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Abstract. Users without knowledge of schemas or structured query languages 
have difficulties in accessing information stored in databases. Commercial and 
research efforts have focused on keyword-based searches. Among them, précis 
queries generate entire multi-relation databases, which are logical subsets of 
existing ones, instead of individual relations. A logical database subset contains 
not only items directly related to the query selections but also items implicitly 
related to them in various ways. Existing approaches to précis query answering 
assume that a database is pre-annotated with a set of weights, and when a query 
is issued, an ad-hoc logical subset is constructed on the fly. This approach has 
several limitations, such as dependence on users for providing appropriate 
weights and constraints for answering précis queries, and difficulty to capture 
different query semantics and user preferences. In this paper, we propose a 
pattern-based approach to logical database subset generation. Patterns of logical 
subsets corresponding to different queries or user preferences may be 
recognized and stored in the system. Each time a user poses a question, the 
system searches in a repository of précis patterns to extract an appropriate one. 
Then, this is enriched with tuples extracted from the database, in order to 
produce the logical database subset. 

1. Introduction 

The need for facilitating access in information stored in a database for users with no 
specific knowledge of schemas or structured query languages has been acknowledged, 
especially in the context of web accessible databases, as libraries, museums, and other 
organizations publish their electronic contents on the Web. Towards this direction, 
current commercial and research efforts have focused on keyword-based searches. 
Among them, précis queries are free-form queries that generate entire multi-relation 
databases, which are logical subsets of existing ones, instead of individual relations 
[10]. The logical subset of a database generated by a précis query contains not only 
items directly related to the query selections but also items implicitly related to them 
in various ways. This subset is useful in many cases and provides to the user much 
greater insight into the original data.  



For instance, a user asking about “Woody Allen” would probably like to know a 
little bit more than that “Woody Allen is a director”. A more meaningful response 
would be in the form of the following précis: 

 “Woody Allen was born on December 1, 1935 in Brooklyn, New York, 
USA. As a director, Woody Allen’s work includes Match Point (2005), 
Melinda and Melinda (2004), Anything Else (2003). As an actor, Woody 
Allen’s work includes Hollywood Ending (2002), The Curse of the Jade 
Scorpion (2001).”  

This response provides sufficient information to help someone learn about Allen 
and identify new keywords for further searching. For example, the user may decide to 
explicitly issue a new query about “Anything Else” or implicitly by following 
underlined topics (hyperlinks) to pages containing more relevant information. On the 
other hand, given large databases, enterprises often need smaller subsets that conform 
to the original schema and satisfy all of its constraints in order to perform realistic 
tests of new applications before deploying them to production. Likewise, software 
vendors need such smaller but correct databases to demonstrate new software product 
functionality. Based on the above, support of précis queries over databases and 
generation of logical database subsets comprises an advanced searching paradigm 
helping users to gain insight into the contents of a database. 

Given a précis query, a system would first determine the schema of the logical 
database subset, i.e. the database part that contains information related to the query, 
and then extract tuples from the database with the use of appropriate SQL queries in 
order to populate this subset. The schema of the subset that should be extracted from a 
database given a précis query may vary depending on the type of the query issued and 
the user issuing the query. For instance, the logical subset corresponding to a query 
about movies would probably contain the title, year and duration of movies along 
with the names of directors and actors; whereas the logical subset corresponding to a 
query about actors would most likely contain detailed information about actors such 
as name, date and location of birth, and nationality and only titles of movies an actor 
has starred in. Furthermore, different users or groups of users, e.g., movie reviewers 
vs. filmgoers, would be interested in different logical subsets for the same query.  

Existing approaches to précis query answering assume that each entity and 
relationship of a database is pre-annotated with a weight determining its significance 
for a certain user [10]. When a query is issued, the appropriate logical subset is 
constructed on the fly based on syntactic criteria issued by the user at query time or 
pre-stored in the system. This approach has several drawbacks: dependence on users 
for providing appropriate weights and criteria for answering précis queries, difficulty 
to capture different query semantics and user preferences in the same time, and 
inefficient execution since a logical subset is generated from scratch each time a 
query is issued.  

