
Apuama: Combining Intra-query and Inter-query
Parallelism in a Database Cluster†

Bernardo Miranda1, Alexandre A. B. Lima1,3,
Patrick Valduriez2, and Marta Mattoso1

1Computer Science Department, COPPE, Federal University of Rio de Janeiro
2Atlas Group, INRIA and LINA, University of Nantes – France

3School of Engineering and Computer Science, University of Grande Rio – Brazil
e-mail: [bmiranda, assis, marta]@cos.ufrj.br, Patrick.Valduriez@inria.fr

Abstract. Database clusters provide a cost-effective solution for high
performance query processing. By using either inter- or intra-query parallelism
on replicated data, they can accelerate individual queries and increase
throughput. However, there is no database cluster that combines inter- and
intra-query parallelism while supporting intensive update transactions. C-JDBC
is a successful database cluster that offers inter-query parallelism and controls
database replica consistency but cannot accelerate individual heavy-weight
queries, typical of OLAP. In this paper, we propose the Apuama Engine, which
adds intra-query parallelism to C-JDBC. The result is an open-source package
that supports both OLTP and OLAP applications. We validated Apuama on a
32-node cluster running OLAP queries of the TPC-H benchmark on top of
PostgreSQL. Our tests show that the Apuama Engine yields super-linear
speedup and scale-up in read-only environments. Furthermore, it yields
excellent performance under data update operations.

1 Introduction

Competitive organizations typically optimize their business processes using decision
support systems (DSS) [9]. A DSS includes On-Line Analytical Processing (OLAP)
tools and a data warehouse (DW) capable of efficiently handling large amounts of
data [3]. Due to the important role played by DSS, much research has been devoted to
provide high performance for OLAP queries.

High performance query processing on data warehouses can be achieved using a
relational database management system (DBMS) running on top of a PC cluster. PC
clusters can scale to very large configurations [8]. Examples of cluster-aware DBMSs
are Oracle RAC 10g [5] and DB2 ICE [6]. However, software licensing, hardware
specific requirements or database migration costs may prevent their use by many
applications. An alternative approach for high-performance data warehousing using
PC clusters is a database cluster [1, 2, 14, 18]. A database cluster (DBC) consists of a
set of independent DBMSs (not cluster-aware) distributed over a set of cluster nodes,

† Work partially funded by CNPq, Finep, Capes, Cofecub and ACI “Massive Data” in France

and orchestrated by a middleware, responsible for offering a single external view of
the whole system, like a virtual DBMS. Applications need not be modified when
database servers are replaced by their cluster counterparts. Their queries are sent to
the middleware which provides data distribution transparency. Previous work as
PowerDB [1], Leg@net [4], C-JDBC [2] and SmaQ [13] have shown the
effectiveness of the DBC approach.

Two kinds of parallelism can be exploited in a DBC for query processing: inter-
query parallelism and intra-query parallelism. Inter-query parallelism consists of
executing many queries at the same time, each at a different node. Inter-query works
fine for On-Line Transactional Processing (OLTP) application support, where queries
are usually light-weight. However, OLAP applications typically have heavy-weight
queries, i.e., queries that access large amounts of data and perform complex
operations, thus taking a long time to be processed. Using only inter-query parallelism
is not appropriate for heavy-weight query processing as it does not reduce the
processing time of individual queries. In such case, intra-query parallelism is the most
adequate solution as shown in [14].

Intra-query parallelism consists of using many nodes to process each single query.
In this case, each node addresses only a subset of query data and/or query operations.
The main goal is to reduce the execution time of individual heavy-weight queries
while improving the overall throughput.

