
A Query Algebra for XML P2P Databases?

Carlo Sartiani

Dipartimento di Informatica - Università di Pisa
Largo B. Pontecorvo 3 - 56127 - Pisa - Italy

sartiani@di.unipi.it

Abstract. One missing point in the current research about p2p XML
databases is the definition of a proper query algebra that addresses p2p-
specific issues, such as the dissemination and replication of data, the
dynamic nature of the system, and the transient nature of data and
replicas.

This paper describes a query algebra for queries over XML p2p databases
that provides explicit mechanisms for modeling data dissemination and
replication constraints.

1 Introduction

Peer-to-peer (p2p) database systems are usually composed by a dynamic, open-
ended network of autonomous or semi-autonomous peers, which contribute data
to the system and query data exported by other peers. These systems affirmed
as an interesting evolution of distributed and integration systems as well as an
attempt to overcome their limitations, namely the heavy administration load,
the need for centralization points, and their quite limited scalability, as they
blur the distinction between clients and servers, each peer being able to submit
service requests and (simultaneously) support other peer requests.

Several ongoing projects focus on the the design and the implementation of
p2p database systems, mostly for XML data and for supporting Semantic Web
applications [1–3]. One missing point in the current research about p2p XML
databases is the definition of a proper query logical algebra. In this context, a
query algebra can be profitably used in the following tasks.

Query distribution Algebraic expressions are a convenient form into which queries
and sub-queries can be translated and packaged, so to be distributed across the
network; since algebraic expressions are independent from the actual implemen-
tation of the query engine in local nodes and from the local data organization
(e.g., indexes, etc), they can be locally translated into highly optimized physical
query plans, hence allowing for the best exploitation of local data structures and
computational capabilities.

? Carlo Sartiani was funded by the FIRB GRID.IT project and by Microsoft Corpo-
ration under the BigTop project.

Distributed query rewriting As in distributed database systems, algebraic expres-
sions can be manipulated to perform global-scale optimizations, such as query
unnesting and replica selections, while pushing most of the optimization load to
the local peers.

Existing query algebras for XML data, most notably the official algebra by
W3C [4], have been defined in the context of static and centralized database
systems, and cover issues ranging from query result analysis and query type-
checking to the rigorous definition of the statical and dynamic semantics of
XML query languages. As a consequence, they lack support for three key issues
in p2p database systems:

– data are disseminated in multiple peers, which may appear and disappear
unpredictably;

– data are usually replicated into multiple peers, and, due to the dynamic
nature of the system, the replicas have a limited time validity;

– data distribution and replication may change during query execution.

Our contribution This paper describes a logical query algebra for queries over
XML p2p databases. The relevance of the contribution is twofold. First, the
algebra provides an abstraction from physical or system-specific issues, hence
it can be used for reasoning about p2p query processing (p2p distributed opti-
mization, in particular) without worrying about the peculiar issues of a given
system. Second, it provides explicit mechanisms for modeling data dissemination
and replication constraints: in particular, the algebra data model incorporates
the notion of locations, which model peer content, as well as the notion of data
freshness; moreover, the algebra provides operators for manipulating locations,
and for expressing replication constraints, together with the related rewriting
rules.

The proposed query algebra supports a relevant fragment of the XQuery
query language [5] (FLWR queries with free nesting), and provides corresponding
rewriting rules.

Paper outline The paper is organized as follows. Section 2 identifies some re-
quirements for a p2p logical query algebra. Section 3, then, describes the algebra
data model and operators. Next, Section 4 discusses rewriting rules that can be
applied to algebraic expressions. Section 5, then, illustrates some related works.
Section 6 concludes.

2 Requirements for a p2p Query Algebra

The design of the proposed query algebra has been guided by three main require-
ments that emerge in XML p2p databases (in addition to the obvious require-
ment of supporting queries on XML data). These requirements are discussed
below.

Data dissemination Since data are dispersed on multiple peers, the algebra
should model the notion of peer as well as the distribution of data into peers.
Hence, the data model should not be limited to represent XML trees, but also
peers with their content. A clear benefit of having explicit peer information in-
side algebraic expressions is the ability to support routing decisions taken at
both the global and the local level.

