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Abstract. Database clusters provide a cost-effective solution for high 
performance query processing. By using either inter- or intra-query parallelism 
on replicated data, they can accelerate individual queries and increase 
throughput. However, there is no database cluster that combines inter- and 
intra-query parallelism while supporting intensive update transactions. C-JDBC 
is a successful database cluster that offers inter-query parallelism and controls 
database replica consistency but cannot accelerate individual heavy-weight 
queries, typical of OLAP. In this paper, we propose the Apuama Engine, which 
adds intra-query parallelism to C-JDBC. The result is an open-source package 
that supports both OLTP and OLAP applications. We validated Apuama on a 
32-node cluster running OLAP queries of the TPC-H benchmark on top of 
PostgreSQL. Our tests show that the Apuama Engine yields super-linear 
speedup and scale-up in read-only environments. Furthermore, it yields 
excellent performance under data update operations. 

1 Introduction 

Competitive organizations typically optimize their business processes using decision 
support systems (DSS) [9]. A DSS includes On-Line Analytical Processing (OLAP) 
tools and a data warehouse (DW) capable of efficiently handling large amounts of 
data [3]. Due to the important role played by DSS, much research has been devoted to 
provide high performance for OLAP queries. 

High performance query processing on data warehouses can be achieved using a 
relational database management system (DBMS) running on top of a PC cluster. PC 
clusters can scale to very large configurations [8]. Examples of cluster-aware DBMSs 
are Oracle RAC 10g [5] and DB2 ICE [6]. However, software licensing, hardware 
specific requirements or database migration costs may prevent their use by many 
applications. An alternative approach for high-performance data warehousing using 
PC clusters is a database cluster [1, 2, 14, 18]. A database cluster (DBC) consists of a 
set of independent DBMSs (not cluster-aware) distributed over a set of cluster nodes, 
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and orchestrated by a middleware, responsible for offering a single external view of 
the whole system, like a virtual DBMS. Applications need not be modified when 
database servers are replaced by their cluster counterparts. Their queries are sent to 
the middleware which provides data distribution transparency. Previous work as 
PowerDB [1], Leg@net [4], C-JDBC [2] and SmaQ [13] have shown the 
effectiveness of the DBC approach.  

Two kinds of parallelism can be exploited in a DBC for query processing: inter-
query parallelism and intra-query parallelism. Inter-query parallelism consists of 
executing many queries at the same time, each at a different node. Inter-query works 
fine for On-Line Transactional Processing (OLTP) application support, where queries 
are usually light-weight. However, OLAP applications typically have heavy-weight 
queries, i.e., queries that access large amounts of data and perform complex 
operations, thus taking a long time to be processed. Using only inter-query parallelism 
is not appropriate for heavy-weight query processing as it does not reduce the 
processing time of individual queries. In such case, intra-query parallelism is the most 
adequate solution as shown in [14].  

Intra-query parallelism consists of using many nodes to process each single query. 
In this case, each node addresses only a subset of query data and/or query operations. 
The main goal is to reduce the execution time of individual heavy-weight queries 
while improving the overall throughput.  

Inter- and intra-query parallelisms can be combined in a DBC implementation. 
Moreover, a DBC with both kinds of parallelism and support for concurrent data 
updates can be used in both OLAP and OLTP applications. However, current DBC 
solutions [1], [4], [2] and [14], exclusively support inter-query for OLTP or intra-
query for OLAP applications. First, because current DBC solutions for OLAP 
applications usually consider that database refresh operations are not controlled by 
them and takes place on a specific predefined time which the DSS is offline. The 
second reason is that combining inter- with intra-query parallelism can be conflicting. 
Intra-query parallelism requires the presence of data subsets which are typically 
produced by physical database design. When the data is physically partitioned among 
cluster nodes, inter-query parallel processing becomes very limited, since most 
queries need to scan all partitions in parallel. Depending on the data partitioning 
design, a simple OLTP query must be processed by intra-query parallelism and 
becomes very inefficient. On the other hand, OLAP queries without data partitioning 
cannot be performed efficiently. 

