
Pattern-Based Query Answering

Alkis Simitsis1, Georgia Koutrika2

1 National Technical University of Athens,
Department of Electrical and Computer Engineering,

Athens, Greece
asimi@dbnet.ece.ntua.gr

2 University of Athens,
Department of Computer Science,

Athens, Greece
koutrika@di.uoa.gr

Abstract. Users without knowledge of schemas or structured query languages
have difficulties in accessing information stored in databases. Commercial and
research efforts have focused on keyword-based searches. Among them, précis
queries generate entire multi-relation databases, which are logical subsets of
existing ones, instead of individual relations. A logical database subset contains
not only items directly related to the query selections but also items implicitly
related to them in various ways. Existing approaches to précis query answering
assume that a database is pre-annotated with a set of weights, and when a query
is issued, an ad-hoc logical subset is constructed on the fly. This approach has
several limitations, such as dependence on users for providing appropriate
weights and constraints for answering précis queries, and difficulty to capture
different query semantics and user preferences. In this paper, we propose a
pattern-based approach to logical database subset generation. Patterns of logical
subsets corresponding to different queries or user preferences may be
recognized and stored in the system. Each time a user poses a question, the
system searches in a repository of précis patterns to extract an appropriate one.
Then, this is enriched with tuples extracted from the database, in order to
produce the logical database subset.

1. Introduction

The need for facilitating access in information stored in a database for users with no
specific knowledge of schemas or structured query languages has been acknowledged,
especially in the context of web accessible databases, as libraries, museums, and other
organizations publish their electronic contents on the Web. Towards this direction,
current commercial and research efforts have focused on keyword-based searches.
Among them, précis queries are free-form queries that generate entire multi-relation
databases, which are logical subsets of existing ones, instead of individual relations
[10]. The logical subset of a database generated by a précis query contains not only
items directly related to the query selections but also items implicitly related to them
in various ways. This subset is useful in many cases and provides to the user much
greater insight into the original data.

For instance, a user asking about “Woody Allen” would probably like to know a
little bit more than that “Woody Allen is a director”. A more meaningful response
would be in the form of the following précis:

 “Woody Allen was born on December 1, 1935 in Brooklyn, New York,
USA. As a director, Woody Allen’s work includes Match Point (2005),
Melinda and Melinda (2004), Anything Else (2003). As an actor, Woody
Allen’s work includes Hollywood Ending (2002), The Curse of the Jade
Scorpion (2001).”

This response provides sufficient information to help someone learn about Allen
and identify new keywords for further searching. For example, the user may decide to
explicitly issue a new query about “Anything Else” or implicitly by following
underlined topics (hyperlinks) to pages containing more relevant information. On the
other hand, given large databases, enterprises often need smaller subsets that conform
to the original schema and satisfy all of its constraints in order to perform realistic
tests of new applications before deploying them to production. Likewise, software
vendors need such smaller but correct databases to demonstrate new software product
functionality. Based on the above, support of précis queries over databases and
generation of logical database subsets comprises an advanced searching paradigm
helping users to gain insight into the contents of a database.

Given a précis query, a system would first determine the schema of the logical
database subset, i.e. the database part that contains information related to the query,
and then extract tuples from the database with the use of appropriate SQL queries in
order to populate this subset. The schema of the subset that should be extracted from a
database given a précis query may vary depending on the type of the query issued and
the user issuing the query. For instance, the logical subset corresponding to a query
about movies would probably contain the title, year and duration of movies along
with the names of directors and actors; whereas the logical subset corresponding to a
query about actors would most likely contain detailed information about actors such
as name, date and location of birth, and nationality and only titles of movies an actor
has starred in. Furthermore, different users or groups of users, e.g., movie reviewers
vs. filmgoers, would be interested in different logical subsets for the same query.

Existing approaches to précis query answering assume that each entity and
relationship of a database is pre-annotated with a weight determining its significance
for a certain user [10]. When a query is issued, the appropriate logical subset is
constructed on the fly based on syntactic criteria issued by the user at query time or
pre-stored in the system. This approach has several drawbacks: dependence on users
for providing appropriate weights and criteria for answering précis queries, difficulty
to capture different query semantics and user preferences in the same time, and
inefficient execution since a logical subset is generated from scratch each time a
query is issued.

