
Change Management in Large-Scale Enterprise
Information Systems

Boris Stumm

University of Kaiserslautern
stumm@informatik.uni-kl.de

Abstract. The information infrastructure in today’s businesses consists of many
interoperating autonomous systems. Changes to a single system can therefore
have an unexpected impact on other, dependent systems. In our Caro approach
we try to cope with this problem by observing each system participating in the
infrastructure and analyzing the impact of any change that occurs. The analysis
process is driven by declaratively defined rules and works with a generic and ex-
tensible graph model to represent the relevant metadata that is subject to changes.
This makes Caro applicable to heterogeneous scenarios and customizable to spe-
cial needs.

1 Introduction

In today’s businesses, information infrastructures are getting more and more complex.
There are many heterogeneous systems with a manifold of mutual dependencies leading
to unmanageability of the overall infrastructure. New dependencies between existing
systems evolve and new systems are added. Generally, there is no central management
of all systems.

Small, local changes can have a major impact at company-widescale due to the
dependencies between systems. To keep everything running,it is therefore necessary to
preventivelyanalyze the impact of a change, to be able to make adjustmentsin case of
conflicts without compromising the infrastructure. While the heterogeneity of systems
and the problem of incomplete metadata make change impact analysis already a hard
task, the situation becomes even more difficult as changes are not always planned glob-
ally and in advance. Thus, unexpected problems may occur after a change is carried
out, making areactivechange impact analysis necessary. We present Caro, an approach
for change impact analysis (CIA) that is able to operate evenunder these adverse con-
ditions.

When speaking of changes, we refer to metadata changes. In our context, metadata
includes not only data schemas, but also APIs, configurationfiles, assertions about data
quality and performance, etc., in short, everything that other systems could rely on.

Problem StatementThe problems that we face in change management and which we
address with our approach can be divided into three categories:

– Heterogeneity. The connected systems often have differentdata models (e.g. XML
or SQL), different interfaces (e.g. query or function calls), etc.



– Incomplete metadata. In general, it is not possible or feasible to get all metadata
for an exact CIA. There may be no easy way to query the metadataof a system,
documentation is often outdated or non-existent, and dependencies between sys-
tems can be hidden in procedural code, which in the worst casewould have to be
decompiled to get the required information. While it is theoretically possible to get
exact metadata, in practice, the costs may be too high.

– System autonomy and missing global management. In practice, many systems are
black boxes that cannot be controlled from outside. This especially holds true if
an integration environment spans over several departmentsor even several compa-
nies, and complicates access to such systems. Changes are applied without global
analysis, and without notification to the affected systems.Thus, problems emerge
unexpectedly, and it is hard to find the cause.

Contribution Caro is a concept which includes three main components responsible for
addressing the discussed problems:

– We propose anarchitecturewhich allows a central or distributed approach to
change impact analysis. We have software components calledmetadata agents,
which, amongst other things, monitor the systems participating in the integration
infrastructure for changes. Thechange managerallows for preventive CIA as well
as reactive CIA.

– We present ametamodelwhich allows us to handle and homogenize the heteroge-
neous metadata encountered. It is designed to be extensibleto describe arbitrary
metadata at arbitrary granularities.

– We use a robust and genericanalysis algorithmwhich can handle incomplete meta-
data. It works on a best-effort basis based on the input metadata, and the quality of
the analysis results will gracefully degradate as input metadata gets less complete
or more coarse-grained.

With these concepts, Caro is applicable to a wide range of different systems, and thus a
wide range of different changes can be detected and analyzed.

Related WorkIn the context of information integration, much research has been done.
Some approaches are complementary to ours, and others are similar to Caro in some
aspects. The most important distinguishing facts of Caro are its genericity, robustness
and scope. It makes no assumptions about the environment it operates in, and can be
used for any scenario where change impact analysis is necessary.

Dorda et al. [8] present an approach which is quite similar toCaro with respect to the
problems addressed. However, the solution they propose is different in two fundamen-
tal points: They require a central documentation (or metadata) repository and a strict
process policy. This constrains their approach to scenarios where it is feasible to have
a central repository and to enforce adherence to defined processes. While they want to
avoid integration clusters1, we think that such a clustering (and thus decentralization)
in large EIS cannot be avoided.