Our goal is to provide a high-performance and low-cost DBC solution that supports 
OLTP and OLAP workloads. To avoid the problems with physical database 
partitioning, we adopt dynamic virtual partitioning to a replicated database. We use 
C-JDBC, an industrial quality open-source DBC solution that offers support for inter-
query parallelism and database replica consistency. C-JDBC provides excellent 
performance for OLTP applications [2] but does not support intra-query parallelism. 
Thus, we extend C-JDBC with a non-intrusive intra-query solution. 

In this paper, we present the Apuama1 Engine as an extension of C-JDBC. The 
main goal is to provide an environment to process OLAP queries using intra-query 
parallelism while keeping the effectiveness of C-JDBC to support OLTP transactions. 
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No source code was changed in C-JDBC. Apuama acts as a connection proxy 
between C-JDBC and the DBMSs. It does not interfere with the C-JDBC query 
processing and is only used for OLAP query processing. Unlike all other DBC intra-
query solutions, Apuama also provides for database replica consistency during intra-
query processing.  

To evaluate Apuama, we ran experiments based on the TPC-H benchmark [19] 
(specific for OLAP applications) on a 32-node cluster using PostgreSQL [16]. Query 
processing speedup and throughput scalability were measured on experiments with 
read-only queries and a mix of read-only queries and concurrent data updates. In most 
cases, Apuama achieves super-linear speedup and scale-up. Since there has been no 
change to C-JDBC inter-query processing, successful OLTP results are sustained. 

The paper is organized as follows. Section 2 introduces the basic concepts for 
intra-query parallelism in DBC. Section 3 explains intra-query support in Apuama. 
Section 4 presents the architecture of Apuama as an extension to C-JDBC. Section 5 
describes experimental results. Section 6 discusses related work. Section 7 concludes. 

2 Intra-Query Parallel Processing in DBC 

Intra-query parallelism consists of having each query being processed by many nodes 
in parallel. This can be achieved in different ways. The most frequent solutions are 
through data parallelism, where the same query is executed against different parts of a 
partitioned database in parallel. A DBMS that has parallel capabilities usually offers 
several data partitioning techniques that are used during physical database design. 
Such DBMS provides transparent access to the partitioned database and has full 
control over the parallel query execution plan. This is not the case for DBC. 

In DBC, independent DBMSs are used by a middleware as “black-box” 
components. It is up to the middleware to implement and coordinate parallel 
execution. This means that query execution plans generated by such DBMSs are not 
parallel. Furthermore, as “black-boxes”, they cannot be modified to become aware of 
the other DBMS and generate parallel plans.  

When the database is replicated at all nodes of the DBC, inter-query parallelism is 
almost straightforward. Any read query can be sent to any node and execute in 
parallel. On the other hand, to implement intra-query in a DBC, the application 
database must be partitioned and distributed among the DBC nodes. The use of a 
replicated database or a partitioned database can also impact on the way the update 
transactions are processed. For replicated databases, the DBC must send a notification 
to all replicas in order to complete an update transaction. Using a partitioned database, 
the update transaction processing is faster because the DBC has to notify a smaller 
number of nodes. The notification is sent just to the owners of updated tuples. 
However, physical data partitioning can be complex to design, hard to maintain, and 
can cause severe data skew. In addition, automatically generating a parallel query 
execution plan can be quite complex.  

An interesting solution to combine inter- and intra-query parallelism is to keep the 
database replicated and design partitions using virtual partitioning (VP) [1]. VP is 
based on replication and dynamically designs partitions. The basic principle of VP is 



to take one query, rewrite it as a set of sub-queries “forcing” the execution of each 
one over a different subset of the table. In the PowerDB DBC [1], this is implemented 
in a simple way called Simple Virtual Partitioning (SVP) that works as follows. First, 
the database is fully replicated over all cluster nodes. Then, when a query Q is 
submitted to a DBC with n nodes, a set of sub-queries Qi=1..n is produced. Each Qi is 
formed by the addition of a different range predicate to Q at the where clause. The 
goal is to make each sub-query to run over a different subset of the data that must be 
accessed by Q. Then, each sub-query is sent to a different node, where it is executed 
by the local DBMS. After sub-query execution, the DBC produces the final result 
based on the partial results of each node. Let us take the following query Q to be 
executed in a DBC with four nodes: 

