Apuama: Combining Intra-query and Inter-query
Parallelism in a Database Cluster

Bernardo Mirand Alexandre A. B. Lim&3
Patrick ValdurieZ, and Marta Mattosbo
1Computer Science Department, COPPE, Federal UitivefsRio de Janeiro
ptlas Group, INRIA and LINA, University of Nanteskrance

3School of Engineering and Computer Science, Unityeo$ Grande Rio — Brazil
e-mail: [bmiranda, assis, marta]@cos.ufrj.br, Ratialduriez@inria.fr

Abstract. Database clusters provide a cost-effective salutfor high
performance query processing. By using either {rgeiintra-query parallelism
on replicated data, they can accelerate individgakries and increase
throughput. However, there is no database clustat ¢ombines inter- and
intra-query parallelism while supporting intensiyedate transactions. C-JDBC
is a successful database cluster that offers gquery parallelism and controls
database replica consistency but cannot acceléndfeidual heavy-weight
queries, typical of OLAP. In this paper, we proptse Apuama Engine, which
adds intra-query parallelism to C-JDBC. The remikin open-source package
that supports both OLTP and OLAP applications. Vikdated Apuama on a
32-node cluster running OLAP queries of the TPC+hdhmark on top of
PostgreSQL. Our tests show that the Apuama Engietsy super-linear
speedup and scale-up in read-only environmentsthé&umore, it yields
excellent performance under data update operations.

1 Introduction

Competitive organizations typically optimize théisiness processes using decision
support systems (DSS) [9]. A DSS includes On-Limealtical Processing (OLAP)
tools and a data warehouse (DW) capable of effilgigmandling large amounts of
data [3]. Due to the important role played by DBfBich research has been devoted to
provide high performance for OLAP queries.

High performance query processing on data warelsocar be achieved using a
relational database management system (DBMS) rgnmintop of a PC cluster. PC
clusters can scale to very large configurations Eamples of cluster-aware DBMSs
are Oracle RAC 10g [5] and DB2 ICE [6]. Howeverftsare licensing, hardware
specific requirements or database migration costy prevent their use by many
applications. An alternative approach for high-parfance data warehousing using
PC clusters is a database cluster [1, 2, 14, 18latAbase cluster (DBC) consists of a
set of independent DBMSs (not cluster-aware) diigted over a set of cluster nodes,

T Work partially funded by CNPq, Finep, Capes, Cofeand ACI “Massive Data” in France

and orchestrated by a middleware, responsible ffering a single external view of
the whole system, like a virtual DBMS. Applicationsed not be modified when
database servers are replaced by their clustentexpants. Their queries are sent to
the middleware which provides data distributionngarency. Previous work as
PowerDB [1], Leg@net [4], C-JDBC [2] and SmaQ [1Bhve shown the
effectiveness of the DBC approach.

Two kinds of parallelism can be exploited in a DR¥ query processing: inter-
query parallelism and intra-query parallelism. trdeery parallelism consists of
executing many queries at the same time, eachddteaent node. Inter-query works
fine for On-Line Transactional Processing (OLTPplagation support, where queries
are usually light-weight. However, OLAP applicatiotypically have heavy-weight
queries, i.e., queries that access large amountslatd and perform complex
operations, thus taking a long time to be proceddsihg only inter-query parallelism
is not appropriate for heavy-weight query proceassas it does not reduce the
processing time of individual queries. In such castea-query parallelism is the most
adequate solution as shown in [14].

Intra-query parallelism consists of using many rsotteprocess each single query.
In this case, each node addresses only a subgeeof data and/or query operations.
The main goal is to reduce the execution time dfividual heavy-weight queries
while improving the overall throughput.

Inter- and intra-query parallelisms can be combiiredi DBC implementation.
Moreover, a DBC with both kinds of parallelism asdpport for concurrent data
updates can be used in both OLAP and OLTP appsicatiHowever, current DBC
solutions [1], [4], [2] and [14], exclusively suppadnter-query for OLTP or intra-
query for OLAP applications. First, because curr®BC solutions for OLAP
applications usually consider that database refogsdrations are not controlled by
them and takes place on a specific predefined tihieh the DSS is offline. The
second reason is that combining inter- with intueny parallelism can be conflicting.
Intra-query parallelism requires the presence dhb daubsets which are typically
produced by physical database design. When theisiataysically partitioned among
cluster nodes, inter-query parallel processing be very limited, since most
queries need to scan all partitions in parallelp&w®ling on the data partitioning
design, a simple OLTP query must be processed trp-iquery parallelism and
becomes very inefficient. On the other hand, OLARrges without data partitioning
cannot be performed efficiently.