However, as the examples above illustrate, patterns of logical subsets
corresponding to different queries or groups of users may be recognized and stored in
the system. For instance, different patterns would be used to capture preferences of
movie reviewers and filmgoers. In this context, each time a user poses a question, the
system searches in a repository of précis patterns to extract an appropriate one. Then,

this précis pattern is enriched with tuples extracted from the database according to the
query keywords, in order to produce the logical database subset.

Furthermore, apart from the benefit of getting a pre-stored schema for a logical
subset of a database instead of creating from scratch a new one, we exploit the
presence of précis patterns in our framework in a two-fold manner: (a) incremental
population of a logical database subset, and (b) pre-storing answers for the most
frequent précis queries.

Contributions. In brief, the contributions of our paper are the following.

− We propose a pattern-based approach to logical database subset generation. Précis
patterns may capture semantics of different précis queries or preferences of
different user groups and improve the efficiency of generation of logical database
subsets from précis queries.

− We present the architecture of a system that produces logical database subsets
according to précis queries posed by individuals using précis patterns extracted
from the repository and describe methods that implement the required
functionality.

− We discuss two optimization techniques that are used to further improve the
efficiency and effectiveness of the system: incremental population of a logical
database subset and using pre-stored answers.

Outline. The rest of the paper is structured as follows. In Section 2, we present

related work. In Section 3, we describe the general framework of précis queries and
introduce précis patterns. In Section 4, we describe our approach of answering queries
using précis patterns and we sketch the techniques used for incremental population of
a logical database subset and pre-storing answers in the system. Finally, in Section 5,
we conclude our results with a prospect to the future.

2. Related Work

The need for free-form queries has been early recognized in the context of databases.
Motro [14] described the idea of using tokens, i.e. value of either data or metadata,
when accessing information instead of structured queries, and proposed an interface
that understands such utterances by interpreting them in a unique way, i.e. complete
them to proper queries. With the advent of the World Wide Web, the idea has been
revisited. In particular, recent approaches on keyword searches in databases [1, 2, 3,
6, 7, 11] extended the idea of tokens to values that may be part of attribute values. An
answer to a keyword search is a set of ranked tuples. Oracle 9i Text [15], Microsoft
SQL Server [12] and IBM DB2 Text Information Extender [9] create full text indexes
on text attributes of relations and then perform keyword queries. Keyword search over
XML databases has also attracted interest recently [4, 5, 8].

Existing keyword searching approaches focus on finding and possibly
interconnecting tuples in relations that contain the query terms. For example, the
answer for “Woody Allen” would be in the form of relation-attribute pair, such as
(Director, Name). In many cases, this answer may suffice, but in many practical

scenarios it conveys little information about “Woody Allen”. A more complete
answer containing, for instance, information about this director's movies and awards
would be more meaningful and useful instead. In the spirit of the above, recently,
précis queries have been proposed [10] that instead of simply locating and connecting
values in tables, they also consider information around these values that may be
related to them. Therefore, the answer to a précis query might also contain
information found in other parts of the database, e.g., movies directed by Woody
Allen. This information needs to be “assembled” -in perhaps unforeseen ways- by
joining tuples from multiple relations. Consequently, the answer to a précis query is a
whole new database, a logical database subset, derived from the original database
compared to flatten out results returned by other approaches. Additionally, a
complementary research effort provides a method towards the translation of a précis
query answer into a narrative form, in order to return results such the one in the
introduction about “Woody Allen” [19].

In this paper, we built upon the approach suggested in [10] and we revisit the idea
of a logical database subset generated by a précis query by recognizing the existence
of précis patterns, i.e. patterns of logical database subsets that capture semantics of
different précis queries or preferences of different user groups and improve the
efficiency of a précis query answering system.

3. The Précis Query Framework

3.1 Preliminaries

We consider the database schema graph G(V, E) as a directed graph corresponding to
a database schema D. There are two types of nodes in V:
− relation nodes, R, one for each relation in the schema;
− attribute nodes, A, one for each attribute of each relation in the schema.
Likewise, edges in E are the following:
− projection edges, Π, each one connects an attribute node with its container relation

node, representing the possible projection of the attribute in the system’s answer;
− join edges, J, from a relation node to another relation node, representing a potential

join between these relations. These could be joins that arise naturally due to foreign
key constraints, but could also be other joins that are meaningful to a domain
expert. Joins are directed for reasons explained later. For simplicity in presentation,
we assume (a) that primary keys are not composite; thus, an attribute from a
relation joins to an attribute from another relation, and (b) that these attributes have
the same name. For convenience, we do not depict the joining attributes in both
relations; instead, the common name of the joining attributes is tagged on the
respective join edge between the two relations.
Therefore, a database graph is formally defined as a directed graph G(V, E), where:

V = R∪A, and E = Π∪J. The notation for the graphical representation of a database
schema graph is depicted in Fig. 1.

