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Abstract. We consider the problem of querying XML documents which are
not valid with respect to given DTDs. We propose a framework for measuring
the invalidity of XML documents and compactly representing minimal repair-
ing scenarios. Furthermore, we present a validity-sensitive method of querying
XML documents, which extracts more information from invalid XML documents
than does the standard query evaluation. Finally, we provide experimental results
which validate our approach.

1 Introduction

XML is rapidly becoming the standard format for the representation and exchange of
semi-structured data (documents) over the Internet. In most contexts, documents are
processed in the presence of a schema, typically a Document Type Definition (DTD)
or an XML Schema. Although currently there exist various methods for maintaining
the validity of semi-structured databases, many XML-based applications operate on
data which is invalid with respect to a given schema. A document may be the result
of integrating several documents of which some are not valid. Parts of an XML docu-
ment could be imported from a document that is valid with respect to a schema slightly
different than the given one. For example, the schemas may differ with respect to the
constraints on the cardinalities of elements. The presence of legacy data sources may
even result in situations where schema constraints cannot be enforced at all. Also, tem-
porary violations of the schema may arise during the updating of an XML database in
an incremental fashion or during data entry.

At the same time, DTDs and XML Schemas capture important information about
the expected structure of an XML document. The way a user formulates queries in an
XML query language is directly influenced by her knowledge of the schema. However,
if the document is not valid, then the result of query evaluation may be insufficiently
informative or may fail to conform to the expectations of the user.

Example 1. Consider the DTD D0 in Figure 1 specifying a collection of project de-
scriptions: Each project description consists of a name, a manager, a collection of sub-
projects, and a collection of employees involved in the project. The following query Q0

computes the salaries of all employees that are not managers:

/pro js//pro j/name/emp/ f ollowing sibling::emp/salary
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<!ELEMENT projs (proj*)>
<!ELEMENT proj (name,emp,proj*,emp*)>
<!ELEMENT emp (name,salary)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT salary (#PCDATA)>

Fig. 1. DTD D0

<projs><proj>
<name> Cooking Pierogies </name>
<proj>

<name> Preparing Stuffing </name>
<emp><name> John </name>

<salary> 80K </salary></emp>
<emp><name> Mary </name>

<salary> 40K </salary></emp>
</proj>
<emp><name> Peter </name>

<salary> 30K </salary></emp>
<emp><name> Steve </name>

<salary> 50K </salary></emp>
</proj></projs>

Fig. 2. An invalid document T0.

Now consider the document T0 in Figure 2 which lacks the information about the man-
ager of the main project. Such a document can be the result of the main project not
having the manager assigned yet or the manager being changed.

The standard evaluation of the query Q0 will yield the salaries of Mary and Steve.
However, knowing the DTD D0, we can determine that an emp element following the
name element ‘‘Cooking Pierogies’’ is likely to be missing, and conclude that
the salary of Peter should also be returned.

Our research addresses the impact of invalidity of XML documents on the result of
query evaluation. The problem of querying invalid XML documents has been addressed
in the literature in two different ways: through query modification or through document
repair. Query modification involves various techniques of distorting, relaxing, or ap-
proximating queries [14, 21, 3]. Document repair involves techniques of cleaning and
correcting databases [9, 17]. Our approach follows the second direction, document re-
pair, by adapting the framework of repairs and consistent query answers developed in
the context of inconsistent relational databases [4]. A repair is a consistent database in-
stance which is minimally different from the original database. Various different notions
of minimality have been studied, e.g., set- or cardinality-based minimality. A consistent
query answer is an answer obtained in every repair. The framework of [4] is used as
a foundation for most of the work in the area of querying inconsistent databases (for
recent developments see [8, 12]).

In our approach, differences between XML documents are captured using sequences
of atomic operations on documents: inserting/deleting a leaf. Such operations are used
in the context of incremental integrity maintenance of XML documents [1, 5, 6] (mod-
ification of a node’s label is also handled but we omit it because of space limitations).
We define repairs to be valid documents obtained from a given invalid document using
sequences of atomic operations of minimum cost, where the cost is measured simply as
the number of operations. Valid answers are defined analogously to consistent answers.
We consider schemas of XML documents defined using DTDs.

