Change Management in Large-Scale Enterprise
Information Systems

Boris Stumm

University of Kaiserslautern
st umm@ nf or mat i k. uni -kl . de

Abstract. The information infrastructure in today’s businesses ta®f many
interoperating autonomous systems. Changes to a singlensysn therefore
have an unexpected impact on other, dependent systemst [Dapo approach
we try to cope with this problem by observing each systemigpating in the
infrastructure and analyzing the impact of any change thatis. The analysis
process is driven by declaratively defined rules and worltls ageneric and ex-
tensible graph model to represent the relevant metaddtss thabject to changes.
This makes Caro applicable to heterogeneous scenariosuataiizable to spe-
cial needs.

1 Introduction

In today’s businesses, information infrastructures atérngemore and more complex.
There are many heterogeneous systems with a manifold ofatdegpendencies leading
to unmanageability of the overall infrastructure. New defencies between existing
systems evolve and new systems are added. Generally, shevecentral management
of all systems.

Small, local changes can have a major impact at company-sddie due to the
dependencies between systems. To keep everything ruiitimtherefore necessary to
preventivelyanalyze the impact of a change, to be able to make adjustrimecese of
conflicts without compromising the infrastructure. White theterogeneity of systems
and the problem of incomplete metadata make change impabtsimalready a hard
task, the situation becomes even more difficult as changesdialways planned glob-
ally and in advance. Thus, unexpected problems may occeir afthange is carried
out, making aeactivechange impact analysis necessary. We present Caro, areappro
for change impact analysis (CIA) that is able to operate envater these adverse con-
ditions.

When speaking of changes, we refer to metadata changes: tooiext, metadata
includes not only data schemas, but also APIs, configuréites) assertions about data
quality and performance, etc., in short, everything thaeosystems could rely on.

Problem Statemenfhe problems that we face in change management and which we
address with our approach can be divided into three catgori

— Heterogeneity. The connected systems often have diffdaatmodels (e.g. XML
or SQL), different interfaces (e.g. query or function calétc.

— Incomplete metadata. In general, it is not possible or Béadd get all metadata
for an exact CIA. There may be no easy way to query the metadatasystem,
documentation is often outdated or non-existent, and digreries between sys-
tems can be hidden in procedural code, which in the worstwasdd have to be
decompiled to get the required information. While it is tretally possible to get
exact metadata, in practice, the costs may be too high.

— System autonomy and missing global management. In praatiaey systems are
black boxes that cannot be controlled from outside. Thigeisfly holds true if
an integration environment spans over several departmesign several compa-
nies, and complicates access to such systems. Changeshee ayithout global
analysis, and without notification to the affected systefais, problems emerge
unexpectedly, and it is hard to find the cause.

Contribution Caro is a concept which includes three main components negye for
addressing the discussed problems:

— We propose ararchitecturewhich allows a central or distributed approach to
change impact analysis. We have software components caldddata agents
which, amongst other things, monitor the systems partiitigan the integration
infrastructure for changes. Tlothange manageallows for preventive CIA as well
as reactive CIA.

— We present anetamodelvhich allows us to handle and homogenize the heteroge-
neous metadata encountered. It is designed to be extensibiscribe arbitrary
metadata at arbitrary granularities.

— We use a robust and genesicalysis algorithnwhich can handle incomplete meta-
data. It works on a best-effort basis based on the input ratadnd the quality of
the analysis results will gracefully degradate as inputatiata gets less complete
or more coarse-grained.

With these concepts, Caro is applicable to a wide range feréifit systems, and thus a
wide range of different changes can be detected and analyzed

Related Workln the context of information integration, much researck been done.
Some approaches are complementary to ours, and othersrala $o Caro in some
aspects. The most important distinguishing facts of Cagdtargenericity, robustness
and scope. It makes no assumptions about the environmepéiiates in, and can be
used for any scenario where change impact analysis is reagess

Dordaet al. [8] present an approach which is quite simil&acoo with respect to the
problems addressed. However, the solution they proposéeset in two fundamen-
tal points: They require a central documentation (or matgd&pository and a strict
process policy. This constrains their approach to scesavitere it is feasible to have
a central repository and to enforce adherence to defineeégses. While they want to
avoid integration clustetswe think that such a clustering (and thus decentraliziition
in large EIS cannot be avoided.

