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Abstract. Executable schema mappings between XML schemas are es-
sential to support numerous data management tasks such as data ex-
change, data integration and schema evolution. The novelty of this pa-
per consists in a method for automatic generation of automappings (au-
tomorphisms) from key constraints and value dependencies over XML
schemas, and designing algebraic operations on mappings and schemas
represented by automappings. During execution of mappings some miss-
ing or incomplete data may be inferred. A well-defined executable seman-
tics for mappings and operations on mappings are proposed. A mapping
language XDMap to specify XML schema mappings is discussed. The
language allows to specify executable mappings that can be used to com-
pute target instances from source instances preserving key constraints
and value dependencies. The significance of mappings and operators over
mappings is discussed on a scenario of data exchange in a P2P setting.

1 Introduction

Schema mapping is a basic problem for many applications such as data exchange,
data integration, P2P databases or e-commerce, where data may be available at
many different peers in many different schemas [3, 6, 10, 11, 17, 20]. A schema
mapping specifies a constraint that holds between schemas and can be thought
of as a relation on instances. Executable mappings are mappings that are able
to compute target instances from source instances preserving a set of given con-
straints [11]. The main contributions of this work are as follows:

1. We propose a method for generating automappings over schemas from key
and value dependency constraints defined in schemas. Automappings are
then used to create mappings between schemas (Match operator). Mappings
can be combined (using Compose and Merge operators) to give new map-
pings. We propose a mapping language, called XDMap, to specify mappings.

2. In the process of data transformation some missing or incomplete data, which
are not given explicitly in sources, can be deduced based on value dependency
constraints enforced by the target schema. This is achieved by representing



missing data by terms defining the constraints. In some cases such terms
may be resolved and replaced by the actual data.

The following section discuss the contribution of the paper against related
work. The next section shows a scenario of data exchange. Section 4 illustrates
the problem of using constraints to mapping specifications and to inferring some
missing data. Section 5 describes basic ideas of our approach and proposes syntax
and semantics for the mapping language XDMap. Operations on mappings are
discussed in Section 6. Section 7 concludes the paper.

2 Related work

We discuss our contribution from the following three points of view.
1. A language for mapping specification. It is commonly accepted that the

basic relationships between a source and a target relational schemas can be
expressed as a source-to-target dependencies (STD) [2, 6, 11, 13]. In [3] STDs
are adopted to XML data in such a way that if a certain pattern occurs in
the source, another pattern has to occur in the target. In our approach, the
main idea of using STDs consists in specifying how nodes in a target instance
depend on key paths, how these key paths correspond to paths in sources, and
how target values depend on other values. So, our approach is more operational
and uses DOM interpretation of XML documents. To generate the instance of a
target schema from instances of source schemas, we use the idea of chasing [2,
19]. In our mapping language XDMap we use Skolem functions with text-valued
arguments from a source instance to create nodes (node identifiers) in a target
instance. A concept of using Skolem functions for creation and manipulation
object identifiers has been previously proposed in ILOG [8] and in [1, 7]. Recently,
Skolem functions are also used in some approaches to schema mappings, in Clio
[16] are used for generating missing target values if the target element cannot
be null (e.g. components of keys), in [19] are used in a query rewriting based
on data mapping. Our mapping language can be compared with the mapping
language proposed in [19]. However, XDMap is more powerful because we can use
arbitrary Skolem functions for intermediate (non leaf-level) nodes, while in [19]
these Skolem functions are system generated in a controlled way. Consequently,
in our mappings, node generation is controlled by the mapping itself.

2. Generating mappings from key constraints. To define mappings we as-
sume that key and some value constraints are specified within schema (using
XML Schema [18] notation). We show how an automapping (a mapping from
a schema onto itself) may be automatically generated from these constraints.
It is significant in our approach that the constraints are specified outside the
mapping by means of constraint-oriented notation. The generated automapping
preserves these constraints. In contrast, in other mapping languages (e.g. in [19])
constraints must be explicitly encoded in the mapping language. This can make
difficulties for future management when schemas evolve. To define correspon-
dences between schema elements we use the method proposed in [9, 16] where



a correspondence is defined between single elements from a source and a tar-
get schema. Establishing of a correspondence may be supported by automated
techniques [17].