Example 2. The validity of the document T1 from Example 1 can be restored in two
alternative ways:



1. by inserting in the main project a missing emp element (together with its subele-
ments name and salary, and two text elements). The cost is 5.

2. by deleting the main project node and all its subelements. The cost is 19.

Because of the minimum-cost requirement, only the first way leads to a repair. There-
fore, the valid answers to Q0 consist of the salaries of Mary, Steve, and Peter.

In our opinion, the set of atomic document operations proposed here is sufficient for
the correction of local violations of validity created by missing or superfluous nodes.
The notion of valid query answer provides a way to query possibly invalid XML docu-
ments in a validity-sensitive way. It is an open question if other sets of operations can
be used to effectively query XML documents in a similar fashion.

The contributions of this paper include:

– A framework for validity-sensitive querying of such documents based on measuring
the invalidity of XML documents;

– The notion of a trace graph which is a compact representation of all repairs of a
possibly invalid XML document;

– Efficient algorithms, based on the trace graph, for the computation of valid query
answers to a broad class of queries;

– Experimental evaluation of the proposed algorithms.

Because of space limitations we omitted the proofs of most of the theorems. These
will be included in a forthcoming technical report.

2 Basic definitions

In our paper we use a model of XML documents and DTDs similar to those commonly
used in the literature [5, 6, 16, 19].

Ordered labeled trees We view XML documents as labeled ordered trees with text
values. For simplicity we ignore attributes: they can be easily simulated using text val-
ues. By Σ we denote a fixed (and finite) set of tree node labels and we distinguish a
label PCDATA ∈ Σ to identify text nodes. A text node has no children and is additionally
labeled with an element from an infinite domain Γ of text constants. For clarity of pre-
sentation, we use capital letters A,B,C,D,E, . . . for elements from Σ and capital letters
X ,Y,Z . . . for variables ranging over Σ .

We assume that the data structure used to store a document allows for any given
node to get its label, its parent, its first child, and its following sibling in time O(1). For
the purpose of presentation, we represent trees as terms over the signature Σ \{PCDATA}
with constants from Γ .

Example 3. The tree T1 from Figure 3 can be represented with the term C(A(a),B(b),B()).
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Fig. 3. A running example.

DTDs For simplicity our view of DTDs omits the specification of the root label. A DTD
is a function D that maps labels from Σ \{PCDATA} to regular expressions over Σ . The
size of D, denoted |D|, is the sum of the lengths of the regular expressions occurring in
D.

A tree T = X(T1, . . . ,Tn) is valid w.r.t. a DTD D if: (1) Ti is valid w.r.t. D for every
i and, (2) if X1, . . . ,Xn are labels of root nodes of T1, . . . ,Tn respectively and E = D(X),
then X1 · · ·Xn ∈ L(E).

Example 4. Consider the DTD D1(A) = PCDATA+ ε , D1(B) = ε , D1(C) = (A ·B)∗. The
tree C(A(a),B(b),B()) is not valid w.r.t. D1 but the tree C(A(a),B()) is.

To recognize strings satisfying regular expressions we use the standard notion of
non-deterministic finite automaton (NDFA) [15] M = 〈Σ ,S,q0,∆ ,F〉, where S is a finite
set of states, q0 ∈ S is a distinguished starting state, F ⊆ S is the set of final states, and
∆ ⊆ S×Σ ×S is the transition relation.

2.1 Tree edit distance and repairs

Tree operations A location is a sequence of natural numbers defined as follows: ε is
the location of the root node, and v · i is the location of i-th child of the node at location
v. This notion allows us to identify nodes without fixing a tree.

We consider two atomic tree operations (or operations for short) commonly used in
the context of managing XML document integrity [1, 5, 6]:

1. Deleting a leaf at a specified location.
2. Inserting a leaf at a specified location. If the tree has already a node at this location,

we shift the existing node to the right together with any following siblings.

We note that our approach can be easily extended to handle the operation of Modifying
the label of a node (omitted here because of space limitations). We use sequences of
editing operations to transform the documents. The cost of a sequence of operations
is defined to be its length, i.e., the number of operations performed when applying the
sequence. Two sequences of operations are equivalent on a tree T if their application
to T yields the same tree. We observe that some sequences may perform redundant
operations, for instance inserting a leaf and then removing it. Because we focus on
finding cheapest sequences of operations, we restrict our considerations to redundancy-
free sequences (those for which there is no equivalent but cheaper sequence).