Our goal is to provide a high-performance and l@st®BC solution that supports
OLTP and OLAP workloads. To avoid the problems withysical database
partitioning, we adopt dynamic virtual partitioning a replicated database. We use
C-JDBC, an industrial quality open-source DBC doluthat offers support for inter-
query parallelism and database replica consiste@yDBC provides excellent
performance for OLTP applications [2] but does support intra-query parallelism.
Thus, we extend C-JDBC with a non-intrusive intteexy solution.

In this paper, we present the Apudniagine as an extension of C-JDBC. The
main goal is to provide an environment to proce&®\® queries using intra-query
parallelism while keeping the effectiveness of BIDto support OLTP transactions.

1 Apuama meandast in Tupi-Guarani, a primitive language of South Aioa.

No source code was changed in C-JDBC. Apuama acta aonnection proxy
between C-JDBC and the DBMSs. It does not interfsith the C-JDBC query

processing and is only used for OLAP query procesdinlike all other DBC intra-

query solutions, Apuama also provides for datalaplca consistency during intra-
query processing.

To evaluate Apuama, we ran experiments based oTB@&H benchmark [19]
(specific for OLAP applications) on a 32-node obustising PostgreSQL [16]. Query
processing speedup and throughput scalability wesasured on experiments with
read-only queries and a mix of read-only queried @ncurrent data updates. In most
cases, Apuama achieves super-linear speedup aledugcaSince there has been no
change to C-JDBC inter-query processing, succeSfllP results are sustained.

The paper is organized as follows. Section 2 iniced the basic concepts for
intra-query parallelism in DBC. Section 3 explaingra-query support in Apuama.
Section 4 presents the architecture of Apuama axgmsion to C-JDBC. Section 5
describes experimental results. Section 6 discustated work. Section 7 concludes.

2 Intra-Query Parallel Processing in DBC

Intra-query parallelism consists of having eachrgleeing processed by many nodes
in parallel. This can be achieved in different walke most frequent solutions are
through data parallelism, where the same queryesiged against different parts of a
partitioned database in parallel. A DBMS that hasapel capabilities usually offers
several data partitioning techniques that are whathg physical database design.
Such DBMS provides transparent access to the ipagill database and has full
control over the parallel query execution plan.sTikinot the case for DBC.

In DBC, independent DBMSs are used by a middlewase “black-box”
components. It is up to the middleware to implemand coordinate parallel
execution. This means that query execution plamemgged by such DBMSs are not
parallel. Furthermore, as “black-boxes”, they cartv®modified to become aware of
the other DBMS and generate parallel plans.

When the database is replicated at all nodes oD®B@&, inter-query parallelism is
almost straightforward. Any read query can be denany node and execute in
parallel. On the other hand, to implement intrargug a DBC, the application
database must be partitioned and distributed antibegdBC nodes. The use of a
replicated database or a partitioned database lsanrapact on the way the update
transactions are processed. For replicated databheeDBC must send a notification
to all replicas in order to complete an updatedaation. Using a partitioned database,
the update transaction processing is faster bedhes®BC has to notify a smaller
number of nodes. The notification is sent just he bwners of updated tuples.
However, physical data partitioning can be comptexlesign, hard to maintain, and
can cause severe data skew. In addition, autortigtiganerating a parallel query
execution plan can be quite complex.

