axis is “Par’ or ‘Child) 20 function hashEnqueue

6 foreach (Tuple b in B) 30 (SPLID s, Tuple t, HT ht)

7 hash b.jField().parent() in ht; 31 Queue g = ht.get(s);

s else if (axis is 'Anc’) 3 g.enqueue(t);

9 List level Gcc = getLevel s(A); 33 hash (s, q) in ht;

10 foreach (Tuple b in B) 34 .

1 foreach (level in Ievel Ccc) 35 function hashDelete (SPLID s, HT ht)

12 hash b.jField().anc(level) in ht; 3 Queue g = ht.get(s);

13 37 foreach (Tuple t in q)

4 I/ phase 2: probe 38 results. add(t);

15 foreach (Tuplet in ((hashA) 2 B: A ® ht. del ete(s);

16 if (! hashA and 40)

17 t.jField() in ht) results.add(t); 4 function hashFull

18 else if (axis == ‘Child or ‘Par’) (SPLID s, Tuple current, HT ht)

19 if (t.jField().parent() in ht) 43 Queue q = ht.get(s);

20 results.add(t); 4 foreach (Tuple t in q)

21 45 resul ts. add(new Tupl e(t, current));

Fig. 5. *Filter Operator and Auxiliary Functions for *Step and Full*Join

semi-join algorithms. *Filter operators use the hash table, constructed for one input
sequence to filter the other one, i. e., tuples are only returned from the probed sequence.
*3ep operators work the other way around, i. e., they construct the result tuples from
the hashed input sequence.

*Filter Operators (see Fig. 5): In phase one, for Chi | dHashA and DescHashA,
the algorithm simply hashes the SPLID of the elements of the join fields (accessed
via method j Fi el d()) into ht (line 4). Then, in phase two, the algorithm checks for
each tuple t in B, whether the parent SPLID (line 19 for Chi | dHashA) or any ancestor
SPLID (line 25 for DescHashA) of the join field is contained in ht . If so, t is a match
and is appended to the result. Actually, for the descendant operator, we had to check all
possible ancestor SPLIDs which could be very costly. To narrow down the search, we
use the meta-information, at which levels and by which probability an element of the
join field of A occurs (line 23). This information can be derived dynamically, e. g., when
the corresponding elements are accessed via an element index scan, or kept statically in
the document catalog.

The strategy for Par HashB and AncHashB is similar, with the difference, that in
the hash phase the algorithm uses the join fields of input B to precalculate SPLIDs that
might occur in A (lines 7 and 12). Again for the descendant operator, we use the level
information (line 9), but this time the probability distribution does not matter. In the
probing phase it only has to be checked, whether the current join field value is in ht .

Obviously, the output order of the result tuples is equal to the order of the probed
input sequence. Furthermore, if the probed input sequence is tuplewise duplicate free,
the algorithm does not produce any duplicates. The hashed input sequence may contain
duplicates. However, these are automatically skipped, whereas collisions are internally
resolved by the hash table implementation.

*Sep Operators conceptually work in the same way as their corresponding * Filter
operators. However, they do not return tuples from the probed, but from the hashed in-
put sequence. Accordingly, tuples that have duplicates on the key they use for hashing
(e. g., TupSeq A of Fig. 7a) may not be skipped (as above) but have to be memorized
for later output. The new algorithms work as follows: In the hash phase, the function
hashEnqueue() (Fig.5 line 29) is called instead of the simple hash statements in
lines 4, 7, and 12). The first argument is the SPLID s of the join field (or its par-
ent/ancestor SPLID). Function hashEnqueue() checks for s whether or not an entry is
found in hash table ht (line 31). If so, the corresponding value, a queue ¢, is returned
to which the current tuple is appended (line 32). Finally, ¢ is written back into the hash
table (line 33).