Note that a deletion (an insertion) of a whole subtree can be performed with a se-
quence of deletions (resp. insertions) of length equal to the size of the tree.

Definition 1 (Edit distance). Given two trees T and S, the edit distance dist(T,S) be-
tween T and S is the minimum cost of transforming T into S.



Note that the distance between two documents is a metric, i.e. it is positively defined,
symmetric, and satisfies the triangle inequality.

For a DTD D and a (possibly invalid) tree T , a sequence of operations is a sequence
repairing T w.r.t. D if the document resulting from applying the sequence to T is valid
w.r.t. D. We are interested in the cheapest repairing sequences of T .

Definition 2 (Distance to a DTD). Given a document T and a DTD D, the distance
dist(T,D) of T to D is the minimum cost of repairing T , i.e.

dist(T,D) = min{dist(T,S)|S is valid w.r.t D}.

Repairs The notions of distance introduced above allow us to capture the minimality
of change required to repair a document.

Definition 3 (Repair). Given a document T and a DTD D, a document T ′ is a repair
of T w.r.t. D if T ′ is valid w.r.t. D and dist(T,T ′) = dist(T,D).

Note that, if repairing a document involves inserting a text node, the corresponding
text label can have infinitely many values, and thus in general there can be infinitely
many repairs. However, as shown in the following example, even if the operations are
restricted to deletions there can be an exponential number of non-isomorphic repairs of
a given document.

Example 5. Suppose we work with documents labeled only with Σ = {A,B,T,F} and
consider the following DTD: D(A) = T ·A+A ·F+B ·B, (B) = ε , D(T) = ε , D(F) = ε .
The tree A(T(),A(. . .A(T(),A(B(),B()),F()) . . .),F()) consisting of 3n+2 elements has
2n−1 repairs w.r.t. D.

3 Computing the edit distance

In this section we present an efficient algorithm for computing the distance dist(T,D)
between a document T and a DTD D. The algorithm works in a bottom-up fashion: we
compute the distance between a node and the DTD after finding the distance between
the DTD and every child of the node.

3.1 Macro operations

Now, we fix a DTD D and a tree T = X(T1, . . . ,Tn). The base case, when T is a leaf,
is handled by taking n = 0. We assume that the values dist(Ti,D) have been computed
earlier. We recall that the value dist(Ti,D) is the minimum cost of a sequence of atomic
tree operations that transforms Ti into a valid tree. Similarly, the value dist(T,D) corre-
sponds to the cheapest sequence repairing T . We model the process of repairing T with
3 macro operations applied to the root of T :

1. Deleting a subtree rooted at a child.
2. Repairing recursively the subtree rooted at a child.
3. Inserting as a child a minimum-size valid tree whose root’s label is Y for some

Y ∈ Σ .



Each of these macro operations can be translated to a sequence of atomic tree opera-
tions. In the case of a repairing operation there can be an exponential number of possible
translations (see Example 5), however, for the purpose of computing dist(T,D) we only
need to know their cost. Obviously, the cost of deleting Ti is equal to |Ti| and the cost of
repairing Ti is equal to dist(Ti,D) (computed earlier). The cost of inserting a minimal
subtree can be found using a simple algorithm (omitted here). A sequence of macro
operations is a sequence repairing T if the resulting document is valid. The cost of a se-
quence of macro operations is the sum of the costs of its elements. A sequence of macro
operations is equivalent on T to a sequence of atomic operations if their applications to
T yield the same tree. Using the macro operations to repair trees is equivalent to atomic
operations.

3.2 Restoration graph

Now, let X1, . . . ,Xn be the sequence of the labels of roots of T1, . . . ,Tn respectively.
Suppose E = D(X) defines the labels of children of the root and let ME = 〈Σ ,S,q0,∆ ,F〉
be the NDFA recognizing L(E) such that |S|= O(|E|) [15].