An interesting solution to combine inter- and intp@ery parallelism is to keep the
database replicated and design partitions usirtgal partitioning (VP) [1]. VP is
based on replication and dynamically designs pamst The basic principle of VP is

to take one query, rewrite it as a set of sub-gsetiorcing” the execution of each
one over a different subset of the table. In thed?®B DBC [1], this is implemented
in a simple way called Simple Virtual Partitioni(gVP) that works as follows. First,
the database is fully replicated over all clustedes. Then, when a quef) is
submitted to a DBC witim nodes, a set of sub-queri@s; ,is produced. Eachy; is
formed by the addition of a different range pretéice Q at the where clause. The
goal is to make each sub-query to run over a diffesubset of the data that must be
accessed b@. Then, each sub-query is sent to a different nadiere it is executed
by the local DBMS. After sub-query execution, th8® produces the final result
based on the partial results of each node. Letks the following query to be
executed in a DBC with four nodes:

Q select sun(l_extendedprice) fromlineitem (1)

According to SVPQ would be rewritten as follows:

Q: sel ect sun(l_extendedprice) fromlineitem (2)
where | _orderkey >= :v1l and | _orderkey < :v2

The difference betwee@ and Q is the range predicate “I_orderkey Wl :and
|_orderkey <=v2". We call virtual partitioning attribute (VPA) the attribute chosen
to virtually partition the table. The values used parametersl andv2 vary from
node to node and are computed according to thertotge of the VPA values and the
number of nodes. Assuming that the interval of @alof |_orderkey is [1; 6,000,000]
and we have 4 nodes, then, 4 sub-queries mustriezajed. The intervals covered by
each sub-query are the followin@;: vl=1 andv2=1,500,001Q,: v1=1,500,001 and
v2=3,000,001; and so on. Although all nodes havepéice of lineitem, VP forces
eachQ; to process a different and disjoint subset ofitéma's tuples.

However, this approach does not guarantee thardiff physical parts of lineitem
will be scanned. If the tuples of the added ramgesaattered along the table storage,
all disk pages occupied by the table might be awmmbsFor SVP to be effective, the
tuples of the virtual partition must be physicatlystered according to the VPA and
there must be an index associated to this attribige there must exist a clustered
ordered index on lineitem based on |_orderkey. Heurhore, the DBMS optimizer
must choose the clustered index to be used inxbeudon plan.

Query re-writing is not trivial. We base our tramshations on some typical query
templates from OLAP queries, adopting some hintsnfr[1]. To leverage this
complexity we only apply VP on fact tables, whichkas it easier to re-write queries
with complex joins. Some SQL functions require aencomplex query modification.
For example, the avg() function of a query mustégritten in the sub-queries as a
sum() function followed by a count() function todeelss a global average. Still some
queries, such as complex nested queries, canrteasformed. In those cases, intra-
query is not explored.

3 Query Processing with Apuama

Apuama is an extension of C-JDBC responsible fowigiing intra-query parallelism.
It is implemented as an external component, withclhinging C-JDBC. OLTP
transactions are processed by C-JDBC without aap@é In this section we explain
how OLAP queries are handled by Apuama throughaigtrery processing, result
composition and update transactions.

Apuama implements intra-query parallelism basedSuiP. Query speedup with
SVP is DBMS-dependent since the partitioned tablestnbe accessed through a
clustered index associated to the partitioningtatte. If, for any reason, the DBMS
optimizer chooses a full table scan to execute lagaery, the virtual partition is
ignored and the performance of SVP can be sevénaty Even though a full table
scan can be more efficient for an isolated quergcation, in Apuama it is also
important trying to keep most of the virtual paotit data at the cache. Thus, in order
to guarantee effective exclusive access to thealigartition tuples, Apuama directly
interferes in DBMS optimizer choices in order tock® index usage. This is done by
asking the DBMS to disable full table scans duringavy-weight intra-query
processing. This can be done in many popular oparee DBMSs, e.g. MySQL [7]
and PostgreSQL.

Apuama disables full scans only before startingptocess a query using intra-
query parallelism. When the query processing islied, the original DBMS settings
are reestablished. This strategy is not DBMS-inddpat because the command used
to do that is not standard, although it is commoowedge for the most of DBAs.
Thus, Apuama must detect which DBMS driver is baiagd to make DBMS-specific
changes on the query execution plan. This inforomais part of Apuama’s metadata
and it is set during software installation.

Sub-queries produced by SVP in Apuama are indepelydprocessed by each
node and their partial results must be combineatdier to form the final query result.
Apuama uses HSQLDB [10], a fast in-memory DBMS, perform result
composition. This method proved to be very effitieluring our experiments. In
many experiments, aggregations performed by HSQUD& no more than one
second to be processed even with large partialtsaswolving several columns.