In the probing phase, we substitute the hash table lookup and result generation (lines
17, 19-20, 25-26) with the hashDel et e() method (Fig.5 line 35). For the given
SPLID s to probe, this method looks up the corresponding tuple queue in the hash table
and adds each contained tuple t to the result. Finally, the entry for S and its queue are
removed from the hash table, because the result tuples have to be returned exactly once
to avoid duplicates. The sort order of these algorithms is dictated by the sort order of
the input sequence used for probing. If the hashed input sequence did not contain any
duplicates, the result is also duplicate free.

The technique to memorize tuples with the same hash key works fine for the step
operators Par HashA, Par HashB, and AncHashA. For DescHashB, however, the
following problem occurs: In phase 1, the algorithm has to anticipate for each node
b in tuple sequence B, on which level the ancestor nodes in the tuple sequence A can
possibly reside. Then—following the technique above —it had to insert b into all queues
of possible ancestors. As an example, consider the document shown in Fig. 6a and the
element with the SPLID 1.3.3.5. In phase 1, the algorithm inserts 1.3.3.5 in the queue
for the possible ancestor elements 1.3.3 and 1 (1.3 does not belong to any input). This
is not only unfavorable because of the redundant storage of element 1.3.3.5 and the
implied higher memory consumption, but it may also lead to duplicates in the final
result: in the probing phase, the algorithm 1) checks for each a in input sequence A, if
there is a corresponding tuple queue in the hash table, 2) appends all elements in the
queue to the result sequence, and 3) removes the matched entry from the hash table.
In the example, if the algorithm processes the possible ancestor 1.3.3, it would return
the result tuple containing 1.3.3.5 and remove this entry for 1.3.3 from the hash table.
If later on, possible ancestor 1 is probed, 1.3.3.5 is again returned. Thus, a duplicate
would be generated.

To remedy these problems, a distinguished algorithm for the DescHashB operator
is designed (see Fig. 6¢). In the first phase, the operator builds two hash tables, named
ht Band ht A, instead of only one. Hash table ht B has the same function as in the other
step operators: it keeps track of mappings from possible ancestor elements to queues
of possible descendants. To avoid redundant storage, the possible descendant element
b is only stored in the queue for the anticipated lowest ancestor element (line 4 to 6),
which corresponds to the SPLID with the highest level that can still be an ancestor
of b. For example, the tuple corresponding to 1.3.3.5 is only stored in the queue for
1.3.3, because 1.3.3 is the anticipated lowest ancestor (the storage of 1.3.3.5 in the

I nput: TupSeq A B
Qut put: TupSeq results
Local : HashTabl e htB, ht A

/1 phase 1: build hash table

1
2 List level cc = getLevel s(A);
3 foreach (Tuple b in B)
Sample Document 4 SPLI D | owest Anc =
! 5 b.jField().lowestAnc(level Ccc);
e 6 hashEnqueue(| owest Anc, b, htB);
Poss. Anc. 7 SPLI D hi ghest Anc =
13 15 8 b.j Field().highestAnc
9 (level Ccc, htA);
10
135 1 foreach (level in |evel Ccc between
12 hi ghest Anc. | evel () and
1333 1335 13 | owest Anc. | evel () descendi ng)
14 SPLI D ancAnc =
15 b.jField().anc(level);
Poss. Desc. 6 SPLID anc =
17 b.jField().anc(level +1);
13333 13335 18 Queue ancQ = ht A get (ancAnc);
19 ancQ enqueue(anc);
Hash Tables 20 ancQ = ht A get(anc);
hB 21 ancQ enqueue(nul l);
22
[1.3.3.3] —[1.3.3.3.3] [1.3.3.3.5] 23 [/ phase 2: probe
[133] [—[1.335] 2% foreach (Tuple a in A
[—=[1.5] 25 hashDel ete(a, htB);
; 26 Queue g = new Queue();
Key Vatue (Queue) 2 q.addAll (htA get(a.jField()):
beA 28 ht A. renpve(a.jField());
29 while (!q.isEmpty())
[1] —[1.33] 30 SPLID id = g.renoveFirst();
[133] —=[1.3.3.3] 31 hashDel ete(id, htB);
(1333] —= null 32 g. addAl I (ht A get (i d));
Key Value Quane) 33 ht B. renpve(id);