Data replication To increase the robustness of p2p systems as well as their
performance, data are usually replicated in high-speed/high-capacity peers. As
a consequence, information about replicas (who is replicating what) should be
part of the algebraic vision of the database, i.e., the data model should record
both the data provenance and the data replication. Moreover, since replicas in
a p2p context are usually not up-to-date (2PL/2PC synchronization protocols
are too restrictive for this setting), replica information should be enhanced with
details about the validity of these replicas, e.g., the period of time during which
a replica can be safely used in place of the original data.

Data freshness Peer-to-peer database systems are chaotic systems, where some
data are very frequently updated and others remain untouched for a long period
of time. This chaotic nature, together with the presence of loosely synchronized
replicas, makes important the explicit representation of data freshness informa-
tion into algebraic expressions. This allows for the support of queries where the
user can choose between fresh data, at the price of a potentially higher evaluation
cost, and older data, potentially not up-to-date, retrieved much more quickly.

3 Query Algebra

The proposed algebra is based on that of [6]. The most important extensions
concern the representation of peer contents and replicas, the introduction of a
data freshness notion, as well as algebraic operators for manipulating them.

For reasons of space, we focus here on the description of new operators and
refer the reader to [6] for more detail about the others.

3.1 Data Model and Term Language

The query algebra represents XML data as unordered forests of node-labeled
trees. According to the term grammar shown in Fig. 1, each tree node (n) has a
unique object identifier (oid) that can be accessed by the special-purpose function
oid; an algebraic support operator ν is used to generate new oids and to refresh
existing ones. Furthermore, each node is augmented with the indication of the
hosting peer (location in the following) as well as with a freshness parameter fr,
which indicates when the last update on the node was performed (⊥ indicates
that the freshness is undefined, and it is necessary to ensure the closeness of the
model).

t ::= t1, . . . , tn | n[t] | n trees
n ::= (oid, loc, fr)label nodes
loc : (dbname → t, (dbname, loc) → t) locations
where label ∈ Σ∗, fr ∈ N ∪ {⊥}, and
loc1 and loc2 are partial functions.

Fig. 1. Term grammar.

The label, the location, and the freshness of a node can be accessed by means
of the auxiliary functions label, loc, and freshness, which are used thorough
the whole algebra. For the sake of simplicity, we assume that peers perform leaf
updates only (deletions, insertions, and value changes), hence the model satisfies
the following parent/child freshness constraint.

Property 1 (Structural freshness constraint). Given a data tree t, it holds that:

t = n[t1] ⇒ freshness(n) 6 freshness(t1)

t = n[t1, . . . , tk] ⇒ freshness(n) 6 minifreshness(ti)

Locations model the content of peers, hence they are represented as a pair of
partial functions: the first function (loc1) returns, for each database identifier,
the trees contributed to the database by the given peer, if any; the second func-
tion (loc2), instead, describes the replication services offered by a given peer, i.e.,
it returns, for each database identifier and location, the replicated trees for such
database and location, if any. Replicas are further described by a (distributed)
set replicas, which contains dynamic replication constraints. A replication con-
straint has the form (loc1, loc2, db, δ1, δ2), and it states that loc2 replicates the
content of loc1 for the database db from time δ1 to time δ2 (δ2 may assume the
special value ∞, which indicates that the replica is always kept up to date); given
the dynamic nature of the system, we expect replication constraints to evolve
over time.

Location content can be accessed through the function content, as shown
below:

content(loc) =
⋃

id loc1(id)
AllLocs(id) = {loc | loc1(id) 6= ∅}

The set of locations containing data relevant for a given database db is re-
turned by the function AllLocs. The way AllLocs is computed and updated goes
far beyond the scope of this paper, as it depends on the physical organization
of the system; we only assume that the system will provide a set supposed to
comprise an exhaustive list of locations containing relevant data. As usual in p2p
systems, we also expect this set to be incomplete or even incorrect. The same
considerations apply to replicas.