Updates in Apuama are propagated to all nodesénséime order to guarantee
consistency among different replicas. The time ade broadcast updates over all
nodes increases according to the number of nodée inluster. With full replication,
this can impact performance in update-intensivgasions. Fortunately, this is not the
case for most decision-making environments. Altio@gJDBC does not require full
replication, we adopted it to maximize speedup ubho intra-query parallelism.
Solutions using the replica freshness techniquBgdfe out of the scope of this work.

In order to produce consistent results for heavightequeries, Apuama must
guarantee that, before beginning to process a queng intra-query parallelism, all
node replicas are consistent with each other. ibiggd updates are performed by
C-JDBC, which is not aware of the existence of qubries generated by SVP. With
C-JDBC only, we can assure that updates are extauthe same order in all nodes
but we cannot assure that updates and SVP subequaré executed in the same
order. Different execution threads, executing updetd read-only operations, may be
scheduled in different orders by the operatingesyst of different nodes. Therefore,

Apuama provides a blocking mechanism to avoid periiog updates along SVP sub-
gueries of the same query. Apuama has a transamiomter for each node. When a
guery must be processed with SVP, Apuama wait$ antonsistent state is reached
by all nodes. This happens when all transactiomiya are equal. If new update
transactions arrive, they are blocked. Then, Apuastarts executing SVP,
dispatching all sub-queries to their respectiveasodVhen all sub-queries are sent
and started by the DBMSs, update transactions mibocked and can be executed.
The transaction isolation provided by the DBMS nwaikeossible to have the updates
executed before each sub-query finishes, therepyoving throughput.

4 Apuama Architecture

This section describes the Apuama architecturei@nihtegration within C-JDBC.
Fig. 1(a) shows our architecture that contains @@yDBC components relevant to
our explanation and the Apuama Engine extensior. Mhin purpose of C-JDBC is
to offer transparent access to a cluster of dagsbagthout any modification on the
client application. The unique requirement is te asJDBC driver [11]. Instead of
having the application directly connected to theND® it is connected to C-JDBC
controller using a C-JDBC JDBC driver.

Client Application

C-JDBC JDBC Driver Apuama JDB(Apuama JDB!
Driver Driver

i TCP-IP
C-JDBC Controller Apuama Engine
Request Manager Cluster Administrator|
Schedule
Query Data
Parser || Catalog
Intra Query Executol‘
Database Database Result Composer
Backend Backend
Connection Connection Prg(c)g:mr P Node
Manage Manage rocessor

; T Query Query
Executor Executor

© Apuama JDB Apuama JDB -

£ Driver Driver Connectiol Connectiol
g Pool Pool
o -

< I Apuama Engine I : :

| 1|
|]
DBMS | DBMS DBMS DBMS
JDBC Drivel JDBC Drivel JDBC Drivel JDBC Drivel
TCF-IP t TCF-IP TCF-IP
[oBwms | [oBms |
(a) C-JDBC with Apuama extension (b) Apuama Engine internals

Fig. 1. Apuama architecture

The C-JDBC controller is a Java process that manages all database cesolir
has aDatabase Backend component that manages a pool of connectionsrtoimg

DBMSs. Each request received by C-JDBC is submittetthe Scheduler component
that controls concurrent request executions andemalare that update requests are
executed in the same order by all DBMSs. The Sdeedtan be configured to
enforce different parallel levels of concurrency. dur experiments, it was set to
concurrently execute read and write requests. Aftezquest is scheduled to run, the
Load Balancer component chooses which Database Backend will egatuf it is a
write request, the same query is executed in eldeabase Backend to maintain
consistency. But if it is a read request, the L8adancer chooses the best node to
execute it. This choice is based on a previoudigbdished policy. We configured the
Load Balancer to select the node with the leastharof pending requests.