Fig. 1. Representation of graph elements

A weight, w, is assigned to each edge of the graph G. This is a real number in the
range [0, 1], and represents the significance of the bond between the corresponding
nodes. Weight equal to 1 expresses strong relationship; in other words, if one node of
the edge appears in an answer, then the edge should be taken into account making the
other node appear as well. If a weight equals to 0, occurrence of one node of the edge
in an answer does not imply occurrence of the other node.

Based on the above, two relation nodes could be connected through two different
join edges, in the two possible directions, between the same pair of attributes, but
carrying different weights. A directed join edge expresses the dependence of the
source relation of the join on the target one. The source relation indicates the relation
already considered for the answer and the target corresponds to the relation that may
be included, if the join is taken into account. For simplicity, we assume that there is at
most one edge from one node to the same destination node.

A directed path between two relation nodes, comprising adjacent join edges,
represents the “implicit” join between these relations. Similarly, a directed path
between a relation node and an attribute node, comprising a set of adjacent join edges
and a projection edge represents the “implicit” projection of the attribute on this
relation. The weight of a path is a function of the weight of constituent edges. In
principle, one may imagine several functions. All of them, however, should satisfy the
condition that the weight decreases as the length of the path increases, based on
human intuition and cognitive evidence [17].

Consider a database D properly annotated with a set of weights and a précis query
Q, which is a set of tokens, i.e. Q={k1,k2,…,km}. We define as initial relation any
database relation that contains at least one tuple in which one or more query tokens
have been found. A tuple containing at least one query token is called initial tuple.

A logical database subset D’ of D satisfies the following:
− The set of relation names in D’ is a subset of that in the original database D.
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set

of attributes in D.
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of

tuples in the original relation Ri in D (when projected on the set of attributes that
are present in the result).
The result of applying query Q on a database D given a set of constraints C is a

logical database subset D’ of D, such that D’ contains initial tuples for Q and any other
tuple in D that can be transitively reached by (foreign-key) joins on D starting from
some initial tuple, subject to the constraints in C [10]. Possible constraints in C could
include the maximum number of attributes in D′, the minimum weight of paths in the
database schema graph, the maximum number of joins, the maximum number of

tuples in D′ and so forth. Using different constraints and weights on the edges of the
database schema allows generating different answers for the same query.

Weights and constraints may be provided in different ways. They may be set by the
user at query time using an appropriate user interface. This option is attractive in
many cases since it enables interactive exploration of the contents of a database. This
bears a resemblance to query refinement in keyword searches. In case of précis
queries, the user may explore different regions of the database starting, for example,
from those containing objects closely related to the topic of a query and progressively
expanding to parts of the database containing objects more loosely related to it.
Although this approach is quite elegant, there is a major disadvantage: apart of the
difficulty of browsing efficiently a database schema, per se, the user should spend
some time with a procedure that does not seem relevant to his/her need for a certain
answer. Weights and criteria may be pre-specified by a designer, or may be stored as
part of a profile corresponding to a user or a group of users.

However, finding an appropriate set of weights to annotate a database is difficult as
we explain below. Depending on users for providing appropriate weights for
producing meaningful answers to précis queries is not acceptable, at least for the
majority of them. Furthermore, weights may depend on the query and the user issuing
the query, thus finding a unique set of weights for a database capturing different query
semantics and user preferences altogether may not be possible. Finally, in the case of
a system serving a large number of users, generating a logical subset from scratch
each time a query is issued turns to be time consuming.

Therefore, in this paper, we propose a different approach. Patterns of logical
subsets corresponding to different queries or groups of users may be recognized and
stored in the system. For instance, different patterns would be used to capture
preferences of movie reviewers and filmgoers.

3.2 Précis Patterns

Formally, given the database schema graph G of a database D, a précis pattern is a
directed rooted tree P(V,E) on top of G annotated with a set of weights. Given a
query Q over database D, a précis pattern P(V,E) is applicable to Q, if its root relation
coincides with an initial relation for Q.