1 integration clusters are called “integration islands” in [8].



Deruelle et al. [7] present another approach to change impact analysis. They use
a multigraph and change propagation rules for analysis, which is very similar to Caro.
Their approach has several limitations. The focus lies on preventive change impact anal-
ysis, thus they lack a framework to support reactive CIA. Apparently, they do not con-
sider the problem of incomplete metadata. Also, their meta-model and rules are rather
specialized, which makes the extension to support other data models and change types
more difficult than with Caro.

Various other approaches to CIA in information systems exist that are limited with
respect to the supported data models [10] or scope and support of exact analysis [12].
The concepts of change impact analysis in software systems [6, 3, 16] are similar to the
ones we use. However, the models and analysis procedures focus on the elements that
are found in software: methods, signatures, classes, attributes and so on. In addition,
CIA for software systems is usually done preventively. Aspects of heterogeneity, meta-
data incompleteness and distribution are not that relevantas they are in information
systems.

Research done in the field of schema evolution [15, 4, 17], schema matching [14, 13,
11] or model management [5] are complementary to our approach. Especially the latter
approaches are used to plan and realize integration, generally between only two or a
small group of systems, as well as adapt systems to changing requirements. Caro is not
designed for use in the initial stages of an integration project. It will take the results of
such a project, namely the dependencies between the systemsthat were created based on
schema matches or mapping definitions, and monitor them for changes. When a change
occurs, Caro will analyze the impact of it and notify the responsible person. If problems
are encountered, the output of Caro can be the input for the information integration
tools that are used to repair the impacted systems. Caro focuses on the monitoring of
systems participating in the overall information infrastructure and the detection of the
global impact of changes. As such, it “fills the gap” to an overall management of a
heterogeneous integrated environment.

Structure of the PaperIn the following sections, we will first give an overview over
the architecture of our CIA approach (Sect. 2). We discuss the conceptual meta-model
on which our approach is based on in Sect. 3. In Sect. 4 our approach to conduct the
analysis is presented. In Sect. 5 we will discuss some of the issues that arise during the
preceeding sections. Finally we finish with conlusions and outlook in Sect. 6.

2 Overview

Central architectural components of Caro are the metadata repository (MDR) and the
change manager (CM) (see Fig. 1). The MDR is a passive component that holds the
metadata of the different information systems in a common representation. It provides
an interface to query and update the stored metadata. All metadata is versioned, to be
able to keep track of any changes that happened in the past. The CM is a reactive com-
ponent responsible for the analysis of changes. It can analyze change proposals issued
via the user interface, or react to changes that have happened in an observed system.
The third component in our architecture is constituted by metadata agents (MDA). Ev-
ery system participating in CIA is monitored by an MDA responsible for mediating



analyzer processing queue

query interface storage

manager
change

repository
metadata

MDA APICM API

Caro MDA GUICaro CM GUI

storagetransformer

metadata extractor

information system

observer
agent
metadata

Fig. 1. Caro architecture

between the CM, the observed information system and the human responsible for it.
An MDA consists of various subcomponents. The metadata extractor is needed to ini-
tially extract all metadata from the underlying system and to later pick up changes. A
transformer component maps the extracted metadata to the Caro format. The observer
component serves as a guard and watches for changes in the information system. For
caching purposes there is a storage component. The MDA communicates with the CM
via asynchronously to not block either component. The MDA parts written in bold face
are those that need to be customized for each information system. Caro provides generic
functionality, and specific functionality can be added via aplugin mechanism. To con-
figure the components, GUIs for the CM and the MDAs will be provided. Furthermore,
the GUIs give a global (CM GUI) or local (MDA GUI) view of metadata and depen-
dencies and are used as interface for preventive CIA. The MDAGUI is constrained to
a local analysis, which is also useful (e.g., to analyze how views are affected if a base
table changes). In the following sections, the main focus lies on the metadata model
and the analysis approach. The issues that arise in the functionality of the MDAs, such
as detecting changes in system metadata, conversion from a source’s native metadata
representation or modeling dependencies, are discussed inSect. 5.