Fig. 6. a) Sample Document, b) Hash Tables, ¢) DescHashB Operator

queue of element 1 is thus omitted). Then, another hash table (ht A) is built which
keeps track of ancestor/descendant relationships among the possible ancestor elements.
In essence, ht A stores a forest of trees. In the example, when element =1.3.3.5 is
processed, the key-value pairs (1, 1.3.3) and (1.3.3, null) are inserted into ht A. Later
on, when for example b=1.3.3.3.3 is processed, only the pair (1.3.3, 1.3.3.3) has to
be inserted into ht A, because the relationship of their ancestors is already contained
in ht A This functionality is implemented in lines 7 to 21. First the highest possible
ancestor SPLID, whose relationship is not yet contained in ht Ais computed. This can
easily be done by comparing the keys already contained in ht A. In the above example,
when (1, 1.3.3) and (1.3.3, null) are present in ht A, the highest possible ancestor for
b=1.3.3.3.3 is 1.3.3. Afterwards the structural relationships down to the lowest possible
ancestor are inserted into ht A (lines 11 to 21).

In the probing phase, the algorithm calls hashDel et e() (line 25). I.e., it probes
each element a of the ancestor sequence A against ht B. If there is a queue for the
key a, the found tuples are written to the result and the matched key-value pair is re-
moved from ht B. For example, the lookup of a=1.3.3 immediately returns the tuple

corresponding to 1.3.3.5 and the pair (1.3.3, 1.3.3.5) is removed from ht B. Because
the algorithm has to return all descendants, it follows the tree stored in ht A rooted at
a and calls hashDel et e() for all possible ancestors found (lines 26 to 33). In the
example, the algorithm looks up a=1.3.3 in ht A, finds 2=1.3.3.3, and calls hashDelete
for x, which returns the descendants 1.3.3.3.3 and 1.3.3.3.5. All touched entries are re-
moved from ht A. Note, the operator fulfills our requirements: it does not produce any
duplicates and can operate on unsorted input sequences.

Full*Join Operators resemble the * Step operators. The only difference is the re-
sult generation. While * Sep algorithms are semi-join operators that do not produce
a joined result tuple, Full*Join operators append the current result tuple with all tu-
ples matched (as depicted in method hashFul I (), Fig.5 line 41). Note, opposed to
hashDel et e(),inhashFul | () nomatched entries from ht /ht A/ht Bare deleted.
For a brief full join example see Fig.7a: input sequence A for the Chi | dFul | HashA
operator is hashed on join field 1, thereby memorizing tuples with duplicates in the
related queues. Then, the tuples from sequence B are probed against the hash table.
For each match, each tuple in the queue is joined with the current tuple from B and
appended to the result.

Space and Time Complexity. The space complexity (number of tuples stored) and
time complexity (number of hashes computed) of the operators depend on the axis to
be evaluated. Let n = | A| and m = | B| be the sizes of the input sequences. For the par-
ent/child axis, the space and time complexity is O(n+m). For the ancestor/descendant
axis, the height h of the document also plays a role. Here the space complexity for
classes 1-3 is also O(n + m), whereas the time complexity is O(n + h * m) (for each
tuple in sequence B up to h hashes have to be computed). For classes 4—6, both space
and time complexity are O(n + h*m), except for the DescHashB operator, where the
time complexity is O(h * (n 4+ m)).