Q: select sum(l_extendedprice) from lineitem  (1) 
  
According to SVP, Q would be rewritten as follows: 

Q
i
: select sum(l_extendedprice) from lineitem  (2) 

 where l_orderkey >= :v1 and l_orderkey < :v2 
 
The difference between Q and Qi is the range predicate “l_orderkey > :v1 and 

l_orderkey <= :v2”. We call virtual partitioning attribute (VPA) the attribute chosen 
to virtually partition the table. The values used for parameters v1 and v2 vary from 
node to node and are computed according to the total range of the VPA values and the 
number of nodes. Assuming that the interval of values of l_orderkey is [1; 6,000,000] 
and we have 4 nodes, then, 4 sub-queries must be generated. The intervals covered by 
each sub-query are the following: Q1: v1=1 and v2=1,500,001; Q2: v1=1,500,001 and 
v2=3,000,001; and so on. Although all nodes have a replica of lineitem, VP forces 
each Qi to process a different and disjoint subset of lineitem's tuples.  

However, this approach does not guarantee that different physical parts of lineitem 
will be scanned. If the tuples of the added range are scattered along the table storage, 
all disk pages occupied by the table might be accessed. For SVP to be effective, the 
tuples of the virtual partition must be physically clustered according to the VPA and 
there must be an index associated to this attribute, i.e., there must exist a clustered 
ordered index on lineitem based on l_orderkey. Furthermore, the DBMS optimizer 
must choose the clustered index to be used in the execution plan.  

Query re-writing is not trivial. We base our transformations on some typical query 
templates from OLAP queries, adopting some hints from [1]. To leverage this 
complexity we only apply VP on fact tables, which makes it easier to re-write queries 
with complex joins. Some SQL functions require a more complex query modification. 
For example, the avg() function of a query must be rewritten in the sub-queries as a 
sum() function followed by a count() function to address a global average. Still some 
queries, such as complex nested queries, cannot be transformed. In those cases, intra-
query is not explored.   



3 Query Processing with Apuama  

Apuama is an extension of C-JDBC responsible for providing intra-query parallelism. 
It is implemented as an external component, without changing C-JDBC. OLTP 
transactions are processed by C-JDBC without any change. In this section we explain 
how OLAP queries are handled by Apuama through intra-query processing, result 
composition and update transactions. 

Apuama implements intra-query parallelism based on SVP. Query speedup with 
SVP is DBMS-dependent since the partitioned table must be accessed through a 
clustered index associated to the partitioning attribute. If, for any reason, the DBMS 
optimizer chooses a full table scan to execute a sub-query, the virtual partition is 
ignored and the performance of SVP can be severely hurt. Even though a full table 
scan can be more efficient for an isolated query execution, in Apuama it is also 
important trying to keep most of the virtual partition data at the cache. Thus, in order 
to guarantee effective exclusive access to the virtual partition tuples, Apuama directly 
interferes in DBMS optimizer choices in order to force index usage. This is done by 
asking the DBMS to disable full table scans during heavy-weight intra-query 
processing. This can be done in many popular open-source DBMSs, e.g. MySQL [7] 
and PostgreSQL.  

Apuama disables full scans only before starting to process a query using intra-
query parallelism. When the query processing is finished, the original DBMS settings 
are reestablished. This strategy is not DBMS-independent because the command used 
to do that is not standard, although it is common knowledge for the most of DBAs. 
Thus, Apuama must detect which DBMS driver is being used to make DBMS-specific 
changes on the query execution plan. This information is part of Apuama’s metadata 
and it is set during software installation. 

Sub-queries produced by SVP in Apuama are independently processed by each 
node and their partial results must be combined in order to form the final query result. 
Apuama uses HSQLDB [10], a fast in-memory DBMS, to perform result 
composition. This method proved to be very efficient during our experiments. In 
many experiments, aggregations performed by HSQLDB took no more than one 
second to be processed even with large partial results involving several columns. 