Inter- and intra-query parallelisms can be combined in a DBC implementation.
Moreover, a DBC with both kinds of parallelism and support for concurrent data
updates can be used in both OLAP and OLTP applications. However, current DBC
solutions [1], [4], [2] and [14], exclusively support inter-query for OLTP or intra-
query for OLAP applications. First, because current DBC solutions for OLAP
applications usually consider that database refresh operations are not controlled by
them and takes place on a specific predefined time which the DSS is offline. The
second reason is that combining inter- with intra-query parallelism can be conflicting.
Intra-query parallelism requires the presence of data subsets which are typically
produced by physical database design. When the data is physically partitioned among
cluster nodes, inter-query parallel processing becomes very limited, since most
queries need to scan all partitions in parallel. Depending on the data partitioning
design, a simple OLTP query must be processed by intra-query parallelism and
becomes very inefficient. On the other hand, OLAP queries without data partitioning
cannot be performed efficiently.

Our goal is to provide a high-performance and low-cost DBC solution that supports
OLTP and OLAP workloads. To avoid the problems with physical database
partitioning, we adopt dynamic virtual partitioning to a replicated database. We use
C-JDBC, an industrial quality open-source DBC solution that offers support for inter-
query parallelism and database replica consistency. C-JDBC provides excellent
performance for OLTP applications [2] but does not support intra-query parallelism.
Thus, we extend C-JDBC with a non-intrusive intra-query solution.

In this paper, we present the Apuama1 Engine as an extension of C-JDBC. The
main goal is to provide an environment to process OLAP queries using intra-query
parallelism while keeping the effectiveness of C-JDBC to support OLTP transactions.

1 Apuama means fast in Tupi-Guarani, a primitive language of South America.

No source code was changed in C-JDBC. Apuama acts as a connection proxy
between C-JDBC and the DBMSs. It does not interfere with the C-JDBC query
processing and is only used for OLAP query processing. Unlike all other DBC intra-
query solutions, Apuama also provides for database replica consistency during intra-
query processing.

To evaluate Apuama, we ran experiments based on the TPC-H benchmark [19]
(specific for OLAP applications) on a 32-node cluster using PostgreSQL [16]. Query
processing speedup and throughput scalability were measured on experiments with
read-only queries and a mix of read-only queries and concurrent data updates. In most
cases, Apuama achieves super-linear speedup and scale-up. Since there has been no
change to C-JDBC inter-query processing, successful OLTP results are sustained.

The paper is organized as follows. Section 2 introduces the basic concepts for
intra-query parallelism in DBC. Section 3 explains intra-query support in Apuama.
Section 4 presents the architecture of Apuama as an extension to C-JDBC. Section 5
describes experimental results. Section 6 discusses related work. Section 7 concludes.

2 Intra-Query Parallel Processing in DBC

Intra-query parallelism consists of having each query being processed by many nodes
in parallel. This can be achieved in different ways. The most frequent solutions are
through data parallelism, where the same query is executed against different parts of a
partitioned database in parallel. A DBMS that has parallel capabilities usually offers
several data partitioning techniques that are used during physical database design.
Such DBMS provides transparent access to the partitioned database and has full
control over the parallel query execution plan. This is not the case for DBC.

In DBC, independent DBMSs are used by a middleware as “black-box”
components. It is up to the middleware to implement and coordinate parallel
execution. This means that query execution plans generated by such DBMSs are not
parallel. Furthermore, as “black-boxes”, they cannot be modified to become aware of
the other DBMS and generate parallel plans.

When the database is replicated at all nodes of the DBC, inter-query parallelism is
almost straightforward. Any read query can be sent to any node and execute in
parallel. On the other hand, to implement intra-query in a DBC, the application
database must be partitioned and distributed among the DBC nodes. The use of a
replicated database or a partitioned database can also impact on the way the update
transactions are processed. For replicated databases, the DBC must send a notification
to all replicas in order to complete an update transaction. Using a partitioned database,
the update transaction processing is faster because the DBC has to notify a smaller
number of nodes. The notification is sent just to the owners of updated tuples.
However, physical data partitioning can be complex to design, hard to maintain, and
can cause severe data skew. In addition, automatically generating a parallel query
execution plan can be quite complex.