However, as the examples above illustrate, patterns of logical subsets 
corresponding to different queries or groups of users may be recognized and stored in 
the system. For instance, different patterns would be used to capture preferences of 
movie reviewers and filmgoers. In this context, each time a user poses a question, the 
system searches in a repository of précis patterns to extract an appropriate one. Then, 



this précis pattern is enriched with tuples extracted from the database according to the 
query keywords, in order to produce the logical database subset. 

Furthermore, apart from the benefit of getting a pre-stored schema for a logical 
subset of a database instead of creating from scratch a new one, we exploit the 
presence of précis patterns in our framework in a two-fold manner: (a) incremental 
population of a logical database subset, and (b) pre-storing answers for the most 
frequent précis queries. 

 
Contributions. In brief, the contributions of our paper are the following. 

− We propose a pattern-based approach to logical database subset generation. Précis 
patterns may capture semantics of different précis queries or preferences of 
different user groups and improve the efficiency of generation of logical database 
subsets from précis queries.    

− We present the architecture of a system that produces logical database subsets 
according to précis queries posed by individuals using précis patterns extracted 
from the repository and describe methods that implement the required 
functionality. 

− We discuss two optimization techniques that are used to further improve the 
efficiency and effectiveness of the system: incremental population of a logical 
database subset and using pre-stored answers. 
 
Outline. The rest of the paper is structured as follows. In Section 2, we present 

related work. In Section 3, we describe the general framework of précis queries and 
introduce précis patterns. In Section 4, we describe our approach of answering queries 
using précis patterns and we sketch the techniques used for incremental population of 
a logical database subset and pre-storing answers in the system. Finally, in Section 5, 
we conclude our results with a prospect to the future. 

2. Related Work 

The need for free-form queries has been early recognized in the context of databases. 
Motro [14] described the idea of using tokens, i.e. value of either data or metadata, 
when accessing information instead of structured queries, and proposed an interface 
that understands such utterances by interpreting them in a unique way, i.e. complete 
them to proper queries. With the advent of the World Wide Web, the idea has been 
revisited. In particular, recent approaches on keyword searches in databases [1, 2, 3, 
6, 7, 11] extended the idea of tokens to values that may be part of attribute values. An 
answer to a keyword search is a set of ranked tuples. Oracle 9i Text [15], Microsoft 
SQL Server [12] and IBM DB2 Text Information Extender [9] create full text indexes 
on text attributes of relations and then perform keyword queries. Keyword search over 
XML databases has also attracted interest recently [4, 5, 8]. 

Existing keyword searching approaches focus on finding and possibly 
interconnecting tuples in relations that contain the query terms. For example, the 
answer for “Woody Allen” would be in the form of relation-attribute pair, such as 
(Director, Name). In many cases, this answer may suffice, but in many practical 



scenarios it conveys little information about “Woody Allen”. A more complete 
answer containing, for instance, information about this director's movies and awards 
would be more meaningful and useful instead. In the spirit of the above, recently, 
précis queries have been proposed [10] that instead of simply locating and connecting 
values in tables, they also consider information around these values that may be 
related to them. Therefore, the answer to a précis query might also contain 
information found in other parts of the database, e.g., movies directed by Woody 
Allen. This information needs to be “assembled” -in perhaps unforeseen ways- by 
joining tuples from multiple relations. Consequently, the answer to a précis query is a 
whole new database, a logical database subset, derived from the original database 
compared to flatten out results returned by other approaches. Additionally, a 
complementary research effort provides a method towards the translation of a précis 
query answer into a narrative form, in order to return results such the one in the 
introduction about “Woody Allen” [19].  

In this paper, we built upon the approach suggested in [10] and we revisit the idea 
of a logical database subset generated by a précis query by recognizing the existence 
of précis patterns, i.e. patterns of logical database subsets that capture semantics of 
different précis queries or preferences of different user groups and improve the 
efficiency of a précis query answering system.  