3.2 Global Time

For the sake of supporting freshness parameters, the data model has a universal
constant τ , which denotes the current global time in the system. The hypoth-

esis of the existence of a global time, shared by all peers in the network, even
though unrealistic, is not restrictive and does not affect the well-foundness of
the algebra. Indeed, as shown in [2], query results are usually incomplete in p2p
systems, and their incompleteness implies, in many cases, their incorrectness, so
the assumption of the existence of a universal shared time does not significantly
affect the quality of query results.

To support dynamic replication constraints, we assume that each query has
two time parameters: the query issuing time τ ′, and the maximum replica time
δτ ′ , which indicates that replication constraints of the form (loc1, loc2, db, δ1, δ2)
with δ2 > τ ′ − δτ ′ can be considered during query compilation.

3.3 Env Structures

Most algebraic operators manipulate unordered sequences of tuples, each tu-
ple containing the variable bindings collected during query evaluation. These
sequences (called Env structures as they mimic an environment) allow one to
define algebraic operators that manipulate sequences of tuples, instead of trees;
hence, common optimization and execution strategies (which are based on tuples
rather than trees) can be easily adapted to XML.

Tuples in a given Env structure are flat, hence they cannot be nested one
another. Each variable binding associates a variable to a collection, possibly a
singleton, of node identifiers.

To ensure the closure of the algebra, intermediate structures are themselves
represented as node-labeled trees conforming to the algebra data model; this
kind of representation also allows one to apply useful optimization properties to
border operators.

3.4 path and return

path and return represent the interface between XML data and intermediate
Env structures. They allow for creating Env structures from XML trees (path)
and for creating new documents from existing Env structures.

path The main task of the path operator is to extract information from the
database, and to build variable bindings. The way information is extracted is
described by an input filter ; a filter is a tree, describing the paths to follow into
the database (and the way to traverse these paths), the variables to bind and
the binding style, as well as the way to combine results coming from different
paths. Input filters, hence, are just a way to describe query twigs, according to
the grammar shown in Table 3.1.

A simple filter (op, var, binder)label[F] tells the path operator a) to traverse
the current context by using the navigational operator op, b) to select those
elements or attributes having label label, c) to perform the binding expressed by
var and binder, and d) to continue the evaluation by using the nested filter F .

An input filter fully describes the behavior of its enclosing path operator. In
addition to an input filter, the path takes as input a data model instance, that

Table 3.1. Input filters grammar

F ::= F1, . . . , Fn conjunctive filters op ∈ {/, //, } navigational axes
| F1 ∨ . . . ∨ Fn disjunctive filters var ∈ String ∪ { } variable names
| (op, var, binder)label[F] simple input filter binder ∈ { , in, =} binders
| ∅ empty filter

is browsed according to the specification given by the input filter; hence, a path
operator has the syntax pathF (t), where F is the input filter and t the data
model instance. The result of the evaluation of a path operator is a sequence
of tuples containing the variable bindings described in the filter. The following
examples show the behavior of path.

Example 1. Consider a real-estate p2p market database, and consider the fol-
lowing query fragment.

for $b in input()//building,

$d in $b/desc,

This clause retrieves descriptions for buildings at any level in the database.
Assuming that the query plan generation layer found only one relevant location
loc1, the clause can be translated into the following path operation:

path(//,$b,in)building[(/,$d,in)desc[∅]](loc1
1(db1))

which returns the following Env structure:
$b : o1 $d : o11

$b : o1 $d : o12

$b : o3 $d : o24

.

Example 2. Consider the following XQuery fragment:

for $b in input()//building

let $d list := $b/desc,

This query retrieves buildings and building descriptions in the database; un-
like the previous example, descriptions of the same building are grouped together
in $d list. This query fragment can be expressed by the following path operation:

path(//,$b,in)building[(/,$d list,=)desc[∅]](loc1
1(db1))

which returns the following Env structure:
$b : o1 $d list : {o11, o12, . . .}
$b : o3 $d list : {o24, . . .}

As shown by the filter grammar, multiple input filters can be combined to
form more complex filters. The algebra allows filters to be combined in a con-
junctive way, or in a disjunctive way. In the first case, the Env structures built
by simple filters are joined together, hence imposing a product semantics; in
the second case, partial results are combined by using an outer union operation.
Therefore, disjunctive filters can be used to map occurrences of op : union inside

paths into input filters, as well as more sophisticated queries; the use of outer
union ensures that the resulting Env has a uniform structure, i.e., all binding
tuples have the same fields.

return While the path operator extracts information from existing XML docu-
ments, the return operator uses the variable bindings of an Env to produce new
XML documents. return takes as input an Env structure and an output filter,
i.e., a skeleton of the XML document being produced, and returns a data model
instance (i.e., a well-formed XML document) conforming to the filter. This in-
stance is built up by filling the XML skeleton with variable values taken from
the Env structure: this substitution is performed once per each tuple contained
in the Env, hence producing one skeleton instance per tuple.