An interesting solution to combine inter- and intra-query parallelism is to keep the
database replicated and design partitions using virtual partitioning (VP) [1]. VP is
based on replication and dynamically designs partitions. The basic principle of VP is

to take one query, rewrite it as a set of sub-queries “forcing” the execution of each
one over a different subset of the table. In the PowerDB DBC [1], this is implemented
in a simple way called Simple Virtual Partitioning (SVP) that works as follows. First,
the database is fully replicated over all cluster nodes. Then, when a query Q is
submitted to a DBC with n nodes, a set of sub-queries Qi=1..n is produced. Each Qi is
formed by the addition of a different range predicate to Q at the where clause. The
goal is to make each sub-query to run over a different subset of the data that must be
accessed by Q. Then, each sub-query is sent to a different node, where it is executed
by the local DBMS. After sub-query execution, the DBC produces the final result
based on the partial results of each node. Let us take the following query Q to be
executed in a DBC with four nodes:

Q: select sum(l_extendedprice) from lineitem (1)

According to SVP, Q would be rewritten as follows:

Q
i
: select sum(l_extendedprice) from lineitem (2)

 where l_orderkey >= :v1 and l_orderkey < :v2

The difference between Q and Qi is the range predicate “l_orderkey > :v1 and

l_orderkey <= :v2”. We call virtual partitioning attribute (VPA) the attribute chosen
to virtually partition the table. The values used for parameters v1 and v2 vary from
node to node and are computed according to the total range of the VPA values and the
number of nodes. Assuming that the interval of values of l_orderkey is [1; 6,000,000]
and we have 4 nodes, then, 4 sub-queries must be generated. The intervals covered by
each sub-query are the following: Q1: v1=1 and v2=1,500,001; Q2: v1=1,500,001 and
v2=3,000,001; and so on. Although all nodes have a replica of lineitem, VP forces
each Qi to process a different and disjoint subset of lineitem's tuples.

However, this approach does not guarantee that different physical parts of lineitem
will be scanned. If the tuples of the added range are scattered along the table storage,
all disk pages occupied by the table might be accessed. For SVP to be effective, the
tuples of the virtual partition must be physically clustered according to the VPA and
there must be an index associated to this attribute, i.e., there must exist a clustered
ordered index on lineitem based on l_orderkey. Furthermore, the DBMS optimizer
must choose the clustered index to be used in the execution plan.

Query re-writing is not trivial. We base our transformations on some typical query
templates from OLAP queries, adopting some hints from [1]. To leverage this
complexity we only apply VP on fact tables, which makes it easier to re-write queries
with complex joins. Some SQL functions require a more complex query modification.
For example, the avg() function of a query must be rewritten in the sub-queries as a
sum() function followed by a count() function to address a global average. Still some
queries, such as complex nested queries, cannot be transformed. In those cases, intra-
query is not explored.

3 Query Processing with Apuama

Apuama is an extension of C-JDBC responsible for providing intra-query parallelism.
It is implemented as an external component, without changing C-JDBC. OLTP
transactions are processed by C-JDBC without any change. In this section we explain
how OLAP queries are handled by Apuama through intra-query processing, result
composition and update transactions.

Apuama implements intra-query parallelism based on SVP. Query speedup with
SVP is DBMS-dependent since the partitioned table must be accessed through a
clustered index associated to the partitioning attribute. If, for any reason, the DBMS
optimizer chooses a full table scan to execute a sub-query, the virtual partition is
ignored and the performance of SVP can be severely hurt. Even though a full table
scan can be more efficient for an isolated query execution, in Apuama it is also
important trying to keep most of the virtual partition data at the cache. Thus, in order
to guarantee effective exclusive access to the virtual partition tuples, Apuama directly
interferes in DBMS optimizer choices in order to force index usage. This is done by
asking the DBMS to disable full table scans during heavy-weight intra-query
processing. This can be done in many popular open-source DBMSs, e.g. MySQL [7]
and PostgreSQL.