Caro can also be used in a distributed way. Several change managers, each respon-
sible for a part of the overall system, can communicate with each other and pass on
their analysis results. This enables the use of Caro in caseswhere a centralized solution
is not feasible. An example scenario for this is shown in Fig.2. This way it is possible
to restrict the data passed on to the other servers, which canbe important for security
reasons.

Our base assumption is that every single system in an integrated information in-
frastructure provides various kinds of services to other systems. We refer to this set of
services as the system’sprovision. For each accessing client system, there may exist a
different provision set, depending on the authorizations of it. Complementary to this,
the part of the provision that is used by the client system is calledusage. A client sys-
tem as a usage for each system it depends on. Note that the usage of the client needs
not to be identical to the provision of the server system. In general, the usage will be
a subset of the provision, or may even contain elements not present in the provision. If
that happens, there exists a problem which will be recognized by our approach.

We do not use the more common terms import or export schema, since provisions
and usages can contain more than only schema data, and may, for example, include con-



MDA

Complaints

Customers
Warehouse

MDA

Stock

MDAMDAMDA MDA MDA MDA

Change
Management
Layer

Agent
Layer

System
Layer

Information

Customers CareDistribution

Caro Server Caro Server Caro Server

Marketing

Fig. 2.Distributed Caro architecture

P

PP

UU
Di

De De

Fig. 3.Provision and usage specifications, internal and external dependencies

figuration data, technical metadata, quality assertions (“The data provided is less than
a day old.”) or activity information (“The ETL process runs every Saturday at 0:00.”).
Figure 3 illustrates provisionsP, usagesU and the dependenciesD between them.Ex-
ternal dependencies(De) exist between a provision and a usage of different systems.
The usage depends on the corresponding provision to be made.Internal dependencies
(Di) exist between the provision and usageswithin a system. Services provided (in the
provision) may be dependent on the use (in the usage) of othersystem’s services. A
simple example is a federated DBMS, whose provision is basically a view on the pro-
visions of the base systems. In this case, the internal dependencies are represented by
the view definitions in the federated DBMS.

Change impact analysis is an integral part of a largersystem evolution process,
which is happening in every information infrastructure. System evolution includes all
changes that occur to systems that are part of the infrastructure. In ideal scenarios, be-
fore any change is applied, its impact will be analyzed. We call this preventive CIA.
Depending on the analysis result, some adjustments may be made to minimize the im-
pact or to adapt the impacted systems. Caro supports this process by providing tools and
interfaces to do preventive CIA before changes are made. In practice, such ideal scenar-
ios do not exist, mostly due to the autonomy of systems involved. The larger the number
of integrated systems, the more probable it is that changes are made without prior anal-
ysis or coordination. Caro monitors every system and detects changes shortly after they
occur.Reactive CIAis then initiated automatically, and administrators of impacted sys-
tems are notified. The analysis process itself is identical for both cases. The difference
lies only in the type of input data (proposed changes vs. already applied changes) and
in the actions taken after analysis. With preventive CIA, results will have no effect on



InternalDependency

ExternalDependency

Dependency

<<enumeration>>
Status

deleted
added

changed
...

Compound

ModelElement

hasPart label

Table hasColumnColumn

hasParameter

Part

Literal
value

ContentModel Attribute hasAttribute hasContentModel

derivedFrom subclassOf

provision

provision
usage

CIAMElement

type: Type
issuedBy

status: Set<Status>

usage

1

0..*
0..*

1

1

0..*

0..* 1

usage
provision

<<enum>>
Type

CIAM

1

0..*

0..*

specific data model (relational)

(XML)XElement

ModelRelationship

hasType

source

Element
1

target core CISDM

Fig. 4.Caro meta-models

running systems, whereas with reactive CIA, affected systems may be disabled, or other
measures may be taken, to prevent data corruption or incorrect query results.

3 Conceptual Model

An important consideration was the choice of the meta-modelto use in our approach.
It must be possible to represent arbitrary metadata and dependencies, without assuming
any data model (like SQL or XML) or types of dependencies. There has to be support
for a declarative specification of change impact, and the possibility to describe metadata
at different granularities. These requirements are met by our conceptual model.

