

CanonSketch: a User-Centered Tool for Canonical
Abstract Prototyping

Pedro F. Campos and Nuno J. Nunes

Department of Mathematics and Engineering, University of Madeira
Campus da Penteada, 9000-390 Funchal, Portugal

{pcampos,njn}@uma.pt

Abstract. In this paper, we argue that current user interface modeling tools are
developed using a formalism-centric approach that does not support the needs
of modern software development. In order to solve this problem we need both
usable and expressive notations and tools that enable the creation of user-
interface specifications that leverage the design and thought process. In this
paper we present the CanonSketch tool. CanonSketch supports a new UI
specification language – Canonical Abstract Prototypes (CAP) – that bridges
the gap between envisioned user behavior and the concrete user interface. The
tool also supports two additional and synchronized views of the UI: the
Wisdom UML presentation extension and concrete HTML user interfaces. In
this way the tool seamlessly supports designers while switching from high level
abstract views of the UI and low-level concrete realizations.

1 Introduction

Model-based user interface design (MB-UID) has been the target of much research
during the last decade. However, and despite the success obtained by user interface
development tools, approaches based on models are not reaching the industrial
maturity augured in the 90's [4].

In a paper presented at a recent Workshop on MB-UID [9], we argued that in order
to achieve a stronger market acceptance of modeling tools, a new generation of user-
centric tools would have to emerge. The existing tools are focused on the formalisms
required to automatically generate the concrete user-interfaces. This legacy of
formalism-centric approaches prevents the current tools from adequately supporting
the thought and design tasks that developers have to accomplish in order to create
usable and effective user-interfaces. Model based approaches concentrate on high-
level specifications of the user-interface, thus designers loose control over the lower
level details. These problems with MB-UI tools are described in [4]. In particular,
those tools suffered from trying to solve the “whole problem” and thus providing a
“high threshold/low ceiling” result. The threshold is related to the difficulty of
learning a new system and the ceiling is related with how much can be done using the
system. Thus, those tools don’t concentrate on a specific part of the UI design process
and are difficult to learn, while not providing significant results.

152 Pedro F. Campos and Nuno J. Nunes

In order to overcome these limitations, designers directly use a user-interface
builder (a low threshold/low ceiling tool) that provides them with adequate and
flexible support for designing the user-interface. Designers that recognize the value of
modeling at higher levels of abstraction are forced to use different tools and notations
to capture the user-interface specifics at different levels of abstraction – what could be
considered as using many low-threshold/low ceiling tools.

Some of the requirements for such tools were also discussed in a recent workshop
about usability of model-based tools [11]. Among other issues, the participants at the
workshop highlighted the following requirements as paramount to promote usability
in tools: traceability (switching back and forth between models, knowing which parts
can be affected by changes), support for partial designs, knowledge management (for
instance, a class that is selected or modified often is probably more important than
classes not often changed) and smooth progression from abstract to concrete models.

In this paper we present a new tool, under development, that tries to leverage the
users' previous experience with popular Interface Builder (IB) tools in order to
achieve better adoption levels. Our aim is to build a developer-centric modeling tool
that applies successful concepts from the most usable and accepted software tools.
Instead of defining a complex semantic model and formalisms to automatically
generate the user interface (UI), we start by using a simple sketch application and
extending it to accommodate the required concepts and tools. The tool supports the
creation and editing of Canonical Abstract Prototypes [2] and Wisdom Presentation
Models [7]. It is capable of automatically generating HTML interfaces from the
Canonical specification. In this initial phase, we are focusing on specifying GUI’s for
Web-based applications, although conceptually the tool is not restricted to this type of
interface, since the languages are platform and implementation independent.
However, this allows us to test the main concepts of the tool/language by focusing on
a well-known interface type.

This paper is organized as follows: Section 2 relates our work to some approaches
for UI design and Section 3 briefly describes the main notation our tool supports:
Canonical Abstract Prototypes. Section 4 presents CanonSketch, detailing some of its
user-centered features. Section 5 proposes an initial extension to the Wisdom
presentation model in order to support the Canonical notation. Section 6 investigates
the capability of both notations to express UI design patterns in an abstract way.
Finally, Section 7 draws some conclusions on our present work and presents possible
future paths to follow.