Updates in Apuama are propagated to all nodes in the same order to guarantee 
consistency among different replicas. The time needed to broadcast updates over all 
nodes increases according to the number of nodes in the cluster. With full replication, 
this can impact performance in update-intensive situations. Fortunately, this is not the 
case for most decision-making environments. Although C-JDBC does not require full 
replication, we adopted it to maximize speedup through intra-query parallelism. 
Solutions using the replica freshness techniques [15] are out of the scope of this work.  

In order to produce consistent results for heavy-weight queries, Apuama must 
guarantee that, before beginning to process a query using intra-query parallelism, all 
node replicas are consistent with each other. Distributed updates are performed by 
C-JDBC, which is not aware of the existence of sub-queries generated by SVP. With 
C-JDBC only, we can assure that updates are executed in the same order in all nodes 
but we cannot assure that updates and SVP sub-queries are executed in the same 
order. Different execution threads, executing update and read-only operations, may be 
scheduled in different orders by the operating systems of different nodes. Therefore, 



Apuama provides a blocking mechanism to avoid performing updates along SVP sub-
queries of the same query. Apuama has a transaction counter for each node. When a 
query must be processed with SVP, Apuama waits until a consistent state is reached 
by all nodes. This happens when all transaction counters are equal. If new update 
transactions arrive, they are blocked. Then, Apuama starts executing SVP, 
dispatching all sub-queries to their respective nodes. When all sub-queries are sent 
and started by the DBMSs, update transactions are unblocked and can be executed. 
The transaction isolation provided by the DBMS makes it possible to have the updates 
executed before each sub-query finishes, thereby improving throughput.  

4 Apuama Architecture 

This section describes the Apuama architecture and its integration within C-JDBC. 
Fig. 1(a) shows our architecture that contains only C-JDBC components relevant to 
our explanation and the Apuama Engine extension. The main purpose of C-JDBC is 
to offer transparent access to a cluster of databases without any modification on the 
client application. The unique requirement is to use a JDBC driver [11]. Instead of 
having the application directly connected to the DBMS, it is connected to C-JDBC 
controller using a C-JDBC JDBC driver.  

 
Fig. 1. Apuama architecture 

 
The C-JDBC controller is a Java process that manages all database resources. It 

has a Database Backend component that manages a pool of connections to running 

(a) C-JDBC with Apuama extension 

C-JDBC Controller 

Database 
Backend 

Connection 
Manager 

Database 
Backend 

Connection 
Manager 

Apuama JDBC 
Driver 

Request Manager 

Load Balancer 

Scheduler 

DBMS DBMS 

Apuama JDBC 
Driver 

DBMS 
JDBC Driver 

DBMS 
JDBC Driver 

Apuama Engine 

TCP-IP 

TCP-IP 

DBMS 

Apuama JDBC 
Driver 

DBMS 
JDBC Driver 

Apuama Engine 

TCP-IP 

Node 
Processor 

Query 
Executor 

Connection 
Pool 

DBMS 

Apuama JDBC 
Driver 

DBMS 
JDBC Driver 

Node 
Processor 

Query 
Executor 

Connection 
Pool 

Cluster Administrator 

Data 
Catalog 

Query 
Parser 

Result Composer 

Intra Query Executor 

(b) Apuama Engine internals 

TCP-IP 

A
pu

am
a 

Client Application 

C-JDBC JDBC Driver 



DBMSs. Each request received by C-JDBC is submitted to the Scheduler component 
that controls concurrent request executions and makes sure that update requests are 
executed in the same order by all DBMSs. The Scheduler can be configured to 
enforce different parallel levels of concurrency. In our experiments, it was set to 
concurrently execute read and write requests. After a request is scheduled to run, the 
Load Balancer component chooses which Database Backend will execute it. If it is a 
write request, the same query is executed in every Database Backend to maintain 
consistency. But if it is a read request, the Load Balancer chooses the best node to 
execute it. This choice is based on a previously established policy. We configured the 
Load Balancer to select the node with the least number of pending requests. 

Apuama does not require any changes in C-JDBC source code. Fig. 1(a) shows that 
Apuama is a layer between C-JDBC and the DBMSs. C-JDBC no longer makes any 
direct connection to DBMSs. Each Database Backend connects to Apuama through a 
JDBC driver. It is Apuama that connects to the DBMSs. 