The result of applying query Q on a database D given an applicable pattern P is a
logical database subset D’ of D, such that:
− The set of relation names in D’ is a subset of that in P.
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set

of attributes in P.
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of

tuples in the original relation Ri in D (when projected on the set of attributes that
are present in the result).
In order to produce the logical database subset D’, a pattern P is enriched with

tuples derived from the database based on constraints in C. Possible constraints can be
the maximum number of attributes, the maximum number of tuples, and so forth.

DIRECTOR(did,dname,blocation,
 bdate)
THEATRE(tid,name,phone,region)
PLAY (tid,mid,date),
GENRE(mid,genre)
MOVIE(mid,title,year,did)
CAST (mid,aid,role)
ACTOR(aid,aname,blocation,bdate)

Fig. 2. An example database graph

P1 P2

(a) group of filmgoers
P3 P4

(b) group of movie reviewers
Fig. 3. Example précis patterns

3.3 An Example Database

Consider a movies database [16] described by the schema presented in Fig. 2; primary
keys are underlined. The corresponding database graph is depicted in Fig. 2 too. On
top of this graph, précis patterns may be recognized and stored in the system. Patterns

may correspond to different queries. In Fig. 3, P1 and P2 are patterns corresponding to
different types of queries, i.e. regarding movies and directors, respectively (as
indicated by the initial relations colored grey in each pattern). Different précis
patterns may be also used to capture preferences of different groups of users. For
instance, P3 and P4 are different patterns regarding movies and directors, respectively.
P1 and P2 might capture preferences of filmgoers whereas P3 and P4 might correspond
to movie reviewers. Assume that, P1 captures the fact that a filmgoer would be
interested in information about theatres playing specific movies, while a movie-
reviewer would not, as expressed in P3.

From the discussion above, it becomes apparent that there is an n-to-m
correspondence between (group/user) profiles and patterns. As Fig. 4 shows, a pattern
Pi may be used by more than one profile and a profile Gj may involve more than one
pattern.

Fig. 4. Correspondence between patterns and profiles

Although an extensive analysis of précis patterns creation procedures is out of the
scope of this paper, as an example, we refer two typical ways:

Manual creation. Pre-specified patterns may be created by a designer targeting
different groups of users and different types of queries for a specific domain.

Semi-automatic creation. The system is trained using logs of queries that domain
users have issued in the past. No matter how précis patterns are initially created, the
system may adapt those associated with a specific user by learning from the queries
this user submits to the system. In this way, the system may provide personalized
answers to précis queries.

4. Answering Queries Using Précis Patterns

In this section, we describe a framework that generalizes the usage of précis queries
based on patterns.

System Architecture. The system architecture of our approach is depicted in Fig.
5. Each time a user poses a question, the system finds the initial relations that match
this query, i.e. database relations containing at least one tuple in which one or more
query tokens have been found (Keyword Locator). Then, it searches in a repository of
précis patterns to extract an appropriate one (Précis Manager). If an appropriate
pattern is not found, then a new one is created and registered in the repository. Next,
this précis pattern is enriched with tuples extracted from the database according to the
query keywords, in order to produce the logical database subset (Database Generator).

Fig. 5. System architecture

In more details, first, the user submits a précis query Q={k1,k2,…,km}. A set of
constraints C may be additionally provided to determine tuples extracted from the
database, in order to produce the logical database subset. The following steps are
performed.

Keyword Locator. An inverted index associates each keyword that appears in the
database with a list of occurrences of the keyword. Modern RDBMS’ provide
facilities for constructing full text indices on single attributes of relations (e.g.,
Oracle9i Text). However, in our approach, we chose to create our own inverted index
(technical details are out of the scope of this paper, but can be found in [18]),
basically due to the following reasons: (a) a keyword may be found in more than one
tuple and attribute of a single relation and in more than one relation; and (b) we
consider tokens of other data types as well, such as date and number. Based on this
inverted index, Keyword Locator returns for each term ki in Q, a list of all initial
relations, i.e. ki→ {Rj}, ∀ki in Q. (If no tuples contain the query tokens, the following
steps are not executed.)

Précis Manager. Next, instead of creating an ad-hoc logical subset for the
particular query and user, Précis Manager searches into the repository of précis
patterns to extract those that are appropriate for the situation. If users are categorized
into groups, then this module examines only patterns assigned to the group the active
user belongs to. Based on the initial relations identified for query Q, one or more
applicable patterns may be identified.