To find an optimal sequence of macro operations repairing T , we construct a di-
rected restoration graph UT . The vertices of UT are of the form qi for q ∈ S and
i ∈ {0, . . . ,n}. The vertex qi is referred as the state q in the i-th column of UT and
corresponds to the state q being reached by ME after reading X1, . . . ,Xi processed ear-
lier with some macro operations. The edges of the restoration graph correspond to the
macro operations applied to the children of T :

– qi−1 Del−−−−→ qi corresponds to deleting Ti and such an edge exists for any state q ∈ S
and any i ∈ {1, . . . ,n},

– qi−1 Rep−−−−→ pi corresponds to repairing Ti recursively and such an edge exists only
if ∆(q,Xi, p),

– qi InsY−−−−→ pi corresponds to inserting before Ti a minimal subtree labeled with Y
and such an edge exists only if ∆(q,Y, p).

A repairing path in UT is a path from q0
0 to any accepting state in the last column of UT .

Lemma 1. For any sequence of macro operations v, v is a sequence repairing T w.r.t.
D iff there exists a repairing path (possibly cyclic) in UT labeled with the consecutive
elements of v.

If we assign to each edge the cost of the corresponding macro operation, the problem
of finding a cheapest repairing sequence of macro operations is reduced to the problem
finding a shortest path in UT .

Theorem 1. dist(T,D) is equal to the minimum cost of a repairing path in UT .

Example 6. Figure 4 illustrates the construction of the restoration graph for the doc-
ument C(A(a),B(b),B()) and the DTD from Example 4. The automaton M(A·B)∗ con-
sists of two states q0 and q1; q0 is both the starting and the only accepting state;
∆ = {(q0,A,q1),(q1,B,q0)}. The cheapest repairing paths are indicated with bold lines.
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Fig. 4. Construction of the restoration graph.

In each vertex we additionally put the minimum cost of reaching that vertex from q0
0.

Note that the restoration graph represents 3 different repairs: (1) C(A(a),B(),A(),B()),
obtained by inserting A(); (2) C(A(a),B()) obtained by deleting the second child; (3)
C(A(a),B()) obtained by repairing the second child (removing the text node b) and re-
moving the third child. We note that although isomorphic, the repairs (2) and (3) are
not the same because the nodes labeled with B are obtained from different nodes in the
original tree.

3.3 Trace graph

The trace graph U∗T is the subgraph of UT consisting of only the cheapest repairing
paths. Note that if UT has cycles, only arcs labeled with inserting macro operations can
be involved in them. Since the costs of inserting operations are positive, U ∗T is a directed
acyclic graph.

Repairs and paths in the trace graph Suppose now that we have constructed a trace
graph in every node of T . Every repair can be characterized by selecting a path on each
of the trace graphs. Similarly a choice of paths in each of the trace graphs yields a
repair. We note that a choice of a path on the top-level trace graph of T may correspond
to more than one repair (this happens when some subtree has more than one repair).

Complexity analysis First, note that for any vertex from the restoration graph UT

the incoming edges come from the same or the preceding column. Therefore, when
computing the minimum cost of a path to a given vertex we need to consider at most
(|Σ |+1)×|S|+1 values.

Moreover, we don’t need to store the whole restoration graph in memory, but only
its two consecutive columns. Also, note that we need the values dist(Ti,D) and |Ti| only
when we compute the minimum cost for the i-th column of UT , so there is no need for
extra space to store these values. We assume that Σ is fixed and |S| is bounded by |D|.
Theorem 2. The distance between a document T and a DTD D can be computed in
O(|D|2×|T |) time using O(|D|2×height(T )) space.

4 Valid query answers

In our paper we use the negation-free fragment of XPath 1.0 [26] restricted to its log-
ical core (only element and text nodes, and only functions selecting the string value



of nodes). Our approach, however, is applicable to a wider class of negation-free Reg-
ular XPath Queries [18]. We assume the standard semantics of XPath queries and by
QAQ(T ) we denote the answers to the query Q in the tree T .

We use an evaluation method that is geared towards the computation of valid an-
swers. The basic notion is this of a tree fact (n, p,x) which states that an object x (a
node, a label, or a string constant) is reachable from the node n with an XPath expres-
sion p.