Fig. 1(b) shows a detailed architecture of Apuama. It has two kinds of components: 
one that manages intra-query parallel executions, called Cluster Administrator, and a 
set of Node Processor components. For each connection established by C-JDBC 
using Apuama, a Node Processor is created and is responsible for mediating and 
monitoring requests sent to its corresponding DBMS. To be able to process multiple 
requests, the Node Processor creates a pool of connections.  

The Cluster Administrator has a Query Parser component capable of determining 
which tables are referenced by a query and a Data Catalog that contains information 
about tables that can be virtually partitioned. They are used to determine if a current 
OLAP query can be processed using intra-query parallelism or not. If not, the Node 
Processor simply redirects the request to the corresponding DBMS. Otherwise, the 
Cluster Administrator takes the query and processes it through the Intra-Query 
Executor (IQE) component. When all sub-queries are ready to be processed, they are 
sent in parallel to the Query Executor of each Node Processor. The Query Executor is 
responsible for sending the sub-query to its corresponding DBMS and waiting for 
results, which are sent to the IQE that forwards it to the Result Composer. It uses 
HSQLDB to store the partial results and perform final result composition. When all 
partial results are collected, the Result Composer produces the final result that is sent 
back to the client application.  

5 Experiments 

In this section, we evaluate the intra-query parallel processing capabilities added to C-
JDBC by Apuama in different scenarios. We ran experiments based on the TPC-H 
benchmark. We stress Apuama in situations of high concurrency levels, even while 
executing database refresh operations.  

All tables are replicated, but only the fact tables are virtually partitioned (orders 
and lineitem). Typically, fact tables have the highest cardinality in the database and 
they are frequently involved in OLAP queries, particularly in heavy joins. Thus, their 
reduced number of tuples can improve IO and CPU processing. Dimension tables are 
not virtually partitioned because they are small tables and represent 14% of total 



database size. We employ virtual partitioning on orders, based on its primary key 
(o_orderkey). The first attribute of the primary key of lineitem (l_orderkey) is a 
foreign key to orders. So, by choosing l_orderkey we generate a derived partitioning 
on lineitem. Tuples of the fact tables are physically ordered according to their 
partitioning attributes and indexes were built over them. Also, indexes are built for all 
foreign keys of all tables. As TPC-H assumes ad-hoc queries, we perform no other 
optimization, as determined by the benchmark. 

The TPC-H queries that involve a fact table can benefit from the virtual 
partitioning. Exceptionally, some queries that contain subqueries involving fact tables 
cannot be rewritten using virtual derived partitioning. We use a subset of 8 queries 
from TPC-H. As in the specification, we identify queries by their numbers:  Q1, Q3, 
Q4, Q5, Q6, Q12, Q14 and Q21. We chose such queries because they represent OLAP 
queries of different complexities. Q1 accesses only the lineitem table and performs 
many aggregate operations. The “where” predicate of Q1 is not very selective since 
around 99% of tuples are retrieved. This is a very costly query. Q3 joins lineitem, 
orders and a dimension table. Differently from other queries, its result contains a large 
number of rows. Q4 contains a reference to lineitem table and a sub-query with 
another reference to lineitem. Q5 joins lineitem, orders and four dimension tables. It 
performs only one aggregate operation. As Q1, Q6 accesses just the lineitem table. 
The main differences between them are that Q6 has only one aggregate operation and 
its “where” predicate is much more selective, retrieving only 1.5% of tuples. Q12 
joins lineitem and orders tables and has two aggregation operations. Q14 joins 
lineitem table and a dimension table. Q21 contains three references to lineitem table. 
Two of those references are part of two sub-queries, respectively. 

There are three kinds of experiments: first, we analyze speedup obtained with 
Apuama when processing isolated individual queries. Then, we evaluate the system 
overall throughput with sequences of read-only queries. Finally, we evaluate 
throughput obtained while simultaneously processing read-only and update queries. 