The base assumption we build our model on is the following: A metadata descrip-
tion consists ofelementsand therelationshipsbetween them. Elements areatomic in-
formation units. In the relational world, a table definition consists of manyelements,
namely the element representing the table itself, the name of the table, elements for ev-
ery column, column name and column type, and so on. A metadatadescription can then
be expressed as a bipartite digraph with node typesE andR representing elements and
relationships, similar to the ER-model. Relationship nodes represent a binary relation
between element nodes and thus always have one incoming and one outgoing edge.
Expressing relationships as nodes and not as edges has its reason in that there can be
dependencies between relationships.

The elements in the metadata graph are instances of elementsdefined in the Caro
meta-model. This meta-model has two parts, thechange-impact system description
model(CISDM) and thechange-impact analysis meta-model(CIAM). Both of them
are depicted in Fig. 4. We aim to provide more complex class-building constructs, like
it is possible in OWL [1], but for readability we used an UML-like syntax in the figure.



The CISDM defines classes that capture the semantics that arerelevant to CIA. The
figure shows a selection of these. The top level classes areElement, which all element
nodes are instances of, andModelRelationship for the relationship nodes.ModelRela-
tionships connect twoElements, as we have stated before. Literals have no outgoing
edges, since they only function as containers for values of other Nodes. For each CIA-
relevant “role” that a node may have, the top level classes are subclassed. In the figure,
two roles for element nodes (Compound andPart), and several roles for relationship
nodes are shown. The CISDM itself is not intended to model metadata graphs directly.
It is an abstract meta-model from which concrete meta-models can inherit, assigning
CIA semantics to their elements. In the lower part of the figure, this is shown for some
elements of the relational and XML data model. The change impact analysis is done
only with the information that the generic part of the CISDM provides, whereas the
metadata is described in terms of the corresponding data model. Change impact proper-
ties are assigned to meta-model elements by inheritance, which makes it easy to adapt
existing meta-models for use in Caro by simply adding the CISDM classes as super-
classes to the model.

While the CISDM is used to model the change impact propertiesof metadata de-
scriptions, the CIAM provides means to connect different graphs via dependencies and
enables setting the status of nodes (e.g., toadded or deleted). The upper part of Fig. 4
shows the CIAM. Main classes areDependency andCIAMElement. Each dependency
connects twoCIAMElements, which are eitherModelElements or ModelRelationships.
The connected elements have one of two roles:provision or usage. CIAMElement has
two other properties. Thestatus property holds the current analysis result for this ele-
ment. For simplicity, only the three status valuesadded, deleted andchanged are shown
in the figure. TheissuedBy property denotes the observed system which the graph be-
longs to. With this model, not only dependencies between elements, but also between
relationships can be expressed.

There is no requirement for metadata graphs to be complete, or every dependency
to be modeled. If there is a dependency between a table in a source system and a feder-
ated DBMS, the individual column elements need not be connected via dependencies.
The most coarse-grained metadata graph would consist only in one element node per
system, and dependency nodes showing how systems are related to each other. This
does not allow a very precise analysis, but in this way no system will be “forgotten”
if a change occurs somewhere. Since fine-grained metadata can be very expensive to
get, it can be decided on a case-by-case basis if an exact analysis is required or if more
false alarms are acceptable. There are no constraints on thetypes of metadata changes
that can be captured. If the corresponding elements and their dependencies are mod-
eled, changes will be detected. Although in our prototype wefocus on schema changes,
Caro is not limited to that. Some examples that come to mind are function signatures,
classes, methods, directory layouts, application configuration files, installed software.
Even more dynamic metadata such as network capacity, free disk space, or CPU perfor-
mance can be modeled and analyzed. Of course, the CISDM will probably have to be
extended, and some more analysis rules may be required. We will discuss this in Sect. 5.



:hasPart

status = added

:Compound

status + changed

rule

:hasPart

status = added

:Compound

graph before analysis

:hasPart

status = added

:Compound

status = changed

graph after analysis

Fig. 5. Example rule

4 Analysis

The analysis of a change is done by applying impact rules to the metadata graph until
no more rules can fire. Conceptually the rules and the graphs they operate on have the
following characteristics:

– Each rule has apremise, which is a graph pattern specifying nodes and their prop-
erties. If the premise matches a subgraph, theconclusionof the rule is applied. The
conclusion is always a list of property values that will be added to a specific node.