Output filters satisfy the following grammar:

(1) OF ::= OF1, . . . , OFn | n[OF] | val
(2) val ::= n | var | νvar

An output filter may be an element constructor (n[OF]), which produces an
element tagged n and whose content is given by OF , a value constructor (n), or a
combination of output filters (OF1, . . . , OFn). The production describing values
(val) needs further comments. The algebra offers two ways to publish information
contained in an Env structure: by copy (νvar) and by reference (var). Referenced
elements are published as they are in query results; in particular, their object
ids are not changed, as well as their location and freshness information. Copied
elements, instead, are published with fresh oids, while their location and freshness
information remains untouched. Finally, newly created elements (OF ::= n[OF])
and values (val ::= n) are managed as copied nodes with undefined freshness, so
they have fresh oids, empty location, and are marked with the undefined time
information (⊥).1

The following example shows the use of the return operator.

Example 3. Consider the following XQuery query:

for $b in input()//building,

$d in $b/desc,

$p in $b/price

return <entry> {$d, $p} </entry>

This query returns the description and the price of each building in the
market, and it can be represented by the following algebraic expression:

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

loc1
1(db1)))

1 Any freshness comparison w.r.t ⊥ is true, so the freshness structural constraint still
holds.

3.5 Operators on Locations

Operators on locations are crucial for retrieving data coming from multiple peers,
and for exploiting, if necessary, replicas of the content of some location. The
query algebra offers two location operators: LocUnion and Choice.

LocUnion (•) takes as input two locations loc1 and loc2, and it returns a
new location obtained by uniting the content and the replica functions of the
arguments, as shown in Table 3.2.

Table 3.2. Formal definition of LocUnion

loc1 • loc2 = ((loc1
1 ⊕ loc1

2), (loc
2
1 ∪ loc2

2))
loc1

1 ⊕ loc1
2 = {(dbname, t) | (dbname, t) ∈ loc1

1 ∧ @t′ : (dbname, t′) ∈ loc1
2}∪

{(dbname, t) | (dbname, t) ∈ loc1
2 ∧ @t′ : (dbname, t′) ∈ loc1

1}∪
{(dbname, (t1, t2)) | (dbname, t1) ∈ loc1

1 ∧ (dbname, t2) ∈ loc1
2}

LocUnion is primarily used for expressing queries retrieving data from mul-
tiple peers. The following example shows the use of LocUnion.

Example 4. Consider our real-estate market database, and assume that new lo-
cations (loc11, loc13, and loc17) contribute data about buildings. Then, the query
of Example 3 can be expressed by the following algebraic expression:

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

(•i=1,11,13,17loci)1(db1)))

As shown in Section 4.1, LocUnion operations can be extruded from path
operators, hence the previous expression can be rewritten as follows:

returnentry[ν$d,ν$p](∪i=1,11,13,17

path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](
loc1

i (db1)))

The Choice (|δdb) operator is a convenient way to encapsulate replication
constraints into query plans. loc1 |δdb loc2 indicates that loc2 replicates loc1

1(db)
until time δ, so, if permitted, it can serve requests for data in loc1

1(db). As a
consequence, loc1 |δdb loc2 can be rewritten (in path operations concerning db) as
loc1 or as loc2

2(loc1).
The following example shows the use of Choice.