2 Prototyping and Sketching Interfaces

Rapid prototyping of interactive systems is a technique used in order to assess design
ideas at an early stage of the development process. It attempts to foster the
collaboration between all the stakeholders involved in the project (managers, end-
users, graphic designers, coders...) and to facilitate iterative cycles of reviewing and
testing.

Being a de facto standard in the development community, the UML provides a
good medium to specify UIs enabling higher acceptance rates and promoting artifact

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 153

interchange between modeling tools. UML class stereotypes have become a very
popular alternative to structure the presentation elements of interactive systems [7]. In
particular, the Wisdom notation complies with the UML standard, thus enhances
communication with software developers. Another strategy, used by the DiaMODL
approach, combines this with a strong linkage to concrete UI elements [10]. Other
approaches are used in different areas: Hypermedia applications, such as in [13] and
[14] and Cooperative System modeling [15].

Prototyping interfaces with electronic sketching tools has also proven successful in
systems such as SILK [3] or DENIM [5]. Sketching is believed to be important during
the early stages of prototyping, because it helps the designers' creative process: the
ambiguity of sketches with uncertain types or sizes encourages the exploration of new
designs without getting lost in the details, thus forcing designers to focus on important
issues at this stage, such as the overall structure and flow of the interaction [3].

However, widget recognition is hard for these systems [3], since any widget
recognition algorithm might be too error-prone. Also, usability tests reported that
some users had trouble manipulating and entering text, and understanding how to
select, group and move objects.

Calgary et al. [16] describe a framework that serves as a reference for classifying
user interfaces supporting multiple targets, or multiple contexts of use in the field of
context-aware computing. This framework structures the development life cycle into
four levels of abstraction: task and concepts, abstract user interface, concrete user
interface and final user interface [16]. These levels are structured with a relationship
of reification going from an abstract level to a concrete one and a relationship of
abstraction going from a concrete level to an abstract one. As we will see in this
paper, maintaining a connection between these levels is well supported in
CanonSketch.

Canonical Abstract Prototypes [2] were developed by Constantine and colleagues,
after a growing awareness among designers regarding the conceptual gap between
task models and realistic prototypes. They provide a common vocabulary for
expressing visual and interaction designs without concern for details of behavior and
appearance. Moreover, they fill an important gap between existing higher-level
techniques, such as UML-based interaction spaces and lower-level techniques, such
as concrete prototypes. This is why we chose this notation as our starting point for our
modeling tool. In the following section, we briefly describe the Canonical notation.

3 Canonical Abstract Prototypes

Constantine [2] proposes a stable collection of abstract components, each specifying
an interactive function, such as inputting data or displaying a notification. Following
on the successful path of interface builders, these components can be selected from a
palette in order to build abstract prototypes, thus fostering flexibility and modeling
usability. Having a standardized set of abstract components also eases the comparison
of alternative designs and enhances communication between members of the
development team [2].

154 Pedro F. Campos and Nuno J. Nunes

The symbolic notation underlying Canonical Abstract Prototypes is built from two
generic, extensible7 universal symbols or glyphs: a generic material or container,
represented by a square box and a generic tool or action, represented by an arrow.
Materials represent content, information, data or other UI objects manipulated or
presented to the user during the course of a task. Tools represent operators,
mechanisms or controls that can be used to manipulate or transform materials [2]. By
combining these two classes of components, one can generate a third class of generic
components, called a hybrid or active material, which represents any component with
characteristics of both composing elements, such as a text entry box (a UI element
presenting information that can also be edited or entered). Figure 1 shows the three
basic symbols of the Canonical Abstract notation. For a more detailed look of the
notation, please refer to Figure 6.

Fig. 1. The three basic symbols underlying the symbolic notation of Canonical Abstract

Prototypes (from left to right): a generic abstract tool, a generic abstract material and a generic
abstract hybrid, or active material (taken from [2]).