3. The Précis Query Framework 

3.1 Preliminaries 

We consider the database schema graph G(V, E) as a directed graph corresponding to 
a database schema D. There are two types of nodes in V:  
− relation nodes, R, one for each relation in the schema;  
− attribute nodes, A, one for each attribute of each relation in the schema.  
Likewise, edges in E are the following:  
− projection edges, Π, each one connects an attribute node with its container relation 

node, representing the possible projection of the attribute in the system’s answer;  
− join edges, J, from a relation node to another relation node, representing a potential 

join between these relations. These could be joins that arise naturally due to foreign 
key constraints, but could also be other joins that are meaningful to a domain 
expert. Joins are directed for reasons explained later. For simplicity in presentation, 
we assume (a) that primary keys are not composite; thus, an attribute from a 
relation joins to an attribute from another relation, and (b) that these attributes have 
the same name. For convenience, we do not depict the joining attributes in both 
relations; instead, the common name of the joining attributes is tagged on the 
respective join edge between the two relations. 
Therefore, a database graph is formally defined as a directed graph G(V, E), where: 

V = R∪A, and E = Π∪J. The notation for the graphical representation of a database 
schema graph is depicted in Fig. 1. 



 
Fig. 1. Representation of graph elements 

A weight, w, is assigned to each edge of the graph G. This is a real number in the 
range [0, 1], and represents the significance of the bond between the corresponding 
nodes. Weight equal to 1 expresses strong relationship; in other words, if one node of 
the edge appears in an answer, then the edge should be taken into account making the 
other node appear as well. If a weight equals to 0, occurrence of one node of the edge 
in an answer does not imply occurrence of the other node. 

Based on the above, two relation nodes could be connected through two different 
join edges, in the two possible directions, between the same pair of attributes, but 
carrying different weights. A directed join edge expresses the dependence of the 
source relation of the join on the target one. The source relation indicates the relation 
already considered for the answer and the target corresponds to the relation that may 
be included, if the join is taken into account. For simplicity, we assume that there is at 
most one edge from one node to the same destination node. 

A directed path between two relation nodes, comprising adjacent join edges, 
represents the “implicit” join between these relations. Similarly, a directed path 
between a relation node and an attribute node, comprising a set of adjacent join edges 
and a projection edge represents the “implicit” projection of the attribute on this 
relation. The weight of a path is a function of the weight of constituent edges. In 
principle, one may imagine several functions. All of them, however, should satisfy the 
condition that the weight decreases as the length of the path increases, based on 
human intuition and cognitive evidence [17].  

Consider a database D properly annotated with a set of weights and a précis query 
Q, which is a set of tokens, i.e. Q={k1,k2,…,km}. We define as initial relation any 
database relation that contains at least one tuple in which one or more query tokens 
have been found. A tuple containing at least one query token is called initial tuple. 

A logical database subset D’ of D satisfies the following: 
− The set of relation names in D’ is a subset of that in the original database D. 
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set 

of attributes in D.  
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of 

tuples in the original relation Ri in D (when projected on the set of attributes that 
are present in the result). 
The result of applying query Q on a database D given a set of constraints C is a 

logical database subset D’ of D, such that D’ contains initial tuples for Q and any other 
tuple in D that can be transitively reached by (foreign-key) joins on D starting from 
some initial tuple, subject to the constraints in C [10]. Possible constraints in C could 
include the maximum number of attributes in D′, the minimum weight of paths in the 
database schema graph, the maximum number of joins, the maximum number of 



tuples in D′ and so forth. Using different constraints and weights on the edges of the 
database schema allows generating different answers for the same query.  

Weights and constraints may be provided in different ways. They may be set by the 
user at query time using an appropriate user interface. This option is attractive in 
many cases since it enables interactive exploration of the contents of a database. This 
bears a resemblance to query refinement in keyword searches. In case of précis 
queries, the user may explore different regions of the database starting, for example, 
from those containing objects closely related to the topic of a query and progressively 
expanding to parts of the database containing objects more loosely related to it. 
Although this approach is quite elegant, there is a major disadvantage: apart of the 
difficulty of browsing efficiently a database schema, per se, the user should spend 
some time with a procedure that does not seem relevant to his/her need for a certain 
answer. Weights and criteria may be pre-specified by a designer, or may be stored as 
part of a profile corresponding to a user or a group of users. 