Beyond Twig Functionality: Calculation of Sibling Axes. With hash-based schemes
and a labeling mechanism enabling the parent identification, the preceding-sibling and
the following-sibling axes are —in contrast to holistic twig join algorithms—computable,
too. Due to space restrictions, we can only show filtering algorithms, corresponding to
the *Filter classes above: In phase 1 operators PreSi bl HashA and Fol | Si bl -
HashA (see Fig.7b) create a hash table ht to store key-value pairs of parent/child
SPLIDs. For each element in A, parent p is calculated. Then the following-sibling
(preceding-sibling) axis is evaluated as follows: For each parent SPLID p, the small-
est (largest) child SPLID cin A is stored in ht . This hash table instance is calculated
by successive calls to the checkAndHash() method (lines 14 to 21). While probing
a tuple b of input B, the algorithm checks whether the SPLID on the join field of bis a
following-sibling (preceding-sibling) of C, that has the same parent (lines 6 to 12). If so,
the current b tuple is added to the result. Clearly, these algorithms reveal the same char-
acteristics as their corresponding * Filter algorithms: They do not produce any tuplewise
duplicates and preserve the order of input sequence B.

JoinFields I nput: TupSeq A, B, Axis aixs

; jy Qut put: TupSeq results, Local:HashTabl e ht
[1.3,1.3.5] [1.3.3]
[1.3,1.3.7] [1.7.5]

/1 phase 1: build hash table

[1.5,1.5.5] foreach (Tuple a in A
[1.5,1.5.7] checkAndHash(a. j Fiel d(), axis)

[1.7,1.7.3]

TupSeq A TupSeq B foreach (Tuple b in B)

1

2

3

4

5 [/ phase 2: probe

6

7 SPLID s = ht.get(b.parent());
8

Phasel‘hjy \\ if((axis == ‘PreSibl’ and
9 b.jField().isPreSibl(s)) or
[1.3] = [1.3,1.3.5],[1.3, 1.3.7] 10 (axis == “Fol I Sibl’' and
[1.5] —=| [1.5.155],[15,15.7] 1 b.jField().isFollSibl(s)))
(17 el [17.173] i: resul ts. add(b);
HashKeys HashValues 14 function checkAndHash(SPLID a, Axis axis)
15 SPLID s = ht.get(a.parent());
16 if((s is NULL) or
[1.3,1.3.5,1.3.3] 17 (axi s == ‘PreSibl’ and
[1.3.13.7,133] phase 2: probe 3 not s.isPreSibl(a)) or
[1.7,1.7.3,1.7.5] 19 (axis == ‘Fol I Sibl" and
20 not s.isFollSibl(a)))
21 ht. put (a.parent(), a);

Results

Fig. 7. a) Full*Join Example and b) Sibling Operator

4 Quantitative Results

To substantiate our findings, we compared the different algorithms by one-to-one opera-
tor comparison on a single-user system. All tests were run on an Intel XEON computer
(four 1.5 GHz CPUs, 2 GB main memory, 300 GB external memory, Java Sun JDK
1.5.0) as the XDBMS server machine and a PC (1.4 GHz Pentium IV CPU, 512 MB
main memory, JDK 1.5.0) as the client, connected via 100 MBit ethernet to the server.
To test the dependency between runtime performance and query selectivity, we gen-
erated a collection of synthetic XML documents, whose structure is sketched in Fig. 8.
Each document has a size of 200 MB and contains bibliographic information. Because
we were mainly interested in structural join operators for element sequences, the gen-
erated documents do not contain much text content. The schema graph is a directed
acyclic graph (and not a tree), because an author element may be the child of either
a book or an article element. We generated the documents in such a way, that we ob-
tained the following selectivity values for the execution of structural joins between input
nodes: 1%, 5%, 10%, 50%, and 100%. For example, for the query / / book[tit] e],
selectivity 1% means that 1% of all title elements have a book element as their parent
(all others have the article element as parent). Additionally, we created 10% noise on
each input node, e. g., 10% of all book elements have the child booktitle instead of title.