Précis patterns are directed rooted trees P(V,E) that are stored in a graph database
depicted as Précis Patterns in Fig. 5. An indexing mechanism Index is needed for the
search in the graph database. For this purpose, we adopt GraphGrep presented by
Shasha et al. [20]. Recall that a précis pattern P(V,E) is applicable to Q, if its root
relation coincides with an initial relation for Q. Thus, given the initial relations and a
group of users, the index outputs the appropriate patterns. If none is returned for a
certain initial relation, then the request is propagated to the Schema Generator. This
module is responsible for finding which part of the database schema may contain
information related to Q. The output of this step is the schema D′ of a logical database
subset comprised of: (a) relations that contain the tokens of Q; (b) relations

transitively joining to the former, and (c) a subset of their attributes that should be
present in the result, according to the preferences registered for the user that poses the
query. (For more details, we refer the interested reader to [18].) After its creation, the
schema of the logical database subset is stored in the graph database as a pattern
associated with the group that the user submitting the query belongs to. Moreover, it
is further propagated to the Database Generator through the Précis Manager module.
The whole procedure is formally described by the algorithm EP depicted in Fig. 6.

Algorithm Extraction of a Précis Pattern (EP)
Input: a set of initial relations R, a group of users U, a set of stored patterns P
Output: a set of logical database subsets D’
Begin
 D’={};
 For each initial relation R∈R
 If (Index(R,U)!=null) {
 P = Index(R,U);
 else
 P = Schema_Generator(R,U);
 P = P ∪ P;
 }
 D’ = D’ ∪ P;
 End for
 Return D’;
End.

Fig. 6. The algorithm EP

For instance, a user belonging to the group of filmgoers of Fig. 3 issues the query
“1960”. Keyword Locator returns two initial relations, DIRECTOR and MOVIE,
because this token is found in the field BDATE of the former and in the field YEAR of
the latter. Then, Précis Manager identifies two applicable patterns, P1 and P2.

Database Generator. Subsequently, Database Generator enriches patterns with
tuples extracted from the database. On each pattern, it starts from the initial relation
where tokens in Q appear. Then, more tuples from other relations are retrieved by
(foreign-key) join queries starting from the initial relation and transitively expanding
on the database schema graph following edges of the pattern. Joins on a précis pattern
are executed in order of decreasing weight. In this way, relations that are most related
to a query are populated first. Any relations that may not be eventually populated due
to constraints in C would be the ones most weakly connected to the query. In other
words, a précis pattern comprises a kind of a “plan” for collecting tuples matching the
query and others related to them. At the end of this phase, the logical database subset
has been produced.

Formally, given are a database D, a pattern P, and optionally a set of constraints C
(e.g., maximum total number of tuples, maximum number of tuples per relation and
so forth). For the initial relation of P, the list of tuples containing query tokens is
considered. This is an initial logical database subset Do corresponding to pattern P.

The set of possible logical database subsets corresponding to P in order of increasing
cardinality is defined as follows:

D1 ← Do R1 , D2 ← D1 R2 , … , Dnj ← Dnj-1 Rnj
At any point, a relation Ri is joined to Di-1 if there is a join edge in P between this

relation and a relation already populated in Di-1. If more than one join may be
executed, these are considered in order of decreasing weight. In this way, relations in
D that are most related to the query are populated first. Any relations that may not be
eventually populated due to the constraints would be the ones most weakly connected
to the query. A logical database subset Di contains all tuples also contained in Di-1
plus any tuples from D that join to those through the corresponding join. According to
the constraints, the result database D′ is a database Dc, such that:

c = max({ t | t∈[0,nJ]: constraints in Dt hold })
For each relation Ri, a subset of its tuples, Ri′, is found in the result D′, projected

on the set of attributes that are present in the result.

Optimization issues. Apart from the benefit of getting a pre-stored schema for a
logical subset of a database instead of creating from scratch a new one, we further
exploit the presence of précis patterns in our framework in a two-fold manner: (a)
incremental population of a logical database subset, and (b) pre-stored answers to the
most frequent précis queries.

Consider the following scenario: a user submits a query, and the system returns an
answer, similar to the one presented in the introduction, in which certain keywords are
hyperlinks. Clicking one of them fires a new query involving the corresponding
keywords. The latter query is executed by the system and returns a new subset of
information. The interesting problem is that this new query may specify results that
have already been part of the initial system answer. We discriminate two possible
cases: these results may be either presented to the user or not. However, in both cases,
it would be desired to avoid re-computing them again.