However, finding an appropriate set of weights to annotate a database is difficult as 
we explain below. Depending on users for providing appropriate weights for 
producing meaningful answers to précis queries is not acceptable, at least for the 
majority of them. Furthermore, weights may depend on the query and the user issuing 
the query, thus finding a unique set of weights for a database capturing different query 
semantics and user preferences altogether may not be possible. Finally, in the case of 
a system serving a large number of users, generating a logical subset from scratch 
each time a query is issued turns to be time consuming. 

Therefore, in this paper, we propose a different approach. Patterns of logical 
subsets corresponding to different queries or groups of users may be recognized and 
stored in the system. For instance, different patterns would be used to capture 
preferences of movie reviewers and filmgoers. 

3.2 Précis Patterns 

Formally, given the database schema graph G of a database D, a précis pattern is a 
directed rooted tree P(V,E) on top of G annotated with a set of weights. Given a 
query Q over database D, a précis pattern P(V,E) is applicable to Q, if its root relation 
coincides with an initial relation for Q.  

The result of applying query Q on a database D given an applicable pattern P is a 
logical database subset D’ of D, such that: 
− The set of relation names in D’ is a subset of that in P. 
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set 

of attributes in P.  
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of 

tuples in the original relation Ri in D (when projected on the set of attributes that 
are present in the result). 
In order to produce the logical database subset D’, a pattern P  is enriched with 

tuples derived from the database based on constraints in C. Possible constraints can be 
the maximum number of attributes, the maximum number of tuples, and so forth.  



 

 

 

DIRECTOR(did,dname,blocation, 
         bdate) 
THEATRE(tid,name,phone,region)  
PLAY (tid,mid,date),  
GENRE(mid,genre) 
MOVIE(mid,title,year,did) 
CAST (mid,aid,role) 
ACTOR(aid,aname,blocation,bdate) 
 

Fig. 2. An example database graph 

P1 P2 

 
 

(a) group of filmgoers 
P3 P4 

(b) group of movie reviewers 
Fig. 3. Example précis patterns 

3.3 An Example Database  

Consider a movies database [16] described by the schema presented in Fig. 2; primary 
keys are underlined. The corresponding database graph is depicted in Fig. 2 too. On 
top of this graph, précis patterns may be recognized and stored in the system. Patterns 



may correspond to different queries. In Fig. 3, P1 and P2 are patterns corresponding to 
different types of queries, i.e. regarding movies and directors, respectively (as 
indicated by the initial relations colored grey in each pattern). Different précis 
patterns may be also used to capture preferences of different groups of users. For 
instance, P3 and P4 are different patterns regarding movies and directors, respectively. 
P1 and P2 might capture preferences of filmgoers whereas P3 and P4 might correspond 
to movie reviewers. Assume that, P1 captures the fact that a filmgoer would be 
interested in information about theatres playing specific movies, while a movie-
reviewer would not, as expressed in P3.  

From the discussion above, it becomes apparent that there is an n-to-m 
correspondence between (group/user) profiles and patterns. As Fig. 4 shows, a pattern 
Pi  may be used by more than one profile and a profile Gj may involve more than one 
pattern.  

 
Fig. 4. Correspondence between patterns and profiles 

Although an extensive analysis of précis patterns creation procedures is out of the 
scope of this paper, as an example, we refer two typical ways:  

Manual creation. Pre-specified patterns may be created by a designer targeting 
different groups of users and different types of queries for a specific domain.  

Semi-automatic creation. The system is trained using logs of queries that domain 
users have issued in the past. No matter how précis patterns are initially created, the 
system may adapt those associated with a specific user by learning from the queries 
this user submits to the system. In this way, the system may provide personalized 
answers to précis queries. 

4. Answering Queries Using Précis Patterns 

In this section, we describe a framework that generalizes the usage of précis queries 
based on patterns.  

System Architecture. The system architecture of our approach is depicted in Fig. 
5. Each time a user poses a question, the system finds the initial relations that match 
this query, i.e. database relations containing at least one tuple in which one or more 
query tokens have been found (Keyword Locator). Then, it searches in a repository of 
précis patterns to extract an appropriate one (Précis Manager). If an appropriate 
pattern is not found, then a new one is created and registered in the repository. Next, 
this précis pattern is enriched with tuples extracted from the database according to the 
query keywords, in order to produce the logical database subset (Database Generator). 