3. Algebra of mappings. Since a schema is represented by its automapping,
we can operate over schemas and mappings in a uniform way. We discuss three
operators over mappings (schemas): Match – creates a mapping between two
schemas (it is a special case of composition), Compose – combines two successive
mappings, and Merge – produces a mapping that merges two source schemas.
Operations on mappings, mainly composition, was recently studied in [6, 10–13].

3 A scenario of data exchange

We illustrate XML data exchange on a scenario of a P2P data exchanging system.
Suppose there are three peers with schemas S1, S2, and S3, respectively (Fig.
1). Only S2 and S3 are associated with data, while S1 is a mediated (or target)
schema that does not store any data. The meaning of labels are: author (A), name
(N) and university (U) of the author; paper (P ) title (T ), year (Y ) of publication
and the conference (C) where the paper has been presented. Elements labeled
with R and K are used to join authors with their papers. I2 and I3 are instances of
S2 and S3, respectively. In such scenario we meet the problem of data exchange,
i.e. computing target instances from source instances [3, 5, 11, 16, 19]. Mappings
are needed to perform these functions effectively.

An instance of S1 can be obtained in different ways (Fig. 2): (1) and (2)
by simple transformation of instance I2 or I3 by means of mappings M21 or
M31; (3) as a merge M21 ∪ M31 over instances; (4) by means of composition
(M32 ◦M21)(I3) (when the S2’s peer is unavailable); (5) using combination of
merge and composition, ((M22 ∪M32) ◦M21)(I2, I3). This shows that we often
need to create new mappings from existing ones [6, 10, 11].
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Fig. 1. Schemas: S1,S2,S3, and schema instances I2 and I3

4 Using constraints for mapping specification

In our approach, we use two kinds of constraints to define mappings, namely:
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Fig. 2. Scenarios of data exchange – an instance of S1 may be computed in many ways

1. Value dependency constraints (on the target) imposing that a value of a
path depends on a tuple of values of other paths. We will declare them in
the <xs:valdep> section of XML Schema (Fig. 4) that is a non-standard
element within XML Schema.

2. Key constraints (on a source) stating that a subtree is uniquely identified
by a tuple of values of key paths [4, 18]. They are specified within <xs:key>
and <xs:keyref> sections of XML Schema (Fig. 4).

Value dependencies can be used to infer missing data. Suppose we want to
transform the instance I2 under the target schema S1, i.e. an instance I11 =
M21(I2) must be produced (Fig. 3(a)). The original instance provides no data
about publication year. However, we know that the publication year (Y ) uniquely
depends on the title (T ) of the paper that is denoted by the constraint Y = y(T ),
where y is the name of a function mapping titles into publication years. So the
term y(t), where t is the title, is assigned to Y as its text value. This forces some
elements of type Y to have the same values (Fig. 3(a)). Such constraints are
defined within the <xs:valdep> section in XML Schema (Fig. 4). Next, a term
like y(t) may be resolved using other mappings.
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Fig. 3. Instances of schema S1 produced by mappings using constraints

Suppose that under S1 we want to merge the instances I11 (Fig. 3(a)) and
I3 (Fig. 1). In this process terms denoting years will be replaced with actual
values (Fig. 3(b)). In this way we are able to infer the publication year of the



paper written by a2. This information is not given explicitly neither in I2 nor in
I3. The instances in Fig. 3(a)-(c) illustrate execution of composed mappings. In
detail, we will address this issue in Section 6.

Information provided by key constraints will be used to specify how many
instances (nodes) of an element type must be in the computed target instance.
For example, the element of type /A1/A in S1 is uniquely identified by the
key path N . So, there are as many nodes of type /A1/A as there are different
values of /A1/A/N . In S2, however, elements of type /P2/P/A are identified
by N but only in a context determined by the element type /P2/P that is
identified by T . Thus, to identify /P2/P/A we need a pair of values determined
by paths /P2/P/T and /P2/P/A/N . In XML Schema such keys are defined
using <xs:key>, and a declaration within a subelement denotes that the key
identification is satisfied only in the context of superelement. In Fig. 4 there is
a definition of the schema S1 written in an extended variant of XML Schema.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="A1">

<xs:complexType>

<xs:sequence>

<xs:element ref="A"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="A">

<xs:complexType>

<xs:sequence>

<xs:element name="N" type="xs:string"/>

<xs:element name="U" type="xs:string" minOccurs="0"/>

<xs:element ref="P" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:key name="AKey">