Apuama disables full scans only before starting to process a query using intra-
query parallelism. When the query processing is finished, the original DBMS settings
are reestablished. This strategy is not DBMS-independent because the command used
to do that is not standard, although it is common knowledge for the most of DBAs.
Thus, Apuama must detect which DBMS driver is being used to make DBMS-specific
changes on the query execution plan. This information is part of Apuama’s metadata
and it is set during software installation.

Sub-queries produced by SVP in Apuama are independently processed by each
node and their partial results must be combined in order to form the final query result.
Apuama uses HSQLDB [10], a fast in-memory DBMS, to perform result
composition. This method proved to be very efficient during our experiments. In
many experiments, aggregations performed by HSQLDB took no more than one
second to be processed even with large partial results involving several columns.

Updates in Apuama are propagated to all nodes in the same order to guarantee
consistency among different replicas. The time needed to broadcast updates over all
nodes increases according to the number of nodes in the cluster. With full replication,
this can impact performance in update-intensive situations. Fortunately, this is not the
case for most decision-making environments. Although C-JDBC does not require full
replication, we adopted it to maximize speedup through intra-query parallelism.
Solutions using the replica freshness techniques [15] are out of the scope of this work.

In order to produce consistent results for heavy-weight queries, Apuama must
guarantee that, before beginning to process a query using intra-query parallelism, all
node replicas are consistent with each other. Distributed updates are performed by
C-JDBC, which is not aware of the existence of sub-queries generated by SVP. With
C-JDBC only, we can assure that updates are executed in the same order in all nodes
but we cannot assure that updates and SVP sub-queries are executed in the same
order. Different execution threads, executing update and read-only operations, may be
scheduled in different orders by the operating systems of different nodes. Therefore,

Apuama provides a blocking mechanism to avoid performing updates along SVP sub-
queries of the same query. Apuama has a transaction counter for each node. When a
query must be processed with SVP, Apuama waits until a consistent state is reached
by all nodes. This happens when all transaction counters are equal. If new update
transactions arrive, they are blocked. Then, Apuama starts executing SVP,
dispatching all sub-queries to their respective nodes. When all sub-queries are sent
and started by the DBMSs, update transactions are unblocked and can be executed.
The transaction isolation provided by the DBMS makes it possible to have the updates
executed before each sub-query finishes, thereby improving throughput.

4 Apuama Architecture

This section describes the Apuama architecture and its integration within C-JDBC.
Fig. 1(a) shows our architecture that contains only C-JDBC components relevant to
our explanation and the Apuama Engine extension. The main purpose of C-JDBC is
to offer transparent access to a cluster of databases without any modification on the
client application. The unique requirement is to use a JDBC driver [11]. Instead of
having the application directly connected to the DBMS, it is connected to C-JDBC
controller using a C-JDBC JDBC driver.

Fig. 1. Apuama architecture

The C-JDBC controller is a Java process that manages all database resources. It

has a Database Backend component that manages a pool of connections to running

(a) C-JDBC with Apuama extension

C-JDBC Controller

Database
Backend

Connection
Manager

Database
Backend

Connection
Manager

Apuama JDBC
Driver

Request Manager

Load Balancer

Scheduler

DBMS DBMS

Apuama JDBC
Driver

DBMS
JDBC Driver

DBMS
JDBC Driver

Apuama Engine

TCP-IP

TCP-IP

DBMS

Apuama JDBC
Driver

DBMS
JDBC Driver

Apuama Engine

TCP-IP

Node
Processor

Query
Executor

Connection
Pool

DBMS

Apuama JDBC
Driver

DBMS
JDBC Driver

Node
Processor

Query
Executor

Connection
Pool

Cluster Administrator

Data
Catalog

Query
Parser

Result Composer

Intra Query Executor

(b) Apuama Engine internals

TCP-IP

A
pu

am
a

Client Application

C-JDBC JDBC Driver

DBMSs. Each request received by C-JDBC is submitted to the Scheduler component
that controls concurrent request executions and makes sure that update requests are
executed in the same order by all DBMSs. The Scheduler can be configured to
enforce different parallel levels of concurrency. In our experiments, it was set to
concurrently execute read and write requests. After a request is scheduled to run, the
Load Balancer component chooses which Database Backend will execute it. If it is a
write request, the same query is executed in every Database Backend to maintain
consistency. But if it is a read request, the Load Balancer chooses the best node to
execute it. This choice is based on a previously established policy. We configured the
Load Balancer to select the node with the least number of pending requests.