Example 5. Consider the query of the previous example, and assume that loc11(db1)
is replicated at loc17 till time δ; furthermore, assume that the query was submit-
ted at time τ ′ so that τ ′ < δ. Then, the query can be expressed by the following

algebraic expression:

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

(loc1 • (loc11 |δdb1 loc17) • loc13 • loc17)1(db1)))

4 Optimization Properties

Four main classes of algebraic rewriting rules can be applied to the query algebra.
The first class contains classical equivalences inherited from relational and OO
algebras (e.g., push-down of Selection operations and commutativity of joins);
the second class consists of path decomposition rules, which allows the query
optimizer to break complex input filters into simpler ones; the third class contains
equivalences used for unnesting nested queries; the last class, finally, contains
rewriting rules for location operators. For the sake of brevity, we focus here on
location rewritings (the reader can see [6] for a detailed list of equivalence rules
for the core of this algebra).

4.1 Location Rewriting Rules

Operators on locations represent a crucial fragment of a query algebra for p2p
databases; as a consequence, rules for simplifying location operators as well as
for splitting complex location unions are a must. The algebra offers three main
rewriting rules for location operators: extrusion of LocUnion operations from
path operations; simplification of Choice operators; and introduction of Choice
operations.

Proposition 1 (Extrusion of LocUnion operations).
Given a database db disseminated on loc1 and loc2, it holds that:

pathf ((loc1 • loc2)1(db)) = pathf ((loc1)1(db)) ∪
pathf ((loc2)1(db))

This property states that LocUnion operations inside path operations can be
split and distributed across the query; this, in turn, allows the system to more
easily decompose a query in single-location subqueries.

Proposition 2 (Rewriting of location choices).
Given a database db hosted at loc1 and replicated at loc2, it holds that:

pathf ((loc1 |δdb loc2)1(db)) = pathf (loc1
1(db))

pathf ((loc1 |δdb loc2)1(db)) = pathf (loc2
2(loc1)(db))

This property shows how a Choice operation inside a path operation can be
rewritten; we expect that this rewriting will be guided by additional information
about network conditions, peer computing power, etc.

Proposition 3 (Choice introduction).
Given a database db, if (loc1, loc2, db, δ1, δ2) ∈ replicas, and δ2 > τ ′ − δτ ′ ,

then loc1
1(db) → (loc1 |δ2

db loc2)1(db)

Corollary 1 (Guarded choice introduction). Given a database db dissem-
inated on loc1, . . . , locm, if (loci, locj , db, δ1, δ2) ∈ replicas, and δ2 > τ ′ − δτ ′ ,
then

pathf ((loc1 • loci)1(db)) → pathf ((loc1 • (loci |δ2
db locj))1(db))

These properties back the introduction of Choice operations in query plans.
The following example illustrates how these properties can be used during

query compilation.

Example 6. Consider the real-estate database of Section 3, and assume that peer
pi submits the query of Example 4 to the system (we report it below for the sake
of clarity).

for $b in input()//building,

$d in $b/desc,

$p in $b/price

return <entry> {$d, $p} </entry>

Assuming, as in Example 4, that relevant data for the query are hosted at
locations loc1, loc11, loc13, and loc17, then the system compiles this query into
the following algebraic expression.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

(•i=1,11,13,17loci)1(db1)))

In the case that no suitable replicas are available, the system can just apply
Proposition 1, so to push down path operations and to maximize the query
fragments to be delivered to remote peers, as shown below.

returnentry[ν$d,ν$p](∪i=1,11,13,17

path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](
loc1

i (db1)))

Assume now that replicas contains two relevant replication constraints for
the query: (loc11, loc1, db1, τ1, τ2) and (loc11, loc24, db1, τ3, τ4). If loc24 models a
very reliable and fast peer, the system may decide to apply Corollary 1 and
Proposition 2, so to speed up query execution, as shown below.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

1(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc2

24(loc11)(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

13(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

17(db1)))

Alternatively, the system may decide, on the basis of network traffic con-
ditions and other parameters, to exploit the first replication constraint, so to
concentrate the query load to the peer corresponding to loc1. In this case, the
application of Corollary 1 and Proposition 2 leads to the following algebraic
expression.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

1(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc2

1(loc11)(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

13(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

17(db1)))

It should be noted that, unlike Proposition 1, which is always applicable, the
application of Corollary 1 and Proposition 2 is subject to conditions that may
change over time, hence, after a certain period of time, the algebraic expressions
reported above may become invalid.