We distinguish basic tree facts which use only parent::∗, f ollowing-sibling::∗,
name(.), and text(.) path expressions. We note that basic tree facts capture all structural
and textual information contained in XML documents. For the tree T1 = C(A(a),B(b),B())
from Figure 3 examples of basic facts are: (n0, parent::∗,n3), (n3, parent::∗,n4), and
(n4,text(),a). Other tree facts can be derived from the basic facts using simple Horn
rules that follow the standard semantics of XPath. For example:

(x,descendant::∗,y)← (x, parent::∗,y)
(x,descendant::∗,y)← (x,descendant::∗,z)∧ (z, parent::∗,y)

(x, p1/p2,y)← (x, p1,z)∧ (z, p2,y)

For instance, for the document T1 we can derive (n0,descendant:: ∗ /text(.),a). Since
we consider only positive queries, the used rules don’t contain negation. Therefore,
the derivation process, similarly to negation-free Datalog programs, is monotonic i.e.,
adding new (basic) facts does not invalidate facts derived previously.

Given a document T and a query Q we construct the set of all relevant tree facts
B by adding to B all the basic facts of T . If adding a fact allows to derive new facts
involving subexpressions of Q, these facts are also added to B. To find the answers to Q
we simply select the facts that originate in the root of T and involve Q.

4.1 Validity-sensitive query evaluation

Definition 4 (Valid query answers). Given a tree T , a query Q, and a DTD D, an
object x is a valid answer to Q in T w.r.t D if x is an answer to Q in every repair of T
w.r.t. D.

Computing valid query answers We construct a bottom-up algorithm that for every
node constructs the set of certain tree facts that hold in every repair of the subtree rooted
in this node. The set of certain tree facts computed for the root node is used to obtain
the valid answers to the query (similarly to standard answers).

We now fix the tree T , the DTD D, and the query Q, and assume that we have
constructed the trace graph U∗T for T as described in Section 3. We also assume that the
sets of certain tree facts for the children of the root of T have been computed earlier.

Recall that the macro operation InsY corresponds to inserting a minimum-size tree
valid w.r.t. the DTD, whose root label is Y . Thus for every label Y our algorithm needs
the set CY of (certain) tree facts present in every minimal valid tree with the root’s label
Y . This set can be constructed with a simple algorithm (omitted here).



4.2 Naive computation of valid answers

We start with a naive solution, which may need an exponential time for computation.
Later on we present a modification which guarantees a polynomial execution time.

For each repairing path in U∗T the algorithm constructs the set of certain tree facts
present in every repair corresponding to this path. Assume now that T = X(T1, . . . ,Tn),
and the root nodes of T,T1, . . . ,Tn are respectively r,r1, . . . ,rn.

For a path q0
0 = v0,v1, . . . ,vm in U∗T we compute the corresponding set C of certain

facts in an incremental fashion (in every step we keep adding any facts that can be
derived for subexpressions of the query Q):

1. for q0
0 the set of certain facts consists of all the basic fact for the root node;

2. if C is the set corresponding to v0, . . . ,vk−1, then the setC′ corresponding to v0, . . . ,vk

is obtained by one of the 3 following cases depending on the type of edge from vk−1

to vk:

– for qi−1 Del−−−−→ qi no additional facts are added, i.e., C′ = C;

– for qi−1 Rep−−−−→ pi we append the tree facts of Ti to C, i.e., we add to C certain
facts of the tree Ti with the basic fact (r,/∗,ri); if on the path v0, . . . ,vk−1 other
trees have been appended (with either Rep or InsY instruction), then we also
add the fact (r′, f ollowing-sibling :: ∗,ri) where r′ is the root node of the last
appended tree;

– qi InsY−−−−→ pi is treated similarly to the previous case, but we append (a copy of)
CY .

Naturally, the set of certain facts for T is the intersection of all sets corresponding
to repairing paths in U∗T . We implement this algorithm by computing for every v the
collection C(v) of sets of tree facts corresponding to every path from q0

0 to v.

Example 7. Recall the document T1 = C(A(a),B(b),B()) and the trace graph from Fig-
ure 4 constructed for T1 and DTD D1 (Example 6). We consider the query Q1 = descendant::∗
/text(.) and we denote the operation of deriving tree facts involving subqueries of Q1

with the superscript (·)Q1 . The collections for the trace graph U∗T are constructed as
follows:

C(q0
0) = {B0}, where

B0 = ({(n0,name(.),C,n0)})Q1 .

C(q1
1) = {B1}, where

B1 = (B0∪C1∪{(n0, parent::∗,n1)})Q1 ,

and C1 is the set of certain facts for A(d)
C1 = ({(n1,name(.),A),(n1, parent::∗,n2),(n2,name(.),PCDATA),(n2,text(.),d)})Q1 .