We ran experiments on top of a 32-node shared-nothing cluster system from the 
Paris Team at INRIA [17]. Each node has two 2.2 GHz Opteron processors with 2 GB 
RAM and 30 GB HD. The network is a Gigabit ethernet. An instance of PostgreSQL 
8 was running at each node. The total database size on disk, including all tables and 
indexes, is about 11 GB, for a TPC-H database with a scale factor of 5. We use 
HSQLDB to compute the final results.  

In the following, we present results that show query execution times and 
throughput rates for an increasing number of nodes (from 1 to 32). Every execution 
was repeated five times and the final metric is the mean value obtained in such runs, 
not considering the first one. In some cases, metrics were also normalized by dividing 
their value by the value obtained during the same kind of experiment with one node. 
In order to ease reading and analysis, values are presented in logarithmic scale to give 
a clear notion of linearity [14]. 

The first experiment (Fig. 2) evaluates the speedup obtained with Apuama when 
executing isolated queries in different cluster configurations. With 2 nodes, query 
execution time for all queries is reduced by almost 50%, when compared to the 
sequential execution. With 4 nodes, query execution time is decreased from 45% to 
20% for all queries, except for Q4 and Q6 that were decreased to 1.2% and 6.8% of 
the original time, respectively. As Q4 and Q6 are highly selective queries, fragments 



obtained by virtual partitioning are small enough to fit in main memory with just four 
nodes, resulting in super-linear speedup. For such configurations, we could observe 
that, after the first query execution, no page faults occur, thus avoiding disk accesses. 
However, we continue to see a linear speedup with 8, 16 and 32 nodes showing the 
effectiveness of virtual partitioning even for in-memory databases. Because Q1 and 
Q21 are CPU-bound queries, they do not benefit from IO improvement. Still their 
speed-up is always near linear. 

In the next experiment, read-only query sequences are executed in parallel against 
the DBC. All sequences are composed by the same 8 queries, sorted in different ways, 
according to TPC-H specification. Each sequence submits the next query after the 
completion of the current query. This is how TPC-H simulates a decision-making user 
formulating new queries based on previous query results. Queries from different 
sequences are submitted in parallel.  

 

Fig.  2. Speedup experiments - normalized query execution times  

Fig. 3(a) shows the throughput rate (in queries per minute) obtained during the 
execution of three concurrent query sequences in different cluster configurations. It 
also shows the throughput that would be achieved if linear scale-up throughput was 
obtained. The number of query sequences was defined according to TPC-H, which 
recommends this level of concurrency for OLAP databases with a scale factor of 5. 
For all configurations, the throughput rises super-linearly. With 2 nodes, it is near 
linear. With 4 nodes, the throughput is almost 2 times higher than if a linear gain was 
obtained. From 8 to 32 nodes, the throughput is constantly about 6 times higher than 
linear gain showing excellent performance.  

Fig. 3(b) shows the scale-up throughput rate when Apuama is processing 
sequences of read-only queries. In this experiment, the number of concurrent query 
sequences is equal to the number of nodes being used. Therefore, the ideal situation is 
that the execution time would be the same for all cluster configurations, as the 
“Linear” curve shows. As in the previous experiment, the performance obtained with 



2 nodes is better than expected. With 4 nodes, the performance is more than two times 
better than expected. From 8 to 32 nodes, the performance is always about 3 times 
better than expected, showing very good scalability with respect to query load. 
Therefore, Apuama can be used to successfully reduce OLAP individual query 
execution time and increase system throughput in a typical OLAP scenario and even 
in the presence of high-concurrency.  

 

Fig. 3. Read-only query sequences experiment - (a) throughput with 3 concurrent sequences, 
(b) execution time with n concurrent sequences, where n is equal to the number of nodes 

In the following experiment, we mix read-only query sequences with an update 
query sequence. The update operations consist of 52,500 transactions for all cluster 
configurations. First, the update queries insert an amount of data on the lineitem and 
orders tables. In a second step, the updates remove all inserted tuples from lineitem 
and orders tables. 