<xs:selector xpath="."/>

<xs:field xpath="N"/>

</xs:key>

<xs:valdep>

<xs:dependent xpath="N"/>

<xs:function name="u"/>

<xs:argument xpath="N"/>

</xs:valdep>

</xs:element>

<xs:element name="P">

<xs:complexType>

<xs:sequence>

<xs:element name="T" type="xs:string"/>

<xs:element name="Y" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>



<xs:key name="PKey">

<xs:selector xpath="."/>

<xs:field xpath="T"/>

</xs:key>

<xs:valdep>

<xs:dependent xpath="Y"/>

<xs:function name="y"/>

<xs:argument xpath="T"/>

</xs:valdep>

</xs:element>

</xs:schema>

Fig. 4. XML Schema of S1, extended with <xs:valdep> declaration

5 Executable XML schema mappings

5.1 Basic ideas of mappings

From the definition in Fig. 4 we can generate the automapping M11 over S1

(Fig. 5), i.e. a mapping from S1 onto itself (numbers of lines provided here are
for explanation only). It is formalized in Definition 2.

M11 = foreach G11 where Φ11 when C11 exists ∆11 =
(1) foreach $yA1 in /A1, $yA in $yA1/A, $yN in $yA/N,

$yU in $yA/U, $yP in $yA/P, $yT in $yP /T, $yY in $yP /Y
(2) where true
(3) when $yU = u($yN ), $yY = y($yT )

exists
(4) F/A1() in F()()/A1
(5) F/A1/A($yN) in F/A1()/A
(6) F/A1/A/N($yN ) in F/A1/A($yN )/N with $yN

(7) F/A1/A/U($yN , $yU ) in F/A1/A($yN)/U with $yU

(8) F/A1/A/P ($yN , $yT ) in F/A1/A($yN )/P
(9) F/A1/A/P/T ($yN , $yT ) in F/A1/A/P ($yN , $yT )/T with $yT

(10) F/A1/A/P/Y ($yN , $yT , $yY ) in F/A1/A/P ($yN , $yT )/Y with $yY

Fig. 5. Automapping M11 over S1

(1) The clause foreach defines source variables. Every source variable ranges
over a set of nodes. Variables ranging over non-leaf nodes are auxiliary vari-
ables whereas variables ranging over leaves are text variables. Note that aux-
iliary variables appear only in the foreach clause. We assume that any text
variable is partially bound to text values of leaves over which it ranges. By
Ω we will denote a set of all (partial) bindings for source text variables.



(2) The where clause restricts values of variables. The restrictions can be con-
sequences of key references defined in the schema (see M33 in Fig. 6).

(3) Equalities in (3) reflect value dependency constraints specified in the schema.
They are interpreted as follows. Let y = f($x) be a value dependency, where
$x is a vector of (totally bound) source variables, f is the name of a text
valued Skolem function, and $y is a dependent variable that denotes a text
value in the target (e.g. $yU and $yY ). The value of f($x) is determined by
a binding ω ∈ Ω and is equivalent to the term ”f(ω($x))” being the result of
the concatenation of the name ”f” and the text value ω($x) created from the
current values of variables. We assume that we have a set Ω′

Ω of dependent
bindings such that for any value dependency $y = f($x) and for any ω ∈ Ω
there exists ω′

ω ∈ Ω′
Ω such that ω′

ω($y) := ”f(ω($x))”. If ω($y) is defined,
then there are two bindings for $y: ω($y) and ω′

ω($y), otherwise the only
binding for $y is ω′

ω($y). In some cases, dependent bindings can be used
to infer missing bindings (i.e. values of variables) by applying the following
inference rule:

ω′
ω1

($y1) = ω′
ω2

($y2) ⇒ ω1($y1) = ω2($y2) (1)

In this way we can obtain the value of ω1($y1)(see Example 4).
(4) Two new nodes are created, the root r and the node n of the outermost

element of type /A1, as results of Skolem functions F()() and F/A1(), respec-
tively. The node n is a child of type A1 of r.

(5) A new node n′ for any distinct value of $yN is created. Each such node has
the type /A1/A and is a child of type A of the node n created by F/A1() in
(4).