Apuama does not require any changes in C-JDBC source code. Fig. 1(a) shows that
Apuama is a layer between C-JDBC and the DBMSs. C-JDBC no longer makes any
direct connection to DBMSs. Each Database Backend connects to Apuama through a
JDBC driver. It is Apuama that connects to the DBMSs.

Fig. 1(b) shows a detailed architecture of Apuama. It has two kinds of components:
one that manages intra-query parallel executions, called Cluster Administrator, and a
set of Node Processor components. For each connection established by C-JDBC
using Apuama, a Node Processor is created and is responsible for mediating and
monitoring requests sent to its corresponding DBMS. To be able to process multiple
requests, the Node Processor creates a pool of connections.

The Cluster Administrator has a Query Parser component capable of determining
which tables are referenced by a query and a Data Catalog that contains information
about tables that can be virtually partitioned. They are used to determine if a current
OLAP query can be processed using intra-query parallelism or not. If not, the Node
Processor simply redirects the request to the corresponding DBMS. Otherwise, the
Cluster Administrator takes the query and processes it through the Intra-Query
Executor (IQE) component. When all sub-queries are ready to be processed, they are
sent in parallel to the Query Executor of each Node Processor. The Query Executor is
responsible for sending the sub-query to its corresponding DBMS and waiting for
results, which are sent to the IQE that forwards it to the Result Composer. It uses
HSQLDB to store the partial results and perform final result composition. When all
partial results are collected, the Result Composer produces the final result that is sent
back to the client application.

5 Experiments

In this section, we evaluate the intra-query parallel processing capabilities added to C-
JDBC by Apuama in different scenarios. We ran experiments based on the TPC-H
benchmark. We stress Apuama in situations of high concurrency levels, even while
executing database refresh operations.

All tables are replicated, but only the fact tables are virtually partitioned (orders
and lineitem). Typically, fact tables have the highest cardinality in the database and
they are frequently involved in OLAP queries, particularly in heavy joins. Thus, their
reduced number of tuples can improve IO and CPU processing. Dimension tables are
not virtually partitioned because they are small tables and represent 14% of total

database size. We employ virtual partitioning on orders, based on its primary key
(o_orderkey). The first attribute of the primary key of lineitem (l_orderkey) is a
foreign key to orders. So, by choosing l_orderkey we generate a derived partitioning
on lineitem. Tuples of the fact tables are physically ordered according to their
partitioning attributes and indexes were built over them. Also, indexes are built for all
foreign keys of all tables. As TPC-H assumes ad-hoc queries, we perform no other
optimization, as determined by the benchmark.

The TPC-H queries that involve a fact table can benefit from the virtual
partitioning. Exceptionally, some queries that contain subqueries involving fact tables
cannot be rewritten using virtual derived partitioning. We use a subset of 8 queries
from TPC-H. As in the specification, we identify queries by their numbers: Q1, Q3,
Q4, Q5, Q6, Q12, Q14 and Q21. We chose such queries because they represent OLAP
queries of different complexities. Q1 accesses only the lineitem table and performs
many aggregate operations. The “where” predicate of Q1 is not very selective since
around 99% of tuples are retrieved. This is a very costly query. Q3 joins lineitem,
orders and a dimension table. Differently from other queries, its result contains a large
number of rows. Q4 contains a reference to lineitem table and a sub-query with
another reference to lineitem. Q5 joins lineitem, orders and four dimension tables. It
performs only one aggregate operation. As Q1, Q6 accesses just the lineitem table.
The main differences between them are that Q6 has only one aggregate operation and
its “where” predicate is much more selective, retrieving only 1.5% of tuples. Q12
joins lineitem and orders tables and has two aggregation operations. Q14 joins
lineitem table and a dimension table. Q21 contains three references to lineitem table.
Two of those references are part of two sub-queries, respectively.