Although Canonical Abstract Prototypes lack a precise formalism and semantics

required to provide tool support and automatic generation of UI, we found the
notation expressive enough to generate concrete user interfaces from abstract
prototypes. In the following section, we present our tool, including a proof of
feasibility in which we generate HTML pages from sketches of Canonical Abstract
Prototypes.

4 CanonSketch: The Tool

Different tools (business presentation applications and even sticky notes or
whiteboards) can be used for creating Canonical Abstract Prototypes. However, in
order to assess and benefit from all of the advantages of this notation, software tool
support is ultimately needed [2].

CanonSketch aims at providing a usable and practical tool to support Canonical
Abstract Prototypes. Starting with an easy to learn notation, developed from real
world projects, we built a tool that provides the user a palette of abstract components
that can be drawn, grouped, resized and labeled within a drawing space representing
an interaction space. The tool supports all the successful features one expects to find
in software nowadays, like multiple undo/redo, grid layout, tool tips or send to
back/bring to front.

Our tool already supports the creation (at the syntactic level only) of Wisdom
interaction spaces [6]. Our aim is to leverage developer experience of the Unified
Modeling Language (UML) by designing an extension to the UML that fully supports
Canonical Abstract Prototypes. Figure 2 shows a CanonSketch screenshot of the
Wisdom view, where the designer is creating a Wisdom presentation model as if she

7 Meaning all other components can be derived, or specialized, from these classes.

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 155

were sketching in a simple drawing application. Figure 3 shows a screenshot of the
Canonical view: we can see that there are several palettes of tools available (e.g. for
controlling font-size, coloring and grid layout) and an inspector as well as an optional
ruler.

Fig. 2. CanonSketch screenshot: creating Wisdom UML presentation models.

In our path to building a usable modeling tool for UI design, we began with a

different approach from the conventional way these tools are envisioned: instead of
focusing on the formalisms and semantics, we began with a simple drawing
application and built a modeling tool that relies on interaction idioms more closely
related to Office applications, as we discuss in the following sections. Our remit here
is that we intend to focus on achieving a modeling tool that is as easy to use as a
drawing application.

4.1 User-Centered Features

UI tools represent an important segment of the tool market, accounting for 100
million US Dollars per-year [4]. However, there has been a gross decline on the
modeling tools market revenue, according to reliable sources such as the International
Data Corporation. The lack of usability present in modeling tools is believed to be
responsible for this weak adoption [11].

156 Pedro F. Campos and Nuno J. Nunes

Fig. 3. CanonSketch screenshot: creating and editing Canonical Abstract Prototypes.

A more developer-centered approach was followed in CanonSketch: Figure 4
shows some of the aspects we took into account. Canonical Abstract Prototypes are
organized in terms of sequences of interaction spaces that appear as thumbnails of
their corresponding specifications. By using this pattern, very common on business
presentation applications, we aim at leveraging the existing user experience while also
promoting communication and collaboration between developers and clients (who are
often businessmen familiar with this pattern).

…

Fig. 4. Some of the developer-centered features in CanonSketch.

The center image on Figure 4 shows a selection of several canonical components to
apply a transformation of their interactive function all at once. The rightmost image
shows code completion for when the designer is specifying a Wisdom Interaction
Space (which is a UML class stereotype representing ”space” where the user can
interact with the application). We believe this way of editing UML models is more

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 157

usable than filling in complex forms that only update the UML view after validating
everything the developer introduced.

Finally, the grid layout option may help position and resizing the components more
rapidly, and the tool palettes follow the pattern of the successful Interface Builders.
Tabbed-view navigation is important in order to achieve, in the future, model linkage
at the various stages of the process.

4.2 A proof of feasibility: generating HTML forms

There is a third view in CanonSketch where a concrete prototype, in HTML form, is
automatically generated, thus illustrating one possible concrete implementation. The
concrete prototype is fully navigational, since it is rendered using an embedded, fully
functional web browser, as we can see in Figure 5.

In order to verify the richness of the notation developed by Constantine and
colleagues, and also to support automatic generation techniques, still without a
semantic model defined, we built a proof of feasibility that can be exemplified in
Figure 5. The HTML form shown was automatically generated from the canonical
specification illustrated in Figure 3.