Lintegration clusters are called “integration islands"8h [

Deruelle et al. [7] present another approach to change itrggaadysis. They use
a multigraph and change propagation rules for analysis;lwisi very similar to Caro.
Their approach has several limitations. The focus lies emgmtive change impact anal-
ysis, thus they lack a framework to support reactive CIA. &mmtly, they do not con-
sider the problem of incomplete metadata. Also, their nmetalel and rules are rather
specialized, which makes the extension to support otherrdatiels and change types
more difficult than with Caro.

Various other approaches to CIA in information systemstekit are limited with
respect to the supported data models [10] or scope and suifppexact analysis [12].
The concepts of change impact analysis in software syst@/8s16] are similar to the
ones we use. However, the models and analysis procedunes docthe elements that
are found in software: methods, signatures, classedh#t#s and so on. In addition,
CIA for software systems is usually done preventively. Adp®f heterogeneity, meta-
data incompleteness and distribution are not that relexarthey are in information
systems.

Research done in the field of schema evolution [15, 4, 17&mehmatching [14, 13,
11] or model management [5] are complementary to our apprdzspecially the latter
approaches are used to plan and realize integration, dgnieeaveen only two or a
small group of systems, as well as adapt systems to chargfijuiyements. Caro is not
designed for use in the initial stages of an integrationqubjit will take the results of
such a project, namely the dependencies between the sytsigmaere created based on
schema matches or mapping definitions, and monitor thenhfamges. When a change
occurs, Caro will analyze the impact of it and notify the i@sgible person. If problems
are encountered, the output of Caro can be the input for feenvation integration
tools that are used to repair the impacted systems. Caredsan the monitoring of
systems participating in the overall information infrastiure and the detection of the
global impact of changes. As such, it “fills the gap” to an elemanagement of a
heterogeneous integrated environment.

Structure of the Papein the following sections, we will first give an overview over
the architecture of our CIA approach (Sect. 2). We discusstinceptual meta-model
on which our approach is based on in Sect. 3. In Sect. 4 ouoapprto conduct the
analysis is presented. In Sect. 5 we will discuss some ofthees that arise during the
preceeding sections. Finally we finish with conlusions amitbok in Sect. 6.

2 Overview

Central architectural components of Caro are the metadatasitory (MDR) and the
change manager (CM) (see Fig. 1). The MDR is a passive comnmpaimat holds the
metadata of the different information systems in a comme@nesentation. It provides
an interface to query and update the stored metadata. Alda# is versioned, to be
able to keep track of any changes that happened in the pasCHNhs a reactive com-
ponent responsible for the analysis of changes. It can aea&lyange proposals issued
via the user interface, or react to changes that have hagperem observed system.
The third component in our architecture is constituted byat&ta agents (MDA). Ev-
ery system participating in CIA is monitored by an MDA respitite for mediating

% Caro CM GUI Caro MDA GUI %

change

manage \analyzer\ \processing queué \transformer\ \storagd metadata
metadata - [metadata extractol [observer| agent
repository [query interface] [storagd

\ information system |

Fig. 1. Caro architecture

between the CM, the observed information system and the huesponsible for it.
An MDA consists of various subcomponents. The metadataeixr is needed to ini-
tially extract all metadata from the underlying system amthter pick up changes. A
transformer component maps the extracted metadata to tleef@anat. The observer
component serves as a guard and watches for changes in thmatfon system. For
caching purposes there is a storage component. The MDA caonoatas with the CM
via asynchronously to not block either component. The MDAaritten in bold face
are those that need to be customized for each informatideray£aro provides generic
functionality, and specific functionality can be added viglagin mechanism. To con-
figure the components, GUIs for the CM and the MDAs will be pded. Furthermore,
the GUIs give a global (CM GUI) or local (MDA GUI) view of metath and depen-
dencies and are used as interface for preventive CIA. The NHDA is constrained to
a local analysis, which is also useful (e.g., to analyze hmws are affected if a base
table changes). In the following sections, the main foces bn the metadata model
and the analysis approach. The issues that arise in thedoality of the MDAS, such
as detecting changes in system metadata, conversion framrees native metadata
representation or modeling dependencies, are discus&=tins.