There are three kinds of experiments: first, we analyze speedup obtained with
Apuama when processing isolated individual queries. Then, we evaluate the system
overall throughput with sequences of read-only queries. Finally, we evaluate
throughput obtained while simultaneously processing read-only and update queries.

We ran experiments on top of a 32-node shared-nothing cluster system from the
Paris Team at INRIA [17]. Each node has two 2.2 GHz Opteron processors with 2 GB
RAM and 30 GB HD. The network is a Gigabit ethernet. An instance of PostgreSQL
8 was running at each node. The total database size on disk, including all tables and
indexes, is about 11 GB, for a TPC-H database with a scale factor of 5. We use
HSQLDB to compute the final results.

In the following, we present results that show query execution times and
throughput rates for an increasing number of nodes (from 1 to 32). Every execution
was repeated five times and the final metric is the mean value obtained in such runs,
not considering the first one. In some cases, metrics were also normalized by dividing
their value by the value obtained during the same kind of experiment with one node.
In order to ease reading and analysis, values are presented in logarithmic scale to give
a clear notion of linearity [14].

The first experiment (Fig. 2) evaluates the speedup obtained with Apuama when
executing isolated queries in different cluster configurations. With 2 nodes, query
execution time for all queries is reduced by almost 50%, when compared to the
sequential execution. With 4 nodes, query execution time is decreased from 45% to
20% for all queries, except for Q4 and Q6 that were decreased to 1.2% and 6.8% of
the original time, respectively. As Q4 and Q6 are highly selective queries, fragments

obtained by virtual partitioning are small enough to fit in main memory with just four
nodes, resulting in super-linear speedup. For such configurations, we could observe
that, after the first query execution, no page faults occur, thus avoiding disk accesses.
However, we continue to see a linear speedup with 8, 16 and 32 nodes showing the
effectiveness of virtual partitioning even for in-memory databases. Because Q1 and
Q21 are CPU-bound queries, they do not benefit from IO improvement. Still their
speed-up is always near linear.

In the next experiment, read-only query sequences are executed in parallel against
the DBC. All sequences are composed by the same 8 queries, sorted in different ways,
according to TPC-H specification. Each sequence submits the next query after the
completion of the current query. This is how TPC-H simulates a decision-making user
formulating new queries based on previous query results. Queries from different
sequences are submitted in parallel.

Fig. 2. Speedup experiments - normalized query execution times

Fig. 3(a) shows the throughput rate (in queries per minute) obtained during the
execution of three concurrent query sequences in different cluster configurations. It
also shows the throughput that would be achieved if linear scale-up throughput was
obtained. The number of query sequences was defined according to TPC-H, which
recommends this level of concurrency for OLAP databases with a scale factor of 5.
For all configurations, the throughput rises super-linearly. With 2 nodes, it is near
linear. With 4 nodes, the throughput is almost 2 times higher than if a linear gain was
obtained. From 8 to 32 nodes, the throughput is constantly about 6 times higher than
linear gain showing excellent performance.

Fig. 3(b) shows the scale-up throughput rate when Apuama is processing
sequences of read-only queries. In this experiment, the number of concurrent query
sequences is equal to the number of nodes being used. Therefore, the ideal situation is
that the execution time would be the same for all cluster configurations, as the
“Linear” curve shows. As in the previous experiment, the performance obtained with

2 nodes is better than expected. With 4 nodes, the performance is more than two times
better than expected. From 8 to 32 nodes, the performance is always about 3 times
better than expected, showing very good scalability with respect to query load.
Therefore, Apuama can be used to successfully reduce OLAP individual query
execution time and increase system throughput in a typical OLAP scenario and even
in the presence of high-concurrency.