The HTML clickable prototype is useful for rapidly testing the navigational
structure of the specified interface. The tool can also generate a PDF printable version
of the Canonical/Wisdom models, which can act as a means to document the
development process and commit to design decisions made with the client.

Fig. 5. Simple HTML automatically generated from the specification in Figure 2.

In the absence of a semantic model incorporated into our tool, this proof of concept

already shows the potential of the notation, and achieves our goal of checking the
richness of the abstract prototype notation. This is also part of our approach based on
starting from a usable, simple tool and successfully add semantic mechanisms in an
incremental way, rather than building a complex, formalism-centered tool.

158 Pedro F. Campos and Nuno J. Nunes

5 Towards a Common Semantic Model

The automatic generation presented in the previous section was done at this stage
without complete semantics of our intended adaptation of Canonical Abstract
Prototypes. We are currently working on incrementally adding the mechanisms
required to automatically generate concrete user interfaces from abstract prototypes.

From this initial proof of concept, we aim at specifying an extension to the UML
2.0 notation capable of fully supporting Canonical Abstract Prototypes. In particular,
the Wisdom notation [7], which is a set of UML-compatible notations supporting
efficient and effective interactive systems modeling, can be used and refined to
achieve this goal.

In order to maintain synchronized Wisdom/Canonical views, a common semantic
model is required. Specifying such a model will lead to a tool capable of not only
supporting the design process at several stages (from early design ideas to concrete
implementation) but also complementing the weaknesses of one model with the
strengths of the other. The designer will be able to choose between one model view
and switch back and forth while maintaining coherence between the models.

To support the modeling of presentation aspects of the UI, the Wisdom method
proposes the following extensions to the UML [8]:

- «Interaction Space», a class stereotype that represents the space within the UI
where the user interacts with the all the tools and containers during the course of a
task or set of interrelated tasks;
- «navigate», an association stereotype between two interaction space classes
denoting a user moving from one interaction space to another;
- «contains», an association stereotype between two interaction space classes
denoting that the source class (container) contains the target class (contained); The
contains association can only be used between interaction space classes and is
unidirectional.
- «input element», an attribute stereotype denoting information received from the
user, i.e., information the user can operate on;
- «output element», an attribute stereotype denoting information displayed to the
user, i.e., information the user can perceive but not manipulate;
- «action», an operation stereotype denoting something the user can do in the
concrete UI that causes a significant change in the internal state of the system.

Mise en forme : Puces et
numéros

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 159

Fig. 6. Extending the Wisdom profile to support Canonical Abstract Prototypes: this figure
shows the correspondence between Wisdom stereotypes and Canonical components.

Some problems identified with applying the Wisdom approach to UI patterns
derive from the presentation aspects some of the patterns capture, such as size,
position, or use of color [8]. Specifying a linkage between Canonical Abstract
Prototypes and the Wisdom Presentation Model can help solve some of these
problems, while also adding the necessary formalism to the Canonical notation.

In Figure 6, we show an initial specification of a possible connection between the
Wisdom Presentation Model and Canonical Abstract Prototypes. An interaction space
in Wisdom is clearly an interaction context in a Canonical Prototype.

Although not present in Figure 6, the «navigate» association can be unidirectional
or bi-directional; the later usually meaning there is an implied return in the
navigation. This essentially has the same meaning Constantine defines when
describing the Canonical contexts’ navigation map [1].

An «input element» attribute stereotype is mapped to a generic active material,
unless typified. Input elements specify information the user can manipulate in order to
achieve a task.

An «output element» attribute stereotype maps to an element and an «action»
operation stereotype to an action/operation Canonical component.

160 Pedro F. Campos and Nuno J. Nunes

The «contains» association stereotype is mapped to a Canonical container.
We can also see from Figure 6 that one possible initial extension to the Wisdom

presentation model notation to fully support Canonical Abstract Prototypes consists in
adding two more attribute stereotypes:

- «input collection», an attribute stereotype denoting a set of related information
elements received from the user, i.e., a set of input elements; an «input collection»
can be used to select from several values in a drop-down list, or choosing one
element from a table to perform any given operation;
- «output collection», an attribute stereotype denoting a set of related information
elements displayed to the user, i.e., a set of output elements. Typically, an «output
collection» conveys information to the user about a set of elements of the same
kind, for instance a search results list or the results display from a query to a
database.