(6) For any distinct value of $yN a new node n′′ of type /A1/A/N is created.
Each such node is a child of type N of the node created by invocation of
F/A1/A($yN ) in (5) for the same value of $yN . Because n′′ is a leaf, it obtains
the text value equal to the current value of $yN .

(7) Analogously for the rest of the specification (7-10).

5.2 Capturing key constraints by automappings

In a specification of automapping, Skolem functions and their arguments play a
crucial role. We assume that:

– for any (rooted) path P in the schema there is exactly one Skolem function,
FP (...), where FP is the name of the Skolem function,

– arguments of a Skolem function FP (...) are determined by key paths defined
for the element of type P in the schema.

In S1 there is exactly one root and one outermost element, so the correspond-
ing Skolem functions have empty lists of arguments. Element of type /A1/A has
a key path N . Each its subelement inherits this key path and additionally has
its local (relative) key paths. The local key paths for non-leaf elements are de-
fined in the schema. The local key path for a leaf element is, by default, this leaf



element itself. Thus, for S1 we have the following key paths: N for /A1/A and
/A1/A/N ; (N ,T ) for /A1/A/P and /A1/A/P/T ; and (N ,T ,Y ) for /A1/A/P/Y .
Text values of these key paths are bound to variables and are used as arguments
of Skolem functions.

In definition of S3 (Fig. 6), the schema specifies the key and keyref relation-
ships between the K child element of the P element (the referenced key) and the
R child element of the A element (the foreign key).

In the automapping specification over S3, key references are captured by the
equality $zR = $zK in the where clause (Fig. 6).

...

<xs:element name="A">

<xs:complexType>

...

</xs:complexType>...

<xs:keyref name="AKeyref"

refer="PKey">

<xs:selector xpath="."/>

<xs:field xpath="R"/>

</xs:keyref>

</xs:element>

<xs:element name="P">

<xs:complexType>

...

</xs:complexType>

<xs:key name="PKey">

<xs:selector xpath="."/>

<xs:field xpath="K"/>

</xs:key>

<xs:valdep>

<xs:dependent name="Y"/>

<xs:function name="y"/>

<xs:argument xpath="T"/>

</xs:valdep> ...

</xs:element>

...

M33 = foreach $zD3 in /D3, $zA in $zD3/A, $zN in $zA/N, $zR in $zA/R,
$zP in $zD3/P, $zK in $zP /K, $zT in $zP /T,
$zY in $zP /Y, $zC in $zP /C

where $zR = $zK

when $zK = k($zN , $zT ), $zY = y($zT ), $zC = c($zT )
exists

F/D3() in F()()/D3
F/D3/A($zN ) in F/D3()/A
F/D3/A/N($zN ) in F/D3/A($zN )/N with $zN

F/D3/A/R($zN , $zR) in F/D3/A($zN )/R with $zR

F/D3/P ($zK) in F/D3()/P
F/D3/P/K($zK) in F/D3/P ($zK)/K with $zK

F/D3/P/T ($zK , $zT ) in F/D3/P ($zK)/T with $zT

F/D3/P/Y ($zK , $zY ) in F/D3/P ($zK)/Y with $zY

F/D3/P/C($zK , $zC) in F/D3/P ($zK)/C with $zC

Fig. 6. Fragment of XML Schema defining S3 and the automapping M33 over S3



5.3 Syntax and semantics for mappings

In general, there are two vectors of variables $x and $y in a mapping M. Vari-
ables from $x are bound in a source by means of the foreach clause, and
variables from $y are bound to terms in the when clause as a consequence
of value dependency constraints. The part foreach/where/when of a mapping
M($x; $y) determines a partially ordered set (Ω,≤) of bindings of M’s vari-
ables. For example, in the mapping M21 (Fig. 7) for two bindings ω1, ω2 ∈ Ω
over I2, where ω1 = ($xT → t1, $xN → a1, $xU → u1, $yY → y(t1)) and
ω2 = ($xT → t1, $xN → a2, $xU → u2, $yY → y(t2)), we have ω1 < ω2, be-
cause the tuple of leaf nodes providing values for ω1 precedes the tuple of leaf
nodes providing values for ω2. Bindings from Ω are used in the exists part
to produce the result target instance. The ordering imposed in Ω by a source
instance should be preserved in the target instance.