 
Fig. 5. System architecture 

In more details, first, the user submits a précis query Q={k1,k2,…,km}. A set of 
constraints C may be additionally provided to determine tuples extracted from the 
database, in order to produce the logical database subset.  The following steps are 
performed. 

Keyword Locator. An inverted index associates each keyword that appears in the 
database with a list of occurrences of the keyword. Modern RDBMS’ provide 
facilities for constructing full text indices on single attributes of relations (e.g., 
Oracle9i Text). However, in our approach, we chose to create our own inverted index 
(technical details are out of the scope of this paper, but can be found in [18]), 
basically due to the following reasons: (a) a keyword may be found in more than one 
tuple and attribute of a single relation and in more than one relation; and (b) we 
consider tokens of other data types as well, such as date and number. Based on this 
inverted index, Keyword Locator returns for each term ki in Q, a list of all initial 
relations, i.e. ki→ {Rj}, ∀ki in Q. (If no tuples contain the query tokens, the following 
steps are not executed.) 

Précis Manager. Next, instead of creating an ad-hoc logical subset for the 
particular query and user, Précis Manager searches into the repository of précis 
patterns to extract those that are appropriate for the situation. If users are categorized 
into groups, then this module examines only patterns assigned to the group the active 
user belongs to. Based on the initial relations identified for query Q, one or more 
applicable patterns may be identified.  

Précis patterns are directed rooted trees P(V,E) that are stored in a graph database 
depicted as Précis Patterns in Fig. 5. An indexing mechanism Index is needed for the 
search in the graph database. For this purpose, we adopt GraphGrep presented by 
Shasha et al. [20]. Recall that a précis pattern P(V,E) is applicable to Q, if its root 
relation coincides with an initial relation for Q. Thus, given the initial relations and a 
group of users, the index outputs the appropriate patterns. If none is returned for a 
certain initial relation, then the request is propagated to the Schema Generator. This 
module is responsible for finding which part of the database schema may contain 
information related to Q. The output of this step is the schema D′ of a logical database 
subset comprised of: (a) relations that contain the tokens of Q; (b) relations 



transitively joining to the former, and (c) a subset of their attributes that should be 
present in the result, according to the preferences registered for the user that poses the 
query. (For more details, we refer the interested reader to [18].) After its creation, the 
schema of the logical database subset is stored in the graph database as a pattern 
associated with the group that the user submitting the query belongs to. Moreover, it 
is further propagated to the Database Generator through the Précis Manager module. 
The whole procedure is formally described by the algorithm EP depicted in Fig. 6. 

 
Algorithm Extraction of a Précis Pattern (EP) 
Input: a set of initial relations R, a group of users U, a set of stored patterns P  
Output: a set of logical database subsets D’ 
Begin 
  D’={}; 
  For each initial relation R∈R 
    If (Index(R,U)!=null) { 
      P = Index(R,U); 
    else 
      P = Schema_Generator(R,U); 
      P = P ∪ P;  
    } 
    D’ = D’ ∪ P; 
  End for 
  Return D’; 
End. 

Fig. 6. The algorithm EP 

For instance, a user belonging to the group of filmgoers of Fig. 3 issues the query 
“1960”. Keyword Locator returns two initial relations, DIRECTOR and MOVIE, 
because this token is found in the field BDATE of the former and in the field YEAR of 
the latter. Then, Précis Manager identifies two applicable patterns, P1 and P2. 

Database Generator. Subsequently, Database Generator enriches patterns with 
tuples extracted from the database. On each pattern, it starts from the initial relation 
where tokens in Q appear. Then, more tuples from other relations are retrieved by 
(foreign-key) join queries starting from the initial relation and transitively expanding 
on the database schema graph following edges of the pattern. Joins on a précis pattern 
are executed in order of decreasing weight. In this way, relations that are most related 
to a query are populated first. Any relations that may not be eventually populated due 
to constraints in C would be the ones most weakly connected to the query. In other 
words, a précis pattern comprises a kind of a “plan” for collecting tuples matching the 
query and others related to them. At the end of this phase, the logical database subset 
has been produced. 