Fig. 3. Read-only query sequences experiment - (a) throughput with 3 concurrent sequences,
(b) execution time with n concurrent sequences, where n is equal to the number of nodes

In the following experiment, we mix read-only query sequences with an update
query sequence. The update operations consist of 52,500 transactions for all cluster
configurations. First, the update queries insert an amount of data on the lineitem and
orders tables. In a second step, the updates remove all inserted tuples from lineitem
and orders tables.

Fig. 4(a) shows throughput (in queries per minute) obtained while concurrently
processing 3 read-only query sequences and an update query sequence. Again, it
shows the throughput that would be achieved if linear gain was obtained. From 2 to 8
nodes, performance of Apuama is near linear. For 16 and 32 nodes, the consistency
protocol makes the update propagation delay hurt performance. There is almost no
performance gain from 16 to 32 nodes. Fig. 4(b) shows scalability in Apuama with a
concurrent updates. Here, the number of read-only sequences equals the number of
nodes while there is always one update sequence. There is a performance gain up to
16 nodes. However, for 32 nodes, the performance is almost the same as with 4 nodes.
This is due to the replica synchronization when using a large number of nodes.

Fig. 4. Mixed workload experiment - (a) throughput with 3 read-only and 1 update sequence (b)
execution time with 1 update and n read-only queries, where n is equal to the number of nodes

In summary, these experiments show that Apuama provides excellent performance
in processing read-only query workloads. This is true for typical OLAP scenarios and
for those with a high degree of concurrency. With mixed workloads (consisting of
read-only and update queries), reasonable performance can still be obtained and the
system does not need to be unavailable for end-users while data refresh operations are
carried out. Thus, in typical OLAP scenarios, where such operations occur only from
time to time, we can conclude that Apuama is a good solution for DSS.

6 Related Work

The main DBC projects that can be found in the literature are C-JDBC [2], PowerDB
[1], PowerDB-FAS [18], SmaQ [13] and Leg@net [4]. C-JDBC, PowerDB-FAS and
Leg@net only support inter-query parallelism. Apuama was developed as an
extension to C-JDBC to support OLAP applications through intra-query parallelism.

PowerDB provides intra-query parallelism, but does not guarantee query speedup
because it depends on a DBMS-specific query execution optimization. Thus their
results are unstable. Furthermore, in contrast with our motivation to offer a low-cost
solution, PowerDB software is not freely available.

SmaQ is also focused on OLAP. It uses a technique called “adaptive virtual
partitioning” (AVP) [14] that reduces query execution time and allows for dynamic
load balancing during query execution. Although SmaQ can support both inter- and
intra-query parallelism, it does not support update transactions. The main difference
between SmaQ and Apuama is the existence of a replica consistency management.
Besides, experiments showed that execution of OLAP queries in environments with
high levels of concurrency can lead to poor performance. Apuama uses a simpler
virtual partition technique than AVP that allows for better concurrent queries support.
Since AVP locally subdivides the local sub-query it increases the level of concurrency
while inducing a bad memory cache use.

7 Conclusion

We proposed the Apuama Engine as an extension to C-JDBC, a successful open-
source DBC. Apuama adds intra-query parallel processing capabilities. The result is a
low-cost powerful and unique DBC that can simultaneously support OLTP and OLAP
applications. We implemented intra-query parallelism using SVP, an efficient
technique that can be used with different DBMSs requiring standard, non-intrusive
techniques and almost “black-box” DBMS components.

To validate our solution, we implemented Apuama on a 32-node cluster system
and ran experiments with typical queries of the TPC-H benchmark. By varying the
number of nodes in our experiments, it was possible to examine the query processing
performance in cases that the virtual partition size is larger or smaller than the amount

of available memory in a node. Although the performance improvement is better
when the virtual partition fits in memory, the query super-linear speedup occurs in
both cases. When processing isolated queries, super-linear speedup was obtained in
most situations. When processing parallel sequences of read-only queries, the
performance gain of Apuama is super-linear for all cluster configurations, even in
scenarios with high levels of concurrency. With mixed workloads that combine
parallel sequences of read-only queries and large amounts of data updates, the
performance gain is also very good. The performance gain is near-linear for most
experiments of speed-up test and super-linear for throughput scale-up test. Thus,
Apuama is a good solution for high-performance DSS. In the presence of updates,
Apuama presented performance deterioration when a large number of nodes were
employed due to the replica consistency protocol. As a future work we plan to focus
on this limitation using an alternative replication policy that relaxes consistency. The
tradeoff between OLAP query result correctness and update transaction performance
would be analyzed.