4.1 Join Selectivity Dependency of Hash-Based Operators

In a first experiment, we want to explore the influence of the join selectivities of the
input sequences and, in case of varying input sequence sizes, their sensitivity on the

bib

*Filter Queries:

book+ jou{al*-\ a) //book[title] or//book/title
{booktitle]title} \ article+ journalname b) ////]‘ournall[/.//t/lttlltle] or
0 journa itle
authort+ {arttitle|title}
|
name organization *Step and Full*Join Queries:
| a) //author[tuvalu] or
adé{ess ~ //author/tuvalu
city {usalfrancelandorraltuvalul...} b) //organize on[.//andorral or
| //organization//andorra

{london|seattle|ordino|funafutil...}

Fig. 8. Document Schema and Sample Queries

hash operator performance. All operators presented in Table 1 revealed the same per-
formance characteristics as a function of the join selectivity. Hence, it is sufficient to
present an indicative example for which we have chosen the DescFul | Hash+* oper-
ators. For the query / / j ournal //tit| e, the size of the input sequence containing
journal elements varies from around 2,000 to 200,000 elements, whereas the size of the
title sequence remains stable (roughly 200,000 elements). Fig. 9a illustrates the runtime
performance of the DescFullHashA operator and the DescFullHashB operator for the
same query. For selectivities smaller than 10%, the runtime of each operator remains
quite the same, because in these cases external memory access costs for the node ref-
erence indexes (column sockets) dominate the execution time, whereas the time for the
hash table creation and probing remains roughly the same. However for selectivities >
10%, the runtime increases due to higher CPU costs for hashing and probing of larger
input sequences. The gap between the DescFul | HashA and the DescFul | HashB
operator results from hashing the wrong—i. e., the larger— input sequence (title) instead
of the smaller one (in operator DescFul | HashB). Therefore, it is important that the
query optimizer chooses the right operator for an anticipated data distribution.

4.2 Hash-Based vs. Sort-Based Schemes

In the next test, we want to identify the performance differences of our hash-based
schemes as compared to sort-based schemes. For this purpose, we implemented the
SackTree algorithm [1] and the structural join strategy from [14] called AxisSort* in the
following. Both operators work in two phases: In phase 1, input sequences are sorted
using the QuickSort algorithm. While StackTree needs to sort both input sequences,
AXxisSort* only needs to sort the smaller one. In phase 2, StackTree accomplishes its
ordinary join strategy, while AXisSort* performs a binary search on the sorted input for
each element of the other input sequence. To compare our operators with minimal-cost
sort-based schemes, we introduce hypothetical operators which also sort the smaller
input sequence, but omit the probing phase. Thus, so-called * Fake operators do not
produce any output tuples. The result comparison is presented in Fig. 9b. Having the
same join selectivity dependency, our hash-based operators are approximately twice as
fast as the sort-based operators (with result construction). The figures for the StackTree
algorithm impressively demonstrate that sort operations on intermediate results in query

plans should really be avoided if possible. Finally, the hash-based operators — with their
“handicap” to produce a result—match the sort-based fake operators.

4.3 Memory Consumption

Finally, we measured the memory consumption of hash-based and sort-based oper-
ators. On the generated document collection, we issued the query // or gani za-
tion[.//andorra], where the number of andorra elements varied from 2000 to
200.000, whereas organization elements remained stable (at roughly 200.000). For com-
parison, we used the DescFul | HashB?® and the DescFul | Sor t B operator. In all
selectivity ranges, the internal hash table of the hash-based operator consumed three to
four times more memory than the plain array of the sort-based one. To reduce this gap,
a space optimization for hash-based operators is possible: Each key contained in the
hash-table (as depicted in Fig. 7a) is repeated (as a prefix) in the join field value of the
tuples contained in the key’s queue. This redundant information can safely be disposed
for a more compact hash table.

In a last experiment, we compare DescFul | HashB with AncHashB. Here, the
semi-join alternative required around three times fewer memory than the full join vari-
ant on all selectivities. This circumstance is also a strong argument for our proposal,
that the query optimizer should pick semi-join operators whenever possible.

5 Conclusions

In this paper, we have considered the improvement of twig pattern queries—a key re-
quirement for XML query evaluation. For this purpose, we have substantially extended
the work on structural join algorithms thereby focussing on hashing support. While
processing twig patterns, our algorithms, supported by appropriate document store and

5 Note, regarding the space complexity, DescFul | HashB is one of the more expensive repre-
sentative among the hash-based operators (see 3.2).