C(q0
2) = {B2}, where

B2 = (B1∪C2∪{(n0, parent::∗,n3),(n1, f ollowing-sibling::∗,n3)})Q1 ,

and C2 is the set of certain facts for the second child

C2 = ({,(n3,name(.),B)})Q1 .



C(q2
1) = {B1,B3}, where

B3 = (B1∪CA∪{(n0, parent::∗, i1),(n3, f ollowing-sibling::∗, i1)})Q1 ,

where CA is the set of certain facts for every valid tree with the root label A (i1 is a new
node)

CA = ({(i1,name(.),A)})Q1 .

C(q3
0) = {B2,B4,B5}, where

B4 = (B3∪C3∪{(n0, parent::∗,n5),(i1, f ollowing-sibling::∗,n5)})Q1 ,

B5 = (B1∪C3∪{(n0, parent::∗,n5),(n1, f ollowing-sibling::∗,n5)})Q1 ,

where C3 is the set of certain facts for the third child

C3 = ({(n5,name(.),B)})Q1 .

In order to prevent an exponential explosion of the sizes of the consecutive collec-
tions, we use the following optimization of eager intersection:

Let B1 and B2 be two sets from C(v) for some vertex v. Suppose that v−→ v′ and
the edge is labeled with an operation that appends a tree (either Rep or Ins).
Let B′1 and B′2 be the sets for v′ obtained from B1 and B2 respectively. Instead
of storing in C(v′) both sets B′1 and B′2 we only store their intersection B′1∩B′2.

In Example 7 this optimization give us: C(q3
0) = {B2,B′4,5}, where B′4,5 = B4∩B5.

With a simple induction over the column number we show that the number of sets
of tree facts stored in a vertex in the i-th column is O(i×|S|×|Σ |). We use the notion of
data complexity [24] which allows to express the complexity of the algorithm in terms
of the size of the document only (by assuming other input components to be fixed).

Theorem 3. The data-complexity of computation of valid answers to negation-free core
XPath queries is PTIME.

We note that if we include the query into the input, the problem becomes co-NP-
complete (we omit the proof). This shows that computing valid query answers is con-
siderably more complex than computation of standard answers (whose combined com-
plexity is known to be in PTIME [13]).

5 Experimental evaluation

In our experiments, we tested 2 algorithms: DIST computing dist(D,T ) and VQA com-
puting valid answers. We compared these algorithms with an algorithm VALIDATE

for validation of a document and an algorithm QA computing standard answers. All
compared algorithms have been implemented using a common set of programming
tools including: the parser, the representation of regular expressions and correspond-
ing NDFA’s, the representation for tree facts, and algorithms maintaining closure of the
set of tree facts. For ease of implementation, we considered only a restricted class of
non-ascending path queries which use only simple filter conditions (testing tag and text
elements), do not use union, and involve only child, descendant, and f ollowing-sibling



axises. We note that those queries are most commonly used in practice and the restric-
tions allow to construct algorithms that compute standard answers to such queries in
time linear in the size of the document. This is also the complexity of the QA algo-
rithm.

Data generation To observe the impact of the document size on the performance of
algorithms, we randomly generated a valid document and we introduced the violations
of validity to a document by randomly removing and inserting nodes. To measure the
invalidity of a document T we use the invalidity ratio dist(T,D)/|T |. All the documents
used for tests had a small height, 8-10.

For most of the experiments we used the DTD D0 and the query Q0 from Example 1.
To measure the impact of the DTD size on the performance, we generated a family of
DTDs Dn, n≥ 0: Dn(A) = (. . .((PCDATA+A1) ·A2 +A3) ·A4 + . . .An)∗,Dn(Ai) = A∗. For
those documents we used a simple query //∗/text(.).

Environment The system was implemented in Java 5.0 and tested on an Intel Pentium
M 1000MHz machine running Windows XP with 512 MB RAM and 40 GB hard drive.