Caro can also be used in a distributed way. Several changagees) each respon-
sible for a part of the overall system, can communicate witbheother and pass on
their analysis results. This enables the use of Caro in egisese a centralized solution
is not feasible. An example scenario for this is shown in Biglrhis way it is possible
to restrict the data passed on to the other servers, whicheamportant for security
reasons.

Our base assumption is that every single system in an irteghmaformation in-
frastructure provides various kinds of services to othstesys. We refer to this set of
services as the systenpsovision For each accessing client system, there may exist a
different provision set, depending on the authorizationis. Complementary to this,
the part of the provision that is used by the client systenalled usage A client sys-
tem as a usage for each system it depends on. Note that the ofstge client needs
not to be identical to the provision of the server system.dnegal, the usage will be
a subset of the provision, or may even contain elements esept in the provision. If
that happens, there exists a problem which will be recogiizeour approach.

We do not use the more common terms import or export schemag provisions
and usages can contain more than only schema data, and mexafople, include con-

Change Distribution } Marketing Customers Care
|

Management [Caro Sevg=————={ Caro Senls——————=[Caro Sejver
Layer i) ‘ i ! —

[[
Agent i i
Layer [MDA| [MDA| [MDA] ! MDA [MDA| | \MPA\ [MDA| [MDA]
Information 2 N // Lo = ! SO
System (III2 oy ! | _Io
Layer (2T !

- I I
I I
| |

Fig. 2. Distributed Caro architecture

Fig. 3. Provision and usage specifications, internal and exteemndencies

figuration data, technical metadata, quality assertiombg“data provided is less than

a day old.”) or activity information (“The ETL process rungeey Saturday at 0:00.").
Figure 3 illustrates provisior®, usage®) and the dependenci€sbetween themEx-
ternal dependencieg®,) exist between a provision and a usage of different systems.
The usage depends on the corresponding provision to be nmtelmal dependencies
(Dj) exist between the provision and usagéthin a system. Services provided (in the
provision) may be dependent on the use (in the usage) of sftséem’s services. A
simple example is a federated DBMS, whose provision is bigia view on the pro-
visions of the base systems. In this case, the internal digmeies are represented by
the view definitions in the federated DBMS.

Change impact analysis is an integral part of a lagystem evolution process
which is happening in every information infrastructurest@®yn evolution includes all
changes that occur to systems that are part of the infrasteudn ideal scenarios, be-
fore any change is applied, its impact will be analyzed. Wethé preventive CIA
Depending on the analysis result, some adjustments may de toaninimize the im-
pact or to adapt the impacted systems. Caro supports thiegsdy providing tools and
interfaces to do preventive CIA before changes are madeaktipe, such ideal scenar-
ios do not exist, mostly due to the autonomy of systems iraaIThe larger the number
of integrated systems, the more probable it is that changemnade without prior anal-
ysis or coordination. Caro monitors every system and detdinges shortly after they
occur.Reactive ClAs then initiated automatically, and administrators of &#ofed sys-
tems are notified. The analysis process itself is identmabbth cases. The difference
lies only in the type of input data (proposed changes vsadirapplied changes) and
in the actions taken after analysis. With preventive ClAutts will have no effect on

)P--* usagel <<enumeration>> CIAM
ExternalDependen 1 [CIAMElement Status

0. provision status: Set<Status>added <<énum>>
[Dependencf— . 1 |ype: Type R Type

provision issuedBy changed provision
InternalDependenc] 0. usage‘rl usage
Element] 1target

core CISDM

[
Literal

value

v [] [\
hasPari \ label \ \hasTypd \derivedFrord \subclassof

‘ hasParamet%r
i i i o -
[[Table] [Column] | [hasColumh specific data model (relatlona}
[[ContentModel [XElement| [Attribute] [hasAttributd [hasContentModsl (X'V”—)j

Fig. 4. Caro meta-models

running systems, whereas with reactive CIA, affected systmay be disabled, or other
measures may be taken, to prevent data corruption or irctaroery results.

3 Conceptual Model

An important consideration was the choice of the meta-mumlake in our approach.
It must be possible to represent arbitrary metadata anchdiepeies, without assuming
any data model (like SQL or XML) or types of dependencies.ré&hms to be support
for a declarative specification of change impact, and thsipdity to describe metadata
at different granularities. These requirements are metirygonceptual model.