5 Related Works

Current research about the algebraic treatment of queries in p2p database sys-
tems mostly focuses on physical query algebras for relational databases. [7]
presents a physical query algebra for a DHT-based relational p2p database sys-
tem. This algebra provides low-level operators for supporting relational queries
on a DHT, which cannot be generalized to other contexts. In particular, no ab-
stract notions of locations and replicas are provided, and all operators strictly
depend on the presence of a DHT.

In [8] a more sophisticated approach is described. Queries are posed against
virtual tables by means of a standard relational algebra, and are then trans-
lated into relational concrete queries over local and distributed tables; concrete
queries are expressed through a concrete query algebra, which contains operators
inspired by traditional distributed systems. Distributed tables are attached to
peers, so they can be used to implicitly denote locations. While this approach
is more general than that of [7], the lack of explicit modeling of locations and
replicas is a significant difference with our algebra.

The explicit modeling of locations is not new. For instance, [9] contains a
formalization of static p2p systems in terms π-calculus expressions. The main
limitation of the work is the lack of support for dynamic topologies.

6 Conclusions

This paper describes a query algebra for XML p2p database systems. The al-
gebra features mechanisms for dealing with p2p-specific issues, namely the dis-
semination and replication of data across an unstable network, as well as for
incorporating replication constraints into query plans.

Even though designed for a specific class of systems (XML databases), the key
ideas of the proposed algebra can be generalized to p2p systems with different
data models.

The proposed algebra is now being used in the XPeer [10] p2p system: XPeer
is a scalable and self-organizing p2p system for XML data designed for resource
discovery applications.

The proposed algebra represents the first step in the development of a p2p
query optimization systems. Its definition will be the starting point for the fur-
ther investigation of suitable rewriting rules and for the design of a proper query
optimizer.

References

1. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infras-
tructure for semantic web applications. In: Proceedings of the Twelfth International
World Wide Web Conference, WWW2003, Budapest, Hungary, 20-24 May 2003,
ACM (2003) 556–567

2. Papadimos, V., Maier, D., Tufte, K.: Distributed Query Processing and Catalogs
for Peer-to-Peer Systems. In: CIDR 2003, First Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 5-8, 2003. (2003)

3. Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active XML:
Peer-to-Peer Data and Web Services Integration. In: 28th International Conference
on Very Large Data Bases (VLDB 2002), Hong Kong, China, August 20-23, 2002,
Proceedings, Morgan Kaufmann (2002) 1087–1090

4. Draper, D., Fankhauser, P., Fernandez, M., Malhotra, A., Rose, K., Rys, M.,
Siméon, J., Wadler, P.: XQuery 1.0 and XPath 2.0 Formal Semantics. Techni-
cal report, World Wide Web Consortium (2005) W3C Working Draft.

5. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML Query Language. Technical report, World Wide Web Con-
sortium (2005) W3C Candidate Recommendation.

6. Sartiani, C., Albano, A.: Yet Another Query Algebra For XML Data. In Nasci-
mento, M.A., Özsu, M.T., Zäıane, O., eds.: Proceedings of the 6th International
Database Engineering and Applications Symposium (IDEAS 2002), Edmonton,
Canada, July 17-19, 2002. (2002)

7. Sattler, K.U., Rösch, P., Buchmann, E., Böhm, K.: A physical query algebra for
dht-based p2p systems. In: Proceedings of 6th Workshop on Distributed Data and
Structures (WDAS’2004), Lausanne, Switzerland, July 8-9, 2004. (2004)

8. Boncz, P., Treijtel, C.: Ambientdb: relational query processing in a p2p network.
Technical report, CWI - INS (2003)

9. Gardner, P., Maffeis, S.: Modelling dynamic web data. In Lausen, G., Suciu, D.,
eds.: DBPL. Volume 2921 of Lecture Notes in Computer Science., Springer (2003)
130–146

10. Sartiani, C., Ghelli, G., Manghi, P., Conforti, G.: XPeer: A self-organizing XML
P2P database system. In: Proceedings of the First EDBT Workshop on P2P and
Databases (P2P&DB 2004), 2004. (2004)