If the foreach/where clause is defined over S2, while the when/exists
concerns S1, then we deal with a mapping M21 from S2 into S1. Then, after the
given replacement of variables (the result of the replacement φ[$y → $x] is the
expression created from φ by replacing all occurrences of $y with $x), we obtain:

M21 = foreach $xP2 in /P2, $xP in $xP2/P, $xT in $xP /T,
$xA in $xP /A, $xN in $xA/N, $xU in $xA/U

where true
when C11($yN , $yU , $yT , $yY )[$yN → $xN , $yU → $xU , $yT → $xT ]
exists ∆11($yN , $yU , $yT , $yY )[$yN → $xN , $yU → $xU , $yT → $xT ]

Fig. 7. Mapping M21 from S2 into S1

Thus, the when clause of M21 is equal to $xU = u($xN ), $yY = y($xT ).
There is no replacement for $yY , so its value must be set as the current value of
the term y($xT ), according to the inference rule (1) proposed in 5.1. We set it
as the term y(t), where t is the current value of $xT (see Fig. 3(a)). It is a form
of Skolemization.

Observe that a mapping specification in XDMap conforms to the general
form of source-to-target generating dependencies [2, 6, 13]:

∀$x(G($x) ∧ Φ($x) ⇒ ∃$yC($x; $y) ∧ ∆($x; $y)),

where G($x) and Φ($x) are conjunctions of atomic formulas over a source, and
C($x; $y) and ∆($x; $y) are conjunctions of atomic formulas over a target.

Definition 1. An executable schema mapping in XDMap (or mapping for short)
between a source schema S and a target schema T is a sequence M ::= (M, ..., M)
of mapping rules between S and T, where:

M = (G, Φ, C, ∆)($x; $y) := foreach G($x)
where Φ($x)
when C($x; $y)
exists FP/l($x′; $y′) in FP ($x′′; $y′′)/l[ with $z ]



– G is a list of variable definitions over a source schema;
– Φ is a conjunction of atomic conditions: $x = $x′;
– C is a list of target value dependency constraints: $x = f($x) or $y = f($x),

$x ∈ $x, $y ∈ $y;
– FP ($x; $y) is a Skolem term, where P is a rooted path in a target schema;
– ($x′; $y′) ⊆ ($x; $y), ($x′′; $y′′) ⊆ ($x′; $y′), $z ∈ ($x′; $y′). �

Semantics for XDMap is defined as follows:

Definition 2. Let M = (G, Φ, C, ∆)($x; $y) be a mapping, and (Ω,≤) be a
partially ordered set of bindings of variables ($x; $y) determined by (G, Φ, C). A
target instance J of a target schema T is then obtained as follows:

1. F()() – the root of J .
2. FP ($x′; $y′)(ω) = n – a node of type P .
3. If FP/l($x′; $y′)(ω) = n, FP ($x′′; $y′′)(ω) = n′, then n is a child of type l of

n′.
4. Let FP/l($x′; $y′)(ω1) = n1, FP/l($x′; $y′)(ω2) = n2, and ω1 ≤ ω2. Then

n1 ≤ n2 in the document order.
5. If FP/l($x′; $y′)(ω) = n is a leaf, then the text value of n is ω($z).

6 Operations on mappings

Mappings can be combined by means of some operators giving a result that in
turn is a mapping. We define the following operations: Match, Compose, and
Merge. First, we have to define a correspondence between paths of different
schemas. Establishing the correspondence is a crucial task in definition of data
mappings [17].

Definition 3. Let P and P ′ be sets of paths from schemas S and S′, respectively.
A correspondence from S into S′ is a partial function σ : P → P ′ which maps a
path P ∈ P on a path P ′ = σ(P ) ∈ P ′. �

Example 1. Correspondence σ12 from S1 to S2, and σ23 from S2 to S3 (Fig. 1)
are:

σ12(/A1/A/N) = /P2/P/A/N
σ12(/A1/A/U) = /P2/P/A/U
σ12(/A1/A/P/T ) = /P2/P/T

σ23(/P2/P/T ) = /D3/P/T
σ23(/P2/P/A/N) = /D3/A/A

6.1 Match operator

The Match operator was proposed in [11] as an operator to create a mapping
between two schemas (modes). In our approach each schema is represented by au-
tomappings, thus Match is defined on two automappings and returns a mapping
between schemas over which these automappings are defined. Because Match is
in fact a special kind of composition, we will denote it, like the Compose operator
(see p. 6.2), by ◦, i.e. Match(Ms,Mt) will be abbreviated by Ms ◦Mt, where



Ms and Mt are automappings over source and target schemas, respectively.
Then Mst = Ms ◦ Mt is a mapping from the source schema into the target
schema.