– Each node has a finite set of properties that are identified by property names.
– If a part of a conclusion already exists in the graph, only themissing part is added.

These characteristics make the appliance of rules monotonic. Besides that, order of
rule appliance does not matter. This ensures that analysis will always produce the same
output if given the same input and that the calculation will always terminate.

Figure 5 shows a simple rule in a graphical notation on the left. Text written in nor-
mal font constitutes the premise. The conclusion is writtenin boldface. The analysis
rule shown in the figure adds thechanged-status to a compound if a part was added.
Although the rule is quite simple, we argue that in the majority of cases, such sim-
ple rules suffice, making the analysis procedure similar transitive closure algorithm. In
some cases, more complex rules which contain more nodes and edges may be needed,
therefore the reasoner used must not rely on having only simple rules. Our current im-
plementation uses RDF [2] and the Jena framework [9] with itsgeneric rule reasoner for
analysis. We mapped our conceptual model to RDF triples. Theimplementation details
cannot be discussed here due to space restrictions. Rules always specify the most gen-
eral class to which they apply, but also match subclasses. For the example analysis rule
this means that ahasColumn relationship, which is a specialization ofhasPart, between
a table and its columns will also be matched. If a meta-model needs to be analyzed in a
way not covered by the standard ruleset, special rules can easily be added by using the
corresponding subclasses in the rule definitions.

5 Deploying Caro

In the previous two sections we introduced the conceptual meta-model and the analysis
rules that work on it. We showed that we can handle arbitrary metadata models, and
even cope with incomplete data. For this to work, we make several basic assumptions:
for all metadata there is a specific meta-model extending theCISDM, and all meta-
data to analyze will be transformed automatically into our common format. Further, the



metadata agents detect all changes and notify the change manager component. In this
section we will discuss the manual effort that is needed to fulfill these assumptions.

Extending the CISDMAll metadata needs to be described by a meta-model which is
an extension of the CISDM. Although we aim to provide meta-models for SQL and
XML directly, there will in general be the need to define custom meta-models. We
believe that for most cases the effort will be rather small, and depending on the resources
available, one can decide to have a not-so-detailed model atthe cost of a more coarse-
grained analysis. Tightly coupled with the extension of theCISDM is the addition of
new analysis rules. As we mentioned, rules will generally have a very simple structure,
so this is also an unproblematic task.

Transforming the MetadataSince Caro needs all metadata in form of a graph, the sys-
tem metadata will need to be transformed to the graph format.This basically amounts
to writing custom transformer components for the corresponding MDA. This is not a
scientific effort, only a technical one, since there is already a meta-model for the system.
While this is a manual task, it can be accomplished in a straightforward way.

Monitoring and Extracting the MetadataPerhaps the biggest problems that Caro and
all similar approaches are facing is how to monitor systems for changes, and how to
extract the metadata in an automated way. All relational DBMS have an information
schema2, which makes it very easy create a custom MDA-component to extract the
schema and other metadata. Listening for changes gets more difficult, since triggers on
system tables are usually not allowed. A solution here can bea periodic poll and use of
a “diff” tool to find out what changed, or inspecting logfiles.In this and similar cases,
monitoring and metadata extraction poses no problems. But there are other scenarios,
e.g., systems only allowing function calls with no simple query mechanism to inspect
metadata, or where access rights prevent the MDA from inspection. There is no general
solution for these scenarios. An implementation of a customMDA-component might,
e.g., analyze the source code, do probing or check the timestamps of files. Even if the
information that is gathered this way is incomplete, Caro isstill able to do analysis on
a more coarse-grained level.

While the manual effort to make the assumptions work may seemhigh, it is far less
than the manual effort needed when integrating informationsystems. In information
integration, specific data schemas (models) have to be integrated, matched and mapped
to each other. In Caro, we work with meta-models. Most of the work has to be done
only once for all instances of a proprietary system type, or could be provided by third
parties.