By typifying these attribute stereotypes, one can map a Wisdom presentation

model to all Canonical components that belong to the classes of Materials or Hybrids.
For instance, an input collection typified as choice can be mapped to a selectable
collection. The designer starts by specifying the general structure of the UI using a
UML extension (the Wisdom notation). That specification is mapped to one or more
Canonical interaction contexts, where the designer expands and details the model in
terms of size, position and interactive functions.

Figure 7 shows an example of a Wisdom Presentation Model for a Hotel
Reservation System (described in and taken from [7]). Figure 8 depicts a Canonical
Abstract Prototype that corresponds to the area inside the dashed rectangle in Figure
7. This mapping clearly shows the role of Wisdom interaction spaces realizing the
interface architecture, and how it can be combined with the Canonical notation to help
bridge the gap between abstract and concrete models of the user interface.

The capability of identifying UI patterns and expressing the solution in an abstract
way independent of any particular platform or implementation is becoming more and
more important, with the increase in the number of information appliances [8]. The
Wisdom notation enables an abstract definition of UI patterns [8], and also complies
with the UML standard. However, some problems remain for patterns expressing
more concrete presentation aspects, such as size or positioning.

Having a tool that provides a common semantic model linking Canonical
components to Wisdom elements can help solve some of these problems. It also adds
the required formalisms for generating concrete user interfaces from Canonical
specifications. We expect to incrementally build such a tool from our current version
of CanonSketch.

As we will see in the next section, both notations can be used in conjunction in
order to express abstract design patterns.

Mise en forme : Puces et
numéros

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 161

Fig. 7. A Wisdom Presentation Model for a Hotel Reservation System (described in and taken
from [7]).

Fig. 8. A Canonical Abstract Prototype for the same Hotel Reservation System as in the area
inside the dashed rectangle in Figure 7.

162 Pedro F. Campos and Nuno J. Nunes

6 Using CanonSketch to represent UI patterns

Since the Canonical Abstract Notation is a way to express visual design ideas that was
devised to support decision-making at a higher level of abstraction than concrete
prototypes, we tried to investigate the ability to express GUI design patterns using
CanonSketch. In this section, we present some examples of the Wisdom notation
extension applied to some GUI patterns (taken from the Amsterdam collection [12])
and also the Canonical representation for the same patterns. As Constantine points
out, “the ability to express design patterns in terms of generalized abstract models has
seen little use in UI patterns”. We still lack some widely accepted notation to
represent commonly used solutions to some interaction tasks in an abstract way that
can be applied to many design scenarios [8].

Throughout this section, all the Figures illustrate a Final User Interface (FUI)
linked to a Concrete User Interface (CUI) or Abstract User Interface (CUI), in the
terms defined in [16]. The FUI is represented by a screenshot of a particular
implementation of the pattern, and the AUI is represented by the Canonical and
Wisdom representations.

Fig. 9. A Wisdom (top left) model, a Canonical prototype (top right), both applied to the
Preview Pattern. A concrete example is shown at the bottom: a dialog from MS PowerPoint.

In Figure 9, we present the Wisdom and Canonical representations for the GUI
Preview pattern [12]. We also present a concrete realization of this pattern (a dialog
from MS PowerPoint). The problem this pattern tries to solve occurs when the user is
looking for an item in a small set and tries to find the item by browsing the set. This