Definition 4. Let Ms = (Gs, Φs, Cs, ∆s)($xs; $ys) be an automapping over S,
Mt = (Gt, Φt, Ct, ∆t)($xt; $yt) be an automapping over Tt, and σ be a corre-
spondence between T and S. Then the Matchσ(Ms,Mt) is the mapping

Ms ◦σ Mt = (Gs, Φs, Ct, ∆t)[$xt → σ($xt)]($x; $y), (2)

where the result of the replacement [$xt → σ($xt)] is defined as follows:

– any occurrence of a variable $xt ∈ $xt of type P in (Gs, Φs, Ct, ∆t) is replaced
by a variable $xs ∈ $xs of type σ(P ), $xs is the replacing variable; and $x
is a tuple of all replacing variables and all variables occurring in Φs;

– $y ⊆ ($xt; $yt) and consists of all variables which have not been replaced;
and all unnecessary variable definitions are removed from Gs. �

Example 2. The mapping M21 (Fig. 7) is the result of matching from M22 to
M11 using the correspondence σ12 from S1 to S2 (see Example 1), i.e.

M21($xN , $xU , $xT ; $yY ) = M22($xT , $xN , $xU )◦σ12M11($yN , $yU , $yT , $yY ).
Similarly,

M32($zT , $zN , $zR, $zK ; $vU ) =
= M33($zN , $zR, $zK , $zT , $zY , $zC) ◦σ23 M22($vT , $vN , $vU ). �

6.2 Compose operator

The Compose operator combines two successive mappings into one.

Definition 5. Let M12 and M23 be mappings from S1 into S2 and from S2 into
S3, respectively. Let σ21 and σ32 be correspondences from S2 into S1 and from
S3 into S2. Let M11 and M33 be automappings over S1 and S3, respectively,
and σ = σ32 ◦ σ21 be the correspondence from S3 into S2 obtained as the result
of composition of correspondences σ32 and σ21. Then

Composeσ(M12,M23) = M11 ◦σ M33 (3)

is a mapping from S1 to S3, and M11 ◦σ M33 is defined by (2).

Example 3. It is easily to show that:
M321($zT , $zN , $zR, $zK ; $yU , $yY ) = Compose(σ12◦σ23)(M32,M21) =

M33($zN , $zR, $zK , $zT , $zY , $zC) ◦(σ12◦σ23) M11($yN , $yU , $yT , $yY ) =



= foreach G33($zN , $zR, $zK , $zT )
where $zR = $zK

when $yU = u($zN ), $yY = y($zT )
exists

F/A1() in F()()/A1
F/A1/A($zN ) in F/A1()/A
F/A1/A/N ($zN ) in F/A1/A($zN )/N with $zN

F/A1/A/U ($zN , $yU ) in F/A1/A($zN )/U with $yU

F/A1/A/P ($zN , $zT ) in F/A1/A($zN )/P
F/A1/A/P/T ($zN , $zT ) in F/A1/A/P ($zN , $zT )/T with $zT

F/A1/A/P/Y ($zN , $zT , $yY ) in F/A1/A/P ($zN , $zT )/Y with $yY

M321 has two variables, $yU and $yY , which are not bound in the source.
Instead, they are bound in the when clause to target terms u($zN ) and y($zT ),
respectively. An instance of the mapping is given in Fig. 3(c). In the final result
all term-valued leaves may be either removed, replaced with nulls, or left as they
are (they may be resolved and replaced with actual values in next mappings (e.g.
by Merge) as in Fig. 3(a)-(b)).

6.3 Merge operator

Definition 6. Let M1 = (G1, Φ1, C1, ∆1)($x1; $y1) and
M2 = (G2, Φ2, C2, ∆2)($x2; $y2), where ($x1; $y1) and ($x2; $y2) are disjoint, be
mappings from S1 and S2, respectively, into S3. Then merging of M1 and M2

is the mapping defined as follows:

M1 ∪M2 = (G1 ∪ G2, Φ1 ∪ Φ2, C1 ∪ C2, ∆1 ∪ ∆2)($x1 ∪ $x2; $y1 ∪ $y2).