Formally, given are a database D, a pattern P, and optionally a set of constraints C 
(e.g., maximum total number of tuples, maximum number of tuples per relation and 
so forth). For the initial relation of P, the list of tuples containing query tokens is 
considered. This is an initial logical database subset Do corresponding to pattern P. 



The set of possible logical database subsets corresponding to P in order of increasing 
cardinality is defined as follows:  

D1 ← Do   R1   ,   D2 ← D1   R2   ,   …   ,   Dnj ← Dnj-1   Rnj 
At any point, a relation Ri is joined to Di-1 if there is a join edge in P  between this 

relation and a relation already populated in Di-1. If more than one join may be 
executed, these are considered in order of decreasing weight. In this way, relations in 
D that are most related to the query are populated first. Any relations that may not be 
eventually populated due to the constraints would be the ones most weakly connected 
to the query. A logical database subset Di contains all tuples also contained in Di-1 
plus any tuples from D that join to those through the corresponding join. According to 
the constraints, the result database D′ is a database Dc, such that: 

c = max( { t | t∈[0,nJ]: constraints in Dt hold } ) 
For each relation Ri, a subset of its tuples, Ri′, is found in the result D′, projected 

on the set of attributes that are present in the result. 

Optimization issues. Apart from the benefit of getting a pre-stored schema for a 
logical subset of a database instead of creating from scratch a new one, we further 
exploit the presence of précis patterns in our framework in a two-fold manner: (a) 
incremental population of a logical database subset, and (b) pre-stored answers to the 
most frequent précis queries.  

Consider the following scenario: a user submits a query, and the system returns an 
answer, similar to the one presented in the introduction, in which certain keywords are 
hyperlinks. Clicking one of them fires a new query involving the corresponding 
keywords. The latter query is executed by the system and returns a new subset of 
information. The interesting problem is that this new query may specify results that 
have already been part of the initial system answer. We discriminate two possible 
cases: these results may be either presented to the user or not. However, in both cases, 
it would be desired to avoid re-computing them again.   

For instance, assume that the initial query contained a keyword that identifies a 
director. Then, a possible system answer would contain, among others, a set of several 
movies, along with the names of their star actors, which could be transformed to 
hyperlinks. If the search continues with one of the actors, then the movies that he/she 
has participated in are a superset of the movies presented in the precedent answer. In 
such case our system incrementally populates the respective pattern for the new 
query. 

Moreover, as practice shows, several keywords are more often posed than some 
others. According to this, we can keep track of the search history and maintain in the 
inverted index an extra attribute that stores for each keyword the frequency of its 
occurrences in queries submitted in the past. In our approach, we take into account the 
most frequently used keywords along with other parameters, such as the complexity 
of a pattern, in order to decide which patterns should be populated in advance. The 
threshold that determines which logical subsets should be populated is subject of 
further experimentation and tuning, inasmuch as the extent to which each database 
differs from another.  

At this point, it is noteworthy to underline the difference between the notion of a 
précis pattern and the classical definition of a view. A view returns a single relation, 



whereas a précis pattern represents the schema of a full-fledged database, which is the 
logical subset of another database, thus, containing multiple relations along with their 
relationships and constraints. 

5. Conclusions 

In this paper, we revisit the idea of a logical database subset generated by a précis 
query by recognizing the existence of précis patterns, i.e. patterns of logical database 
subsets that capture semantics of different précis queries or preferences of different 
user groups and improve the efficiency of a précis query answering system. In this 
context, each time a user poses a question, the system searches in a repository of 
précis patterns to extract an appropriate one. Then, this précis pattern is enriched with 
tuples extracted from the database according to the query keywords, in order to 
produce the logical database subset. Further optimization techniques are discussed. 

Future work includes extension of the aforementioned methods toward the efficient 
capture and maintenance of précis patterns, the treatment of précis queries with 
complex semantics, e.g., involving multiple keywords as input combined with several 
operators, and the tuning of Database Generator. Another challenging issue is the 
extension of précis queries to provide ranked or top-k results. 
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