The base assumption we build our model on is the following: &tadata descrip-
tion consists oklementsand therelationshipsbetween them. Elements aatomic in-
formation units In the relational world, a table definition consists of mahgments,
namely the element representing the table itself, the ndredable, elements for ev-
ery column, column name and column type, and so on. A meta@ataiption can then
be expressed as a bipartite digraph with node typandR representing elements and
relationships, similar to the ER-model. Relationship reodepresent a binary relation
between element nodes and thus always have one incomingrendutgoing edge.
Expressing relationships as nodes and not as edges haastsrim that there can be
dependencies between relationships.

The elements in the metadata graph are instances of elededitied in the Caro
meta-model. This meta-model has two parts, ¢hange-impact system description
model(CISDM) and thechange-impact analysis meta-mod€lAM). Both of them
are depicted in Fig. 4. We aim to provide more complex claskding constructs, like
it is possible in OWL [1], but for readability we used an UMiké syntax in the figure.

The CISDM defines classes that capture the semantics theglavant to CIA. The
figure shows a selection of these. The top level classeSlanent, which all element
nodes are instances of, anbdelRelationship for the relationship nodeslodelRela-
tionships connect twcElements, as we have stated before. Literals have no outgoing
edges, since they only function as containers for valueshefrdNodes. For each CIA-
relevant “role” that a node may have, the top level classesabclassed. In the figure,
two roles for element node€¢émpound and Part), and several roles for relationship
nodes are shown. The CISDM itself is not intended to modeadstt graphs directly.
It is an abstract meta-model from which concrete meta-nsockh inherit, assigning
CIA semantics to their elements. In the lower part of the figthis is shown for some
elements of the relational and XML data model. The changeaanpnalysis is done
only with the information that the generic part of the CISDkbyides, whereas the
metadata is described in terms of the corresponding dataim@dange impact proper-
ties are assigned to meta-model elements by inheritandehwiakes it easy to adapt
existing meta-models for use in Caro by simply adding theODliSclasses as super-
classes to the model.

While the CISDM is used to model the change impact propediesetadata de-
scriptions, the CIAM provides means to connect differeapdys via dependencies and
enables setting the status of nodes (e.gadtted or deleted). The upper part of Fig. 4
shows the CIAM. Main classes abBependency andCIAMElement. Each dependency
connects twaCIAMElements, which are eitheModelElements or ModelRelationships.
The connected elements have one of two rgbesvision or usage. CIAMElement has
two other properties. Thetatus property holds the current analysis result for this ele-
ment. For simplicity, only the three status valadded, deleted andchanged are shown
in the figure. ThassuedBy property denotes the observed system which the graph be-
longs to. With this model, not only dependencies betweemetds, but also between
relationships can be expressed.

There is no requirement for metadata graphs to be completeoy dependency
to be modeled. If there is a dependency between a table inreessystem and a feder-
ated DBMS, the individual column elements need not be cardeda dependencies.
The most coarse-grained metadata graph would consist orige element node per
system, and dependency nodes showing how systems aradredagach other. This
does not allow a very precise analysis, but in this way noesyswill be “forgotten”
if a change occurs somewhere. Since fine-grained metadathecaery expensive to
get, it can be decided on a case-by-case basis if an exagsanialrequired or if more
false alarms are acceptable. There are no constraints dygbe of metadata changes
that can be captured. If the corresponding elements anddbpendencies are mod-
eled, changes will be detected. Although in our prototypéages on schema changes,
Caro is not limited to that. Some examples that come to miedarction signatures,
classes, methods, directory layouts, application cordigm files, installed software.
Even more dynamic metadata such as network capacity, fskesdace, or CPU perfor-
mance can be modeled and analyzed. Of course, the CISDM mliighbly have to be
extended, and some more analysis rules may be required. Nseiss this in Sect. 5.

rule graph before analysis graph after analysis

:Compound :hasPart :Compound :hasPart :Compound :hasPart
status + changed |status = adde status = added |status = changed |status = adde

Fig. 5. Example rule

4 Analysis

The analysis of a change is done by applying impact ruleseaartbtadata graph until
no more rules can fire. Conceptually the rules and the grdmysdperate on have the
following characteristics:

— Each rule has aremise which is a graph pattern specifying nodes and their prop-
erties. If the premise matches a subgraph¢thclusiorof the rule is applied. The
conclusion is always a list of property values that will beled to a specific node.