Apuama does not require any changes in C-JDBC saade. Fig. 1(a) shows that
Apuama is a layer between C-JDBC and the DBMSsDB€EI no longer makes any
direct connection to DBMSs. Each Database Backendects to Apuama through a
JDBC driver. It is Apuama that connects to the DBMS

Fig. 1(b) shows a detailed architecture of Apualinas two kinds of components:
one that manages intra-query parallel executicateaCluster Administrator, and a
set of Node Processor components. For each connection established by EEJD
using Apuama, a Node Processor is created andspomsible for mediating and
monitoring requests sent to its corresponding DBW& be able to process multiple
requests, the Node Processor creates a pool oéctbons.

The Cluster Administrator hasQuery Parser component capable of determining
which tables are referenced by a query amrhta Catalog that contains information
about tables that can be virtually partitioned. yrhee used to determine if a current
OLAP query can be processed using intra-query gdissh or not. If not, the Node
Processor simply redirects the request to the spamding DBMS. Otherwise, the
Cluster Administrator takes the query and processebfrough thelntra-Query
Executor (IQE) component. When all sub-queries are readyetprocessed, they are
sent in parallel to th@uery Executor of each Node Processor. The Query Executor is
responsible for sending the sub-query to its cpording DBMS and waiting for
results, which are sent to the IQE that forward®ithe Result Composer. It uses
HSQLDB to store the partial results and performaffiresult composition. When all
partial results are collected, the Result Comppseduces the final result that is sent
back to the client application.

5 Experiments

In this section, we evaluate the intra-query patatocessing capabilities added to C-
JDBC by Apuama in different scenarios. We ran expents based on the TPC-H
benchmark. We stress Apuama in situations of higiicarrency levels, even while
executing database refresh operations.

All tables are replicated, but only the fact tabdee virtually partitioned (orders
and lineitem). Typically, fact tables have the laghcardinality in the database and
they are frequently involved in OLAP queries, partarly in heavy joins. Thus, their
reduced number of tuples can improve IO and CPUdqssing. Dimension tables are
not virtually partitioned because they are smadltileda and represent 14% of total

database size. We employ virtual partitioning odeos, based on its primary key
(o_orderkey). The first attribute of the primaryykef lineitem (I_orderkey) is a

foreign key to orders. So, by choosing |_orderkeg generate a derived partitioning
on lineitem. Tuples of the fact tables are physjcardered according to their

partitioning attributes and indexes were built otresm. Also, indexes are built for all
foreign keys of all tables. As TPC-H assunaglshoc queries, we perform no other
optimization, as determined by the benchmark.

The TPC-H queries that involve a fact table can efienfrom the virtual
partitioning. Exceptionally, some queries that eimsubqueries involving fact tables
cannot be rewritten using virtual derived partitrapn We use a subset of 8 queries
from TPC-H. As in the specification, we identifyagies by their numbers: Q1, Q3,
Q4, Q5, Q6, Q12, Q14 and Q21. We chose such queeiEslse they represent OLAP
queries of different complexities. Q1 accesses ¢y lineitem table and performs
many aggregate operations. The “where” predicat®bfis not very selective since
around 99% of tuples are retrieved. This is a vaostly query. Q3 joins lineitem,
orders and a dimension table. Differently from otheeries, its result contains a large
number of rows. Q4 contains a reference to lineitabrle and a sub-query with
another reference to lineitem. Q5 joins lineitemgess and four dimension tables. It
performs only one aggregate operation. As Q1, Q@sses just the lineitem table.
The main differences between them are that Q6 hiysome aggregate operation and
its “where” predicate is much more selective, esting only 1.5% of tuples. Q12
joins lineitem and orders tables and has two aggdi@y operations. Q14 joins
lineitem table and a dimension table. Q21 cont#inse references to lineitem table.
Two of those references are part of two sub-quergspectively.

There are three kinds of experiments: first, welymga speedup obtained with
Apuama when processing isolated individual queriéggen, we evaluate the system
overall throughput with sequences of read-only mser Finally, we evaluate
throughput obtained while simultaneously processaagl-only and update queries.

We ran experiments on top of a 32-node sharedmgtbiuster system from the
Paris Team at INRIA [17]. Each node has two 2.2 @hiteron processors with 2 GB
RAM and 30 GB HD. The network is a Gigabit etheret instance of PostgreSQL
8 was running at each node. The total databaseosizisk, including all tables and
indexes, is about 11 GB, for a TPC-H database witbcale factor of 5. We use
HSQLDB to compute the final results.