If mappings M1 and M2 are mappings from S1 and S2, respectively, into S3

then M1 ∪M2 is a mapping that merges S1 and S2 under S3.

Example 4. Let
M21 = (G21($xT , $xN , $xU ), {true},

{xU = u($xN ), $yY = y($xT )}, ∆21($xT , $xN , $xU ; $yY ))
be a mapping from S2 into S1 (Example 2), and

M31 = (G31($zN , $zR, $zK , $zT , $zY ), {$zR = $zK},
{$vU = u($zN ), $zY = y($zT )}, ∆31($zN , $zT , $zY ; $vU ))

be a mapping from S3 into S1.
The merge M21 ∪ M31 is a mapping consisting of all mapping rules from

M21 and all mapping rules from M31. Below, we show only these rules that
involve variables from constraints in the when clause.



M21 ∪M31 =
foreach G21($xT , $xN , $xU ), G31($zN , $zR, $zK , $zT , $zY )
where $zR = $zK

when xU = u($xN ), $yY = y($xT ), $vU = u($zN ), $zY = y($zT )
exists ...

F/A1/A/U ($xN , $xU ) in F/A1/A($xN )/U with $xU

F/A1/A/P/Y ($xN , $xT , $yY ) in F/A1/A/P ($xN , $xT )/Y with $yY

F/A1/A/U ($zN , $vU ) in F/A1/A($zN )/U with $vU

F/A1/A/P/Y ($zN , $zT , $zY ) in F/A1/A/P ($zN , $zT )/Y with $zY

...
For variables occurring in G21 and in G31, the foreach clause defines a set

Ω of bindings. Term values of dependent variables, i.e. of $xU , $yY , $zY , and
$vU , are defined in the when clause and are represented by Ω′. Missing values
in Ω (e.g. for variables $yY and $vU ) are replaced by appropriate term values
from Ω′, i.e. ω($y) := ω′

ω($y).

Before resolving: Ω := Ω21 ∪ Ω31

Ω $xT $xN $xU $yY $zN $zK $zT $zY $vU

ω1 t1 a1 u1 y(t1)
ω2 t1 a2 u2 y(t1)
ω3 t2 a1 u1 y(t2)
ω4 a1 i1 t1 05 u(a1)
ω5 a1 i2 t2 03 u(a1)
ω6 a3 i3 t3 04 u(a3)

Ω′
Ω $xU $yY $zY $vU

ω′
ω1

u(a1) y(t1)
ω′

ω2
u(a2) y(t1)

ω′
ω3

u(a1) y(t2)
ω′

ω4
y(t1) u(a1)

ω′
ω5

y(t2) u(a1)
ω′

ω6
y(t3) u(a3)

Next, in the resolving process we try to resolve term values in Ω. The resolving
process is based on the rule (1) discussed in Subsection 5.1.

After resolving: Ω := Resolve(Ω21 ∪ Ω31)
Ω $xT $xN $xU $yY $zN $zK $zT $zY $vU

ω1 t1 a1 u1 05
ω2 t1 a2 u2 05
ω3 t2 a1 u1 03
ω4 a1 i1 t1 05 u1
ω5 a1 i2 t2 03 u1
ω6 a3 i3 t3 04 u(a3)

Execution of the mapping M21∪M31 is illustrated in Fig. 3. Fig. 3(a) shows
the result produced by the part corresponding to M21, and Fig. 3(b) is the final
result. Note, that the term u(a3) cannot be resolved. �

7 Conclusion

We have described a novel approach to XML schema mapping specification and
operations over schema mappings. We discussed how automappings may be gen-
erated using key constraints [4, 18], keyref constraints [18], and some value depen-
dency constraints defined in XML Schema. Constraints on values can be used to
infer some missing data. Mappings between two schemas can be generated auto-
matically from their automappings and correspondences between paths of these



two schemas. Automappings represent schemas, so operations over schemas and
mappings can be defined and performed in a uniform way. We propose some
algebraic operations over mappings. The syntax and semantics for the mapping
language XDMap are defined and discussed. Our techniques can be applied in
various XML data exchange scenarios, and are especially useful when the set of
data sources change dynamically (e.g. in P2P environment) [14, 15].
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