— Each node has a finite set of properties that are identifieddyygoty names.

— If a part of a conclusion already exists in the graph, onlyrttigsing part is added.

These characteristics make the appliance of rules mormtBeisides that, order of
rule appliance does not matter. This ensures that analylsesways produce the same
output if given the same input and that the calculation Willagys terminate.

Figure 5 shows a simple rule in a graphical notation on thteTelkt written in nor-
mal font constitutes the premise. The conclusion is writteboldface. The analysis
rule shown in the figure adds tleanged-status to a compound if a part was added.
Although the rule is quite simple, we argue that in the méjoof cases, such sim-
ple rules suffice, making the analysis procedure similarsitave closure algorithm. In
some cases, more complex rules which contain more nodesdgied enay be needed,
therefore the reasoner used must not rely on having onlylsimifes. Our current im-
plementation uses RDF [2] and the Jena framework [9] withétseric rule reasoner for
analysis. We mapped our conceptual model to RDF triplesiffipementation details
cannot be discussed here due to space restrictions. Rulagsaspecify the most gen-
eral class to which they apply, but also match subclasseshE@xample analysis rule
this means that hasColumn relationship, which is a specializationledsPart, between
a table and its columns will also be matched. If a meta-moeletla to be analyzed in a
way not covered by the standard ruleset, special rules caly ba added by using the
corresponding subclasses in the rule definitions.

5 Deploying Caro

In the previous two sections we introduced the conceptutdim®odel and the analysis
rules that work on it. We showed that we can handle arbitragyagtata models, and
even cope with incomplete data. For this to work, we makersébasic assumptions:
for all metadata there is a specific meta-model extendingCtisbM, and all meta-

data to analyze will be transformed automatically into aameon format. Further, the

metadata agents detect all changes and notify the changegeracomponent. In this
section we will discuss the manual effort that is needed |fdlfinese assumptions.

Extending the CISDMAIl metadata needs to be described by a meta-model which is
an extension of the CISDM. Although we aim to provide metadeis for SQL and
XML directly, there will in general be the need to define custmeta-models. We
believe that for most cases the effort will be rather small, @epending on the resources
available, one can decide to have a not-so-detailed mode¢ atost of a more coarse-
grained analysis. Tightly coupled with the extension of Gi€DM is the addition of
new analysis rules. As we mentioned, rules will generallyelevery simple structure,

so this is also an unproblematic task.

Transforming the Metadat&ince Caro needs all metadata in form of a graph, the sys-
tem metadata will need to be transformed to the graph forias. basically amounts

to writing custom transformer components for the corresifan MDA. This is not a
scientific effort, only a technical one, since there is alsemmeta-model for the system.
While this is a manual task, it can be accomplished in a ditkogvard way.

Monitoring and Extracting the Metadat®erhaps the biggest problems that Caro and
all similar approaches are facing is how to monitor systeonshanges, and how to
extract the metadata in an automated way. All relational [3BihMve an information
schem@, which makes it very easy create a custom MDA-component tmeixthe
schema and other metadata. Listening for changes gets iiffarelt] since triggers on
system tables are usually not allowed. A solution here cameriodic poll and use of
a “diff” tool to find out what changed, or inspecting lodfilés.this and similar cases,
monitoring and metadata extraction poses no problems.lguetare other scenarios,
e.g., systems only allowing function calls with no simpleegumechanism to inspect
metadata, or where access rights prevent the MDA from ingpged here is no general
solution for these scenarios. An implementation of a custtbA-component might,
e.g., analyze the source code, do probing or check the tmgst of files. Even if the
information that is gathered this way is incomplete, Carstilsable to do analysis on
a more coarse-grained level.

While the manual effort to make the assumptions work may dagh it is far less
than the manual effort needed when integrating informagigstems. In information
integration, specific data schemas (models) have to beratesty matched and mapped
to each other. In Caro, we work with meta-models. Most of tlrekwhas to be done
only once for all instances of a proprietary system type,cuia be provided by third
parties.

6 Conclusions and Outlook

We presented a generic approach to change impact analyisis uges inference rules
for processing. The approach can be applied to a wide rangeesfarios. There are

2 not all DBMS may have a information schema conforming to teeer SQL standards, but
all have a proprietary variant of it.

no constraints on which systems can be monitored and ambfgrehanges. If a sys-
tem with a proprietary metadata format is to be analyzedy saime custom MDA-
components need to be developed. Since Caro can also famwdgtio incomplete and
coarse-grained metadata, the initial development timecagtiof these components can
be kept low, at the cost of a less precise analysis leadingte false alarms.