For instance, assume that the initial query contained a keyword that identifies a
director. Then, a possible system answer would contain, among others, a set of several
movies, along with the names of their star actors, which could be transformed to
hyperlinks. If the search continues with one of the actors, then the movies that he/she
has participated in are a superset of the movies presented in the precedent answer. In
such case our system incrementally populates the respective pattern for the new
query.

Moreover, as practice shows, several keywords are more often posed than some
others. According to this, we can keep track of the search history and maintain in the
inverted index an extra attribute that stores for each keyword the frequency of its
occurrences in queries submitted in the past. In our approach, we take into account the
most frequently used keywords along with other parameters, such as the complexity
of a pattern, in order to decide which patterns should be populated in advance. The
threshold that determines which logical subsets should be populated is subject of
further experimentation and tuning, inasmuch as the extent to which each database
differs from another.

At this point, it is noteworthy to underline the difference between the notion of a
précis pattern and the classical definition of a view. A view returns a single relation,

whereas a précis pattern represents the schema of a full-fledged database, which is the
logical subset of another database, thus, containing multiple relations along with their
relationships and constraints.

5. Conclusions

In this paper, we revisit the idea of a logical database subset generated by a précis
query by recognizing the existence of précis patterns, i.e. patterns of logical database
subsets that capture semantics of different précis queries or preferences of different
user groups and improve the efficiency of a précis query answering system. In this
context, each time a user poses a question, the system searches in a repository of
précis patterns to extract an appropriate one. Then, this précis pattern is enriched with
tuples extracted from the database according to the query keywords, in order to
produce the logical database subset. Further optimization techniques are discussed.

Future work includes extension of the aforementioned methods toward the efficient
capture and maintenance of précis patterns, the treatment of précis queries with
complex semantics, e.g., involving multiple keywords as input combined with several
operators, and the tuning of Database Generator. Another challenging issue is the
extension of précis queries to provide ranked or top-k results.

6. Acknowledgments

This work is co-funded by the European Social Fund (75%) and National Resources
(25%) - Operational Program for Educational and Vocational Training II (EPEAEK
II) and particularly the Program PYTHAGORAS.

7. References

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBxplorer: A system for keyword-based
search over relational databases. In ICDE, pp. 5-16, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based
keyword search in databases. In VLDB, pp. 564-575, 2004.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using banks. In ICDE, pp. 431-440, 2002.

[4] D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword search into
xml query processing. Computer Networks, 33(1-6), 2000.

[5] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank: Ranked keyword
search over xml documents. In SIGMOD, pp. 16-27, 2003.

[6] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Effcient IR-style keyword
search over relational databases. In VLDB, pp. 850-861, 2003.

[7] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational
databases. In VLDB, pp. 670-681, 2002.

[8] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. In ICDE, pp. 367-378, 2003.

[9] IBM. DB2 Text Information Extender.
 url: www.ibm.com/software/data/db2/extenders/textinformation/.
[10] G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The essence of a query

answer. In ICDE, 2006.
[11] U. Masermann and G. Vossen. Design and implementation of a novel approach

to keyword searching in relational databases. In ADBIS-DASFAA, pp. 171-184,
2000.

[12] Microsoft. SQL Server 2000. url:msdn.microsoft.com/library/.
[13] A. Motro. Baroque: A browser for relational databases. ACM Trans. Inf. Syst.,

4(2):164-181, 1986.
[14] A. Motro. Constructing queries from tokens. In SIGMOD, pp. 120-131, 1986.
[15] Oracle. Oracle 9i Text.
 url: www.oracle.com/technology/products/text/index.html.
[16] IMDB. Internet Movies DataBase. url: www.imdb.com.
[17] A. Collins and M. Quillian. Retrieval time from semantic memory. J. of Verbal

Learning and Verbal Behaviour, 8:240-247, 1969.
[18] G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The essence of a query

answer. TR-2006-1. url: www.dblab.ntua.gr.
[19] A. Simitsis and G. Koutrika. Comprehensible Answers to Précis Queries. In

CAiSE, 2006.
[20] D. Shasha, J. Tsong-Li Wang, R. Giugno. Algorithmics and Applications of

Tree and Graph Searching. In PODS, pp. 39-52, 2002.