In the following, we present results that show guexecution times and
throughput rates for an increasing number of nqffesn 1 to 32). Every execution
was repeated five times and the final metric isrtfean value obtained in such runs,
not considering the first one. In some cases, ogWwere also normalized by dividing
their value by the value obtained during the saimd kf experiment with one node.
In order to ease reading and analysis, valuesrasepted in logarithmic scale to give
a clear notion of linearity [14].

The first experiment (Fig. 2) evaluates the speeshfained with Apuama when
executing isolated queries in different cluster famations. With 2 nodes, query
execution time for all queries is reduced by almB8%, when compared to the
sequential execution. With 4 nodes, query execuiioe is decreased from 45% to
20% for all queries, except for Q4 and Q6 that wdgereased to 1.2% and 6.8% of
the original time, respectively. As Q4 and Q6 aighly selective queries, fragments

obtained by virtual partitioning are small enougHit in main memory with just four
nodes, resulting in super-linear speedup. For saetiigurations, we could observe
that, after the first query execution, no pagetfatcur, thus avoiding disk accesses.
However, we continue to see a linear speedup with68&nd 32 nodes showing the
effectiveness of virtual partitioning even for iremory databases. Because Q1 and
Q21 are CPU-bound queries, they do not benefit ffl@rimprovement. Still their
speed-up is always near linear.

In the next experiment, read-only query sequencegxecuted in parallel against
the DBC. All sequences are composed by the sanuei@g, sorted in different ways,
according to TPC-H specification. Each sequencen#isbthe next query after the
completion of the current query. This is how TPGikhulates a decision-making user
formulating new queries based on previous querylt®sQueries from different
sequences are submitted in parallel.

o ——

HNormalized Time

5L 03 ——
w4 —k—
1 F [Na] _E_
06
a5 o 012
014
0.25 - 021
Linear —il—
0,125 1 1
1 2 4 g 16 32

Number of Nodes

Fig. 2.Speedup experiments - normalized query execuitioest

Fig. 3(a) shows the throughput rate (in queries rparute) obtained during the
execution of three concurrent query sequencesfiarent cluster configurations. It
also shows the throughput that would be achievdithétar scale-up throughput was
obtained. The number of query sequences was definedrding to TPC-H, which
recommends this level of concurrency for OLAP dat#s with a scale factor of 5.
For all configurations, the throughput rises supegarly. With 2 nodes, it is near
linear. With 4 nodes, the throughput is almostet higher than if a linear gain was
obtained. From 8 to 32 nodes, the throughput istotly about 6 times higher than
linear gain showing excellent performance.

Fig. 3(b) shows the scale-up throughput rate whgruatna is processing
sequences of read-only queries. In this experinteethumber of concurrent query
sequences is equal to the number of nodes being Tkerefore, the ideal situation is
that the execution time would be the same for Alster configurations, as the
“Linear” curve shows. As in the previous experimehe performance obtained with

2 nodes is better than expected. With 4 nodeg¢h@rmance is more than two times
better than expected. From 8 to 32 nodes, the mpeaface is always about 3 times
better than expected, showing very good scalabilitth respect to query load.
Therefore, Apuama can be used to successfully seedDcAP individual query
execution time and increase system throughputtypi@al OLAP scenario and even
in the presence of high-concurrency.

(a) " th)
o
- 16 P T T T T é) T T T T
E 8 fLinear —w— N |E 327k 7
L]
L L 4
e 4 2 et b
o il L
= 2+ -
= W
1 5 gr T
g 1 =
[+ z 4r b
L 0sSf g]
2 i
S 028, B “ 2 [Fpuana —|— T
= g [Liner D& s .
0175 [T
1 z 4 g 16 2 & 1 z 4 g 16 32
Humber of Modes Humber of Nodes

Fig. 3. Read-only query sequences experiment - (a) thrauglfih 3 concurrent sequences,
(b) execution time witlm concurrent sequences, wheris equal to the number of nodes

In the following experiment, we mix read-only quesgquences with an update
query sequence. The update operations consist,6D®2ransactions for all cluster
configurations. First, the update queries inseraiaount of data on the lineitem and
orders tables. In a second step, the updates reaibireserted tuples from lineitem
and orders tables.