An important question that arises is how Caro handles metadher than SQL and
XML schemas. It is neither possible nor desirable to inclalbenents for all possible
metadata descriptions in the CISDM or CIAM. Instead, thestanmodels themselves
can be extended by adding more possible values to the staipsrpy or subclassing
ModelRelationship andModelElement. In addition to the model extensions, new analysis
rules need to be defined, too. Thisimposes no problem, dieaeiles are generally very
simple. The main goal of our work is to analyze the impact @fraes in an integrated
environment of heterogeneous information systems. It dibelinteresting to know to
which extent our approach could be used in other areas wherartalysis of change
impact is important, like CIA in software development.

One of the next steps is to extend Caro to not only be able wnaatically ana-
lyze changes but also to handle problems that are detectédiedp the developers by
correlating the “old” and the “new” elements (i.e., to betecognize renaming or mov-
ing of elements). Furthermore, it is necessary to providssitdities to give behavioral
advice to systems affected by a change, to enable autoreatition to problems. By
using additional properties for element and relationsloigas, this can happen without
interference with the current system. While the existingtem was developed with this
in mind, the details are subject to future work.

References

1. OWL Web Ontology Language Guide, 2004. http://www.w3/®R/2004/REC-owl-guide-
20040210/.

2. RDF/XML Syntax Specification (Revised), 2004. http:/fmw3.0rg/TR/2004/REC-rdf-
syntax-grammar-20040210/.

3. S. Ajila. Software Maintenance: An Approach to Impact Ksi of Objects ChangeSoft-
ware — Practice and Experienc25(10):1155-1181, October 1995.

4. P. Andritsos, A. Fuxman, A. Kementsietsidis, R. J. Mjleend Y. Velegrakis. Kanata: Adap-
tation and Evolution in Data Sharing Systen8IGMOD Record33(4):32—-37, December
2004.

5. P. A. Bernstein. Applying Model Management to Classicat&dData Problems. IRroc. of
the 1st Conference on Innovative Data Systems ResearchR{C2D03.

6. S. A. Bohner and R. S. Arnold, editorSoftware Change Impact Analysi€EE Computer
Society Press, Los Alamitos, CA, USA, 1996.

7. L. Deruelle, M. Bouneffa, G. Goncalves, and J.-C. Nicolagcal and Federated Database
Schemas Evolution: An Impact Propagation ModelPhoc. of the 10th International Con-
ference on Database and Expert Systems Applications (DEpé4es 902-911, 1999.

8. C.Dorda, H.-P. Steiert, and J. Sellentin. Modellbasiefinsatz zur Anwendungsintegration.
it — Information Technology46(4):200-210, 2004.

9. Hewlett-Packard. Jena - A Semantic Web Framework for ,Ja2805.
http://jena.sourceforge.net/.

10

11.

12.

13.

14.

15.

16.

17.

. A. Keller and C. Ensel. An Approach for Managing ServiepBndencies with XML and
the Resource Description Framework. Technical report, ,|BB02.

P. McBrien and A. Poulovassilis. Automatic migratiordamrapping of database applica-
tions — a schema transformation approachlntnConf. on Conceptual Modeling/the Entity
Relationship ApproachL999.

R. McCann, B. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doaapping Maintenance for
Data Integration Systems. Rroceedings of the 31st VLDB Conferen2e05.

S. Melnik, E. Rahm, and P. A. Bernstein. Developing Matadntensive Applications with
Rondo.Journal of Web Semantic$(1), 2004.

E. Rahm and P. A. Bernstein. A survey of approaches toraitto schema matchiny/LDB
Journal 10:334-350, 2001.

J. F. Roddick. Schema Evolution in Database Systems —rxotated BibliographySIG-
MOD Record 21(4):35-40, 1992.

B. G. Ryder and F. Tip. Change Impact Analysis for Obfedented Programs. IRroceed-
ings of PASTE2001.

X.Zhang and E. A. Rundensteiner. Data Warehouse MantenUnder Concurrent Schema
and Data Updates. Technical report, Worcester Polytedhstitute, 1998.