5.1 Experimental results

Results in Figure 5(a) and in Figure 5(b) confirm our analysis: edit distance between a
document and a DTD can be computed in time linear in the document size and quadratic
in the size of the DTD. If we take as the base line the time needed to parse the whole
file (PARSE), then we observe that the overhead needed to perform computations is
small. Because our approach to computing edit distance doesn’t assume any particular
properties of the automata used to construct the trace graph, Figure 5(b) allows us to
make the following conjecture: Any techniques that optimize the automata to efficiently
validate XML documents should also be applicable to the algorithm for computing the
distance of XML documents to DTDs.
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Fig. 5. Edit distance computation time (0.1% invalidity ratio)

Figure 6(a) shows that for the DTD D0 computing valid query answers is about
6 times longer than computing query answers with QA. Similarly to computing edit



distance, computing valid answers involves constructing the restoration graph. This ex-
plains the quadratic dependency between the performance time and the size of DTD
observed for VQA in Figure 6(b).
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Fig. 6. Valid answers computation time (0.1% invalidity ratio).

6 Related work

Tree edit distance Tree edit distance is a generalization of the classical string edit
distance. There are several different versions of the former notion varying with the se-
mantics of tree operations [7]. In the most studied approach [23], the deleting operation
also can be performed on a internal node, in which case the children are promoted up.
Conversely, the inserting operation can push down a contiguous sequence of nodes. The
implied notion of edit distance is not equivalent to ours (our notion is sometimes called
1-degree edit distance [22]). In the area of data integration, insertions and deletions of
internal document nodes could be used for the resolution of major structural discrep-
ancies between documents. However, such operations require shifting nodes between
levels and thus it is not clear if our approach can be adapted to that context. The notion
of edit distance identical to ours has been used in papers dealing with the maintenance
of XML integrity [1, 5, 6] and to measure structural similarity between XML documents
[20]. [9] studies an extension of the basic tree edit framework with moves: a subtree can
be shifted to a new location. In the context of validity-sensitive querying, extending
our approach with move operations would allow to properly handle situations where
invalidity of the document is caused by transposition of elements.

Almost every formulation of edit distance, including ours, allows to assign a non-
unit cost to each operation.

Structural restoration A problem of correcting a slightly invalid document is consid-
ered in [9]. Under certain conditions, the proposed algorithm returns a valid document
whose distance from the original one is guaranteed to be within a multiplicative con-
stant of the minimum distance. The setting is different from ours: XML documents are



encoded as binary trees, so performing editing operations on a encoded XML document
may shift nodes between levels in terms of the original tree.

A notion equivalent to the distance of a document to a DTD (Definition 2) was used
to construct error-correcting parsers for context-free languages [2].

Consistent query answers for XML [10] investigates querying XML documents that
are valid but violate functional dependencies. Two repairing actions are considered: up-
dating element values with a null value and marking nodes as unreliable. This choice of
actions prevents from introducing invalidity in the document upon repairing it. Nodes
with null values or marked as unreliable do not cause violations of functional dependen-
cies but also are not returned in the answers to queries. Repairs are consistent instances
with a minimal set of nodes affected by the repairing actions.

A set of operations similar to ours is considered for consistent querying of XML
documents that violate functional dependencies in [11]. Depending on the operations
used different notions of repairs are considered: cleaning repairs obtained only by delet-
ing elements, completing repairs obtained by inserting nodes, and general repairs ob-
tained by both operations.

[25] is another adaptation of consistent query answers to XML databases closely
based on the framework of [4].

7 Conclusions and Future work

In this paper we investigated the problem of querying XML documents containing vi-
olations of validity of a local nature caused by missing or superfluous nodes. We pro-
posed a framework which considers possible repairs of a given document obtained by
applying a minimum number of operations that insert or delete nodes. We demonstrated
algorithms for (a) measuring invalidity in terms of document-to-DTD distance, and (b)
validity-sensitive querying based on the notion of valid query answer.

We envision several possible directions for future work. First, one can investigate if
valid answers can be obtained using query rewriting [14]. Second, it is an open ques-
tion if negation could be introduced into our framework. Third, it would be of signifi-
cant interest to establish a complete picture of how the complexity of the computational
problems considered in this paper (computing document-to-DTD distance, computing
valid query answers) depends on the query language and the repertoire of the avail-
able tree operations (other operations include subtree swap, restricted subtree move).
Finally, it would be interesting to find out to what extent our framework can be adapted
to handle semantic inconsistencies in XML documents, for example violations of key
dependencies.
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