Fig. 4(a) shows throughput (in queries per minwejained while concurrently
processing 3 read-only query sequences and an euppegry sequence. Again, it
shows the throughput that would be achieved ifdirgain was obtained. From 2 to 8
nodes, performance of Apuama is near linear. Foari® 32 nodes, the consistency
protocol makes the update propagation delay hufopeance. There is almost no
performance gain from 16 to 32 nodes. Fig. 4(bxshscalability in Apuama with a
concurrent updates. Here, the number of read-osdyences equals the number of
nodes while there is always one update sequeneze Tt a performance gain up to
16 nodes. However, for 32 nodes, the performanabrisst the same as with 4 nodes.
This is due to the replica synchronization whemgsi large number of nodes.

Can Chd
&
g + 125
i p—— T T T £ T T T T
g 4 |Linear E 64 i
S
4 LAk J
o 2 | U |
[—
B L J
! t s
1 £ T]
2 0.5 o 4k B
o L
g w
£ 0.25 @ 2 FApUama —|— T
= = Linear
.15 L L L L o ! L L L
1 z 4 g 16 32 @ 1 z 4 g 16 32

Humber of Nodes Humber of Nodes

Fig. 4. Mixed workload experiment - (a) throughput withe@d-only and 1 update sequence (b)
execution time with 1 update and n read-only qeenhere n is equal to the number of nodes

In summary, these experiments show that Apuamaiges\excellent performance
in processing read-only query workloads. This i tfor typical OLAP scenarios and
for those with a high degree of concurrency. Witixad workloads (consisting of
read-only and update queries), reasonable perfarnean still be obtained and the
system does not need to be unavailable for endsugaite data refresh operations are
carried out. Thus, in typical OLAP scenarios, wheweh operations occur only from
time to time, we can conclude that Apuama is a gaddtion for DSS.

6 Related Work

The main DBC projects that can be found in theditere are C-JDBC [2], PowerDB
[1], PowerDB-FAS [18], SmaQ [13] and Leg@net [4}1JOBC, PowerDB-FAS and
Leg@net only support inter-query parallelism. Apaarwas developed as an
extension to C-JDBC to support OLAP applicationstigh intra-query parallelism.

PowerDB provides intra-query parallelism, but does guarantee query speedup
because it depends on a DBMS-specific query exatubptimization. Thus their
results are unstable. Furthermore, in contrast mithmotivation to offer a low-cost
solution, PowerDB software is not freely available.

SmaQ is also focused on OLAP. It uses a techniqlled “adaptive virtual
partitioning” (AVP) [14] that reduces query exeautitime and allows for dynamic
load balancing during query execution. Although ®@an support both inter- and
intra-query parallelism, it does not support updaamsactions. The main difference
between SmaQ and Apuama is the existence of acaepbnsistency management.
Besides, experiments showed that execution of ObgA€ries in environments with
high levels of concurrency can lead to poor perforoe. Apuama uses a simpler
virtual partition technique than AVP that allows fuetter concurrent queries support.
Since AVP locally subdivides the local sub-querindreases the level of concurrency
while inducing a bad memory cache use.

7 Conclusion

We proposed the Apuama Engine as an extension IDEEG, a successful open-
source DBC. Apuama adds intra-query parallel presiogscapabilities. The result is a
low-cost powerful and unique DBC that can simultarsty support OLTP and OLAP
applications. We implemented intra-query paralielisising SVP, an efficient
technique that can be used with different DBMSauig standard, non-intrusive
techniques and almost “black-box” DBMS components.