5000 - 20000
DescFulHashA [ChildFullHashB
4500 1O pescFulHashB 18000 7 g pescFulHashB
4000 16000 -|Z ChildFullSortBFake
DescFullSortBFake
3500 14000 -1l m ChildFullSortB
@ 3000 4 — W 12000 |0 DescFullSort8
E. .§. ChildFullSortStackTree
o 2500 ‘o 10000 -
E 2000 1 F—— F—- E s000
- -
1500 6000
1000 4000
500 2000
0 0
1% 5% 10% 50% 100% 1% 5% 10% 50% 100%
Selectivity Selectivity

Fig.9. a) DescFullHash* Characteristics, b) Operator Comparison

index structures, primarily rely on SPLIDs which flexibly enable and improve path pro-
cessing steps by introducing several new degrees of freedom when designing physical
operators for path processing steps.

Performance measurements approved our expectations about hash-based operators.
They are, in the selectivity range 1%—-100%, twice as fast as sort-based schemes and
not slower than the *Fake operators. As another beneficial aspect, intermediate sorts
in QEPs can be drastically reduced. Such hash-based operators should be provided—
possibly with other kinds of index-based join operators—in a tool box for the cost-based
query optimizer to provide for the best QEP generation in all situations.

References

1. S. Al-Khalifa et al.: Structural Joins: A Primitive for Efficient XML Query Pattern Matching.
Proc. ICDE: 141-152 (2002)

2. T. Bohme, E. Rahm: Supporting Efficient Streaming and Insertion of XML Data in RDBMS.
Proc. 3rd DIWeb Workshop: 70-81 (2004)

3. N. Bruno, N. Koudas, D. Srivastava: Holistic twig joins: optimal XML pattern matching. Proc.
SIGMOD: 310-321 (2002)

4. S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C. Zaniolo: Efficient Structural Joins on
Indexed XML Documents. Proc. VLDB: 263-274 (2002)

5. M. Dewey: Dewey Decimal Classification System. http://www.mtsu.edu/ vvesper/dewey.html

6. M. Fernandez, J. Hidders, P. Michiels, J. Simeon, R. Vercammen: Optimizing Sorting and
Duplicate Elimination. Proc DEXA: 554-563 (2005).

7. M. Fontoura, V. Josifovski, E. Shekita, B. Yang: Optimizing Cursor Movement in Holistic
Twig Joins, Proc. 14th CIKM: 784-791 (2005)

8. G. Gottlob, C. Koch, R. Pichler: Efficient algorithms for processing XPath queries. ACM
Trans. Database Syst. 30(2): 444-491 (2005)

9. T. Hérder, M. Haustein, C. Mathis, M. Wagner: Node Labeling Schemes for Dynamic XML
Documents Reconsidered, accepted for Data & Knowledge Engineering (2006)

10. Q. Li, B. Moon: Indexing and Querying XML Data for Regular Path Expressions. Proc.
VLDB: 361-370 (2001)

11. Q. Li, B. Moon: Partition Based Path Join Algorithms for XML Data. Proc. DEXA: 160-170
(2003)

12. P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, N. Westbury: ORDPATHSs: Insert-
Friendly XML Node Labels. Proc. SIGMOD: 903-908 (2004)

13. I. Tatarinov et al.: Storing and Querying Ordered XML Using a Relational Database System.
Proc. SIGMOD: 204-215 (2002)

14. Z. Vagena, M. M. Moro, V. J. Tsotras: Efficient Processing of XML Containment Queries
using Partition-Based Schemes. Proc. IDEAS: 161-170 (2004)

15. Y. Wu, J. M. Patel, H. V. Jagadish: Structural Join Order Selection for XML Query Opti-
mization. Proc. ICDE: 443-454 (2003).

16. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohmann, On Supporting Containment
Queries in Relational Database Management Systems. Proc. SIGMOD: 425-436 (2001)