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 163

pattern is particularly helpful when the items’ content nature does not match its index
(e.g. a set of images or audio files are indexed by a textual label). The solution is to
provide the user with a preview of the currently selected item from the set being
browsed [12]. As we can see, there is not much difference in this case. On the one
hand, the Wisdom representation (on the top left), is much more compact, because it
is based on the UML. But the Canonical representation has the advantage of clearly
stating that the browsable list of items is placed to the left of the item preview, which
conforms with the western way of reading and therefore adjusts to the task being
performed: the user first selects an item, and only then he focuses on the preview. It is
also evident that the Canonical notation is much closer to the concrete representation
of this pattern (at the bottom of Figure 9).
In the following pattern, the advantages of combining both Wisdom and Canonical
representations are also evident. The grid layout pattern, also from the Amsterdam
collection [12], tries to solve the problem of quickly understanding information and
take action depending on that information. The solution is based on arranging all
objects in a grid using a minimal number of rows and columns, making the cells as
large as possible [12]. The bottom of Figure 10 shows an example of a concrete GUI
where this is achieved (a dialog box from Word 97). By using this pattern, screen
clutter is minimal and the layout is more consistent. The top of Figure 10 shows the
Wisdom representation at the left and the Canonical representation on the right.

Fig. 10. The grid layout pattern: a Canonical (top left) and Wisdom (top right) representation
and a concrete GUI application (bottom).

It is clear that the Canonical notation has potential for easily expressing patterns that
employ spatial, layout or positioning relationships between UI elements. Both
notations have mechanisms for adding useful comments and constraints. The

164 Pedro F. Campos and Nuno J. Nunes

repetition element in the Canonical notation (represented by a triple chevron) is
expressed as a one-to-many «contains» association in Wisdom.

Figure 11 shows a UI pattern where one can see the advantage of Wisdom over
CAP. The “Wizard” pattern solves the problem of a user that wants to achieve a
single goal, but needs to make several decisions before the goal can be achieved
completely, which may not be know to the user [12]. Figure 11 shows an instantiation
of this pattern through a Wisdom model (top left) that has two interaction spaces:
Wizard body and Wizard step. Multiple steps are denoted by the 1..* cardinality in the
<<contains>> association stereotype. Abstract actions (denoted by the <<action>>
operation stereotype) are associated with each interaction space denoting typical
actions performed in a Wizard pattern (for instance next, back, cancel and finish) [8].

This example illustrates an advantage of Wisdom over CAP regarding the
modeling of navigation relationships between the abstract interface elements. In CAP,
it is not possible to model a container that allows navigation to other instances of
itself (like the Wizard step in this example). Modeling a containment relationship
(like a Wizard body that contains successive interaction Wizard steps) is also difficult,
unless an informal annotation or comments are used.

Finally, we show yet another abstract design pattern, the Container Navigation
pattern [17]. When the user needs to find an item in a collection of containers, this
pattern splits a window into three panes: one for viewing a collection of containers,
one for viewing a container and one for viewing individual items. Figure 12 shows a
Wisdom UML model, the Canonical prototype and a concrete GUI example of this
pattern (Netscape’s mail/news viewer).

Fig. 11. The “Wizard” pattern. The top left part of the figure shows the Wisdom UML
representation, which shows the navigation between “Wizard steps”. The top right shows the
Canonical representation and at the bottom a particular realization: the Add Printer Wizard in
Windows 2000.

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 165

Fig. 12. The container navigation pattern: a Wisdom (top left) model, a Canonical prototype
(top right) and a concrete GUI application (bottom), in this case Netscape’s news reader.

In order to adequately express this UI pattern, size and relative positioning do matter.
They support the user’s task because the user first selects a container, then selects the
item in the container and finally browses through the selected item. The information
that the collection of containers occupies the left part of the screen, and that the item
view is at the bottom right can only be conveyed through the Canonical notation.

To conclude, we observe that the Wisdom notation has some advantages over
CAP, mainly due to its’ compactness and the fact that is based on a language (UML)
well understood and adopted by the majority of developers and designers. For
expressing navigation patterns that involve several interaction spaces, such as the
Wizard pattern [8], the Wisdom notation is more expressive and intuitive. Patterns
dealing with spatial layout and size aspects are more clearly represented using CAP.
The designer’s mind works at several levels of abstraction, thus there is a need for
languages and tools supporting those multiple levels of abstraction, while also
maintaining a low learning curve.

When trying to express and compare the abstract design patterns presented in this
section, we found CanonSketch to be a very useful and practical tool, because it
supports two different notations that employ different levels of abstraction and also
because it can easily be used to compile a collection of design patterns, thus
simplifying the design’s comparison and communication.

166