To validate our solution, we implemented ApuamaaoB2-node cluster system
and ran experiments with typical queries of the I P®enchmark. By varying the
number of nodes in our experiments, it was possibkxamine the query processing
performance in cases that the virtual partitioe $&larger or smaller than the amount

of available memory in a node. Although the perfance improvement is better
when the virtual partition fits in memory, the guesuper-linear speedup occurs in
both cases. When processing isolated queries, $inpar speedup was obtained in
most situations. When processing parallel sequergfesead-only queries, the
performance gain of Apuama is super-linear forclister configurations, even in
scenarios with high levels of concurrency. With edxworkloads that combine
parallel sequences of read-only queries and largeuats of data updates, the
performance gain is also very good. The perforraag®in is near-linear for most
experiments of speed-up test and super-linear Hoyughput scale-up test. Thus,
Apuama is a good solution for high-performance DBSthe presence of updates,
Apuama presented performance deterioration whearge Inumber of nodes were
employed due to the replica consistency protocelaXuture work we plan to focus
on this limitation using an alternative replicatipalicy that relaxes consistency. The
tradeoff between OLAP query result correctness @pdhte transaction performance
would be analyzed.

Apuama is released as an open source softwarecfgdtender the terms of LGPL
[12] license. It can be downloaded from http://wwes.ufrj.br/~bmiranda/apuama.

References

1. Akal, F., Béhm, K., Schek, H.-J.: OLAP Query Exion in a Database Cluster: A
Performance Study on Intra-Query Parallelism. Redogys of the 6th East-European
Conference on Advances in Databases and Inform8&tystems (ADBIS), Bratislava,
Slovakia (2002) 218-231

2. Cecchet, E.: C-JDBC: a Middleware Framework fDatabase Clustering.
Proceedings of IEEE Data Engineering Bulletin \&31.(2004) 19-26

3. Chaudhuri, S., Dayal, U.: An Overview of Data Mlousing and OLAP
Technology. ACM SIGMOD Record Vol. 26 (1997) 65-74

4, Coulon, C., Pacitti, E., Valduriez, P.: Scalibgp the Preventive Replication of

Autonomous Databases in Cluster Systems. Proceedofg 6th International
Conference on High Performance Computing for Coatparial Science (VECPAR),
Valencia, Spain (2004) 170-183

5. Cruanes, T., Dageville, B., Ghosh, B.: ParaB&L Execution in Oracle 10g.
Proceedings of the ACM SIGMOD International Confex® on Management of
Data, Paris, France (2004) 850-854

6. DB2 ICE. Retrieved 11/09/2005, from http://ibonw/'software/data/db2/linux/ice.

7. MySQL 5.0 Documentation. Retrieved 11/09/200&n http://mysql.com.

8. Gancarski, S., Naacke, H., Pacitti, E., Valdyri®.: Parallel Processing with
Autonomous Databases in a Cluster System. Proggedininternational Conference
on Cooperative Information Systems (CooplS), Logdes, USA (2002) 410-428

9. Gorla, N.: Features to Consider in a Data Waisimg System. Communications of
the ACM Vol. 46 (2003) 111-115

10. HSQL Database Engine. Retrieved 11/09/200%; futip://hsqldb.org/.

11. JDBC. Retrieved 11/09/2005, from java.sun.ceadpcts/jdbc.

12. LGPL. Retrieved 11/09/2005, from http://www.gmmg/copyleft/lesser.html.

13. Lima, A.A.B.: Intra-Query Parallelism in DatagaClusters. COPPE/UFRJ, D.Sc.

Thesis, Rio de Janeiro (2004)

14.

15.

16.
17.

18.

19.

Lima, A.A.B., Mattoso, M., Valduriez, P.: Adam Virtual Partitioning for OLAP
Query Processing in a Database Cluster. Proceedfritgh Brazilian Symposium on
Databases (SBBD), Brasilia, Brazil (2004) 92-105

Pape, C.L., Gancarski, S., Valduriez, P.: Refse Improving Query Performance
Through Freshness Control in a Database ClusterceBdings of International
Conference on Cooperative Information Systems (CR)opAgia Napa, Cyprus
(2004) 174-193

PostgreSQL 8.0.1 Documentation. Retrieved 12005, from http://postgresql.org.
Paris Project. Retrieved 11/09/2005, from
http://lwww.irisa.fr/paris/General/cluster.htm.

Rohm, U., Bohm, K., Schek, H.-J., Schuldt, HAS - A Freshness-Sensitive
Coordination Middleware for a Cluster of OLAP Compats. Proceedings of the
28th International Conference on Very Large DataeBa(VLDB), Hong Kong,
China (2002) 754-765

TPC-H Benchmark. Retrieved 11/09/2005, from:Hhtpc.org/tpch.