6 Conclusions and Outlook

We presented a generic approach to change impact analysis which uses inference rules
for processing. The approach can be applied to a wide range ofscenarios. There are

2 not all DBMS may have a information schema conforming to the newer SQL standards, but
all have a proprietary variant of it.



no constraints on which systems can be monitored and analyzed for changes. If a sys-
tem with a proprietary metadata format is to be analyzed, only some custom MDA-
components need to be developed. Since Caro can also function with incomplete and
coarse-grained metadata, the initial development time andcost of these components can
be kept low, at the cost of a less precise analysis leading to more false alarms.

An important question that arises is how Caro handles metadata other than SQL and
XML schemas. It is neither possible nor desirable to includeelements for all possible
metadata descriptions in the CISDM or CIAM. Instead, these meta-models themselves
can be extended by adding more possible values to the status property or subclassing
ModelRelationship andModelElement. In addition to the model extensions, new analysis
rules need to be defined, too. This imposes no problem, since the rules are generally very
simple. The main goal of our work is to analyze the impact of changes in an integrated
environment of heterogeneous information systems. It would be interesting to know to
which extent our approach could be used in other areas where the analysis of change
impact is important, like CIA in software development.

One of the next steps is to extend Caro to not only be able to automatically ana-
lyze changes but also to handle problems that are detected, and help the developers by
correlating the “old” and the “new” elements (i.e., to better recognize renaming or mov-
ing of elements). Furthermore, it is necessary to provide possibilities to give behavioral
advice to systems affected by a change, to enable automatic reaction to problems. By
using additional properties for element and relationship nodes, this can happen without
interference with the current system. While the existing system was developed with this
in mind, the details are subject to future work.

References

1. OWL Web Ontology Language Guide, 2004. http://www.w3.org/TR/2004/REC-owl-guide-
20040210/.

2. RDF/XML Syntax Specification (Revised), 2004. http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/.

3. S. Ajila. Software Maintenance: An Approach to Impact Analysis of Objects Change.Soft-
ware – Practice and Experience, 25(10):1155–1181, October 1995.

4. P. Andritsos, A. Fuxman, A. Kementsietsidis, R. J. Miller, and Y. Velegrakis. Kanata: Adap-
tation and Evolution in Data Sharing Systems.SIGMOD Record, 33(4):32–37, December
2004.

5. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. InProc. of
the 1st Conference on Innovative Data Systems Research (CIDR), 2003.

6. S. A. Bohner and R. S. Arnold, editors.Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1996.

7. L. Deruelle, M. Bouneffa, G. Goncalves, and J.-C. Nicolas. Local and Federated Database
Schemas Evolution: An Impact Propagation Model. InProc. of the 10th International Con-
ference on Database and Expert Systems Applications (DEXA), pages 902–911, 1999.

8. C. Dorda, H.-P. Steiert, and J. Sellentin. Modellbasierter Ansatz zur Anwendungsintegration.
it – Information Technology, 46(4):200–210, 2004.

9. Hewlett-Packard. Jena – A Semantic Web Framework for Java, 2005.
http://jena.sourceforge.net/.



10. A. Keller and C. Ensel. An Approach for Managing Service Dependencies with XML and
the Resource Description Framework. Technical report, IBM, 2002.

11. P. McBrien and A. Poulovassilis. Automatic migration and wrapping of database applica-
tions – a schema transformation approach. InInt. Conf. on Conceptual Modeling/the Entity
Relationship Approach, 1999.

12. R. McCann, B. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan. Mapping Maintenance for
Data Integration Systems. InProceedings of the 31st VLDB Conference, 2005.

13. S. Melnik, E. Rahm, and P. A. Bernstein. Developing Metadata-Intensive Applications with
Rondo.Journal of Web Semantics, 1(1), 2004.

14. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.VLDB
Journal, 10:334–350, 2001.

15. J. F. Roddick. Schema Evolution in Database Systems – An Annotated Bibliography.SIG-
MOD Record, 21(4):35–40, 1992.

16. B. G. Ryder and F. Tip. Change Impact Analysis for Object-Oriented Programs. InProceed-
ings of PASTE, 2001.

17. X. Zhang and E. A. Rundensteiner. Data Warehouse Maintenance Under Concurrent Schema
and Data Updates. Technical report, Worcester PolytechnicInstitute, 1998.