Apuama is released as an open source software protected under the terms of LGPL
[12] license. It can be downloaded from http://www.cos.ufrj.br/~bmiranda/apuama.

References

1. Akal, F., Böhm, K., Schek, H.-J.: OLAP Query Evaluation in a Database Cluster: A
Performance Study on Intra-Query Parallelism. Proceedings of the 6th East-European
Conference on Advances in Databases and Information Systems (ADBIS), Bratislava,
Slovakia (2002) 218-231

2. Cecchet, E.: C-JDBC: a Middleware Framework for Database Clustering.
Proceedings of IEEE Data Engineering Bulletin Vol. 27 (2004) 19-26

3. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP
Technology. ACM SIGMOD Record Vol. 26 (1997) 65-74

4. Coulon, C., Pacitti, E., Valduriez, P.: Scaling Up the Preventive Replication of
Autonomous Databases in Cluster Systems. Proceedings of 6th International
Conference on High Performance Computing for Computational Science (VECPAR),
Valencia, Spain (2004) 170-183

5. Cruanes, T., Dageville, B., Ghosh, B.: Parallel SQL Execution in Oracle 10g.
Proceedings of the ACM SIGMOD International Conference on Management of
Data, Paris, France (2004) 850-854

6. DB2 ICE. Retrieved 11/09/2005, from http://ibm.com/software/data/db2/linux/ice.
7. MySQL 5.0 Documentation. Retrieved 11/09/2005, from http://mysql.com.
8. Gançarski, S., Naacke, H., Pacitti, E., Valduriez, P.: Parallel Processing with

Autonomous Databases in a Cluster System. Proceedings of International Conference
on Cooperative Information Systems (CoopIS), Los Angeles, USA (2002) 410-428

9. Gorla, N.: Features to Consider in a Data Warehousing System. Communications of
the ACM Vol. 46 (2003) 111-115

10. HSQL Database Engine. Retrieved 11/09/2005, from http://hsqldb.org/.
11. JDBC. Retrieved 11/09/2005, from java.sun.com/products/jdbc.
12. LGPL. Retrieved 11/09/2005, from http://www.gnu.org/copyleft/lesser.html.
13. Lima, A.A.B.: Intra-Query Parallelism in Database Clusters. COPPE/UFRJ, D.Sc.

Thesis, Rio de Janeiro (2004)

14. Lima, A.A.B., Mattoso, M., Valduriez, P.: Adaptive Virtual Partitioning for OLAP
Query Processing in a Database Cluster. Proceedings of 19h Brazilian Symposium on
Databases (SBBD), Brasilia, Brazil (2004) 92-105

15. Pape, C.L., Gançarski, S., Valduriez, P.: Refresco: Improving Query Performance
Through Freshness Control in a Database Cluster. Proceedings of International
Conference on Cooperative Information Systems (CoopIS), Agia Napa, Cyprus
(2004) 174-193

16. PostgreSQL 8.0.1 Documentation. Retrieved 11/09/2005, from http://postgresql.org.
17. Paris Project. Retrieved 11/09/2005, from

http://www.irisa.fr/paris/General/cluster.htm.
18. Röhm, U., Böhm, K., Schek, H.-J., Schuldt, H.: FAS - A Freshness-Sensitive

Coordination Middleware for a Cluster of OLAP Components. Proceedings of the
28th International Conference on Very Large Data Bases (VLDB), Hong Kong,
China (2002) 754-765

19. TPC-H Benchmark. Retrieved 11/09/2005, from http://tpc.org/tpch.