Fig. 4(a) shows throughput (in queries per minute) obtained while concurrently 
processing 3 read-only query sequences and an update query sequence. Again, it 
shows the throughput that would be achieved if linear gain was obtained. From 2 to 8 
nodes, performance of Apuama is near linear. For 16 and 32 nodes, the consistency 
protocol makes the update propagation delay hurt performance. There is almost no 
performance gain from 16 to 32 nodes. Fig. 4(b) shows scalability in Apuama with a 
concurrent updates. Here, the number of read-only sequences equals the number of 
nodes while there is always one update sequence. There is a performance gain up to 
16 nodes. However, for 32 nodes, the performance is almost the same as with 4 nodes. 
This is due to the replica synchronization when using a large number of nodes. 

  



Fig. 4. Mixed workload experiment - (a) throughput with 3 read-only and 1 update sequence (b) 
execution time with 1 update and n read-only queries, where n is equal to the number of nodes 

In summary, these experiments show that Apuama provides excellent performance 
in processing read-only query workloads. This is true for typical OLAP scenarios and 
for those with a high degree of concurrency. With mixed workloads (consisting of 
read-only and update queries), reasonable performance can still be obtained and the 
system does not need to be unavailable for end-users while data refresh operations are 
carried out. Thus, in typical OLAP scenarios, where such operations occur only from 
time to time, we can conclude that Apuama is a good solution for DSS. 

6 Related Work 

The main DBC projects that can be found in the literature are C-JDBC [2], PowerDB 
[1], PowerDB-FAS [18], SmaQ [13] and Leg@net [4]. C-JDBC, PowerDB-FAS and 
Leg@net only support inter-query parallelism. Apuama was developed as an 
extension to C-JDBC to support OLAP applications through intra-query parallelism.  

PowerDB provides intra-query parallelism, but does not guarantee query speedup 
because it depends on a DBMS-specific query execution optimization. Thus their 
results are unstable. Furthermore, in contrast with our motivation to offer a low-cost 
solution, PowerDB software is not freely available. 

SmaQ is also focused on OLAP. It uses a technique called “adaptive virtual 
partitioning” (AVP) [14] that reduces query execution time and allows for dynamic 
load balancing during query execution. Although SmaQ can support both inter- and 
intra-query parallelism, it does not support update transactions. The main difference 
between SmaQ and Apuama is the existence of a replica consistency management. 
Besides, experiments showed that execution of OLAP queries in environments with 
high levels of concurrency can lead to poor performance. Apuama uses a simpler 
virtual partition technique than AVP that allows for better concurrent queries support. 
Since AVP locally subdivides the local sub-query it increases the level of concurrency 
while inducing a bad memory cache use. 

7 Conclusion 

We proposed the Apuama Engine as an extension to C-JDBC, a successful open-
source DBC. Apuama adds intra-query parallel processing capabilities. The result is a 
low-cost powerful and unique DBC that can simultaneously support OLTP and OLAP 
applications. We implemented intra-query parallelism using SVP, an efficient 
technique that can be used with different DBMSs requiring standard, non-intrusive 
techniques and almost “black-box” DBMS components. 

To validate our solution, we implemented Apuama on a 32-node cluster system 
and ran experiments with typical queries of the TPC-H benchmark. By varying the 
number of nodes in our experiments, it was possible to examine the query processing 
performance in cases that the virtual partition size is larger or smaller than the amount 



of available memory in a node. Although the performance improvement is better 
when the virtual partition fits in memory, the query super-linear speedup occurs in 
both cases. When processing isolated queries, super-linear speedup was obtained in 
most situations. When processing parallel sequences of read-only queries, the 
performance gain of Apuama is super-linear for all cluster configurations, even in 
scenarios with high levels of concurrency. With mixed workloads that combine 
parallel sequences of read-only queries and large amounts of data updates, the 
performance gain is also very good.  The performance gain is near-linear for most 
experiments of speed-up test and super-linear for throughput scale-up test. Thus, 
Apuama is a good solution for high-performance DSS. In the presence of updates, 
Apuama presented performance deterioration when a large number of nodes were 
employed due to the replica consistency protocol. As a future work we plan to focus 
on this limitation using an alternative replication policy that relaxes consistency. The 
tradeoff between OLAP query result correctness and update transaction performance 
would be analyzed. 

Apuama is released as an open source software protected under the terms of LGPL 
[12] license. It can be downloaded from http://www.cos.ufrj.br/~bmiranda/apuama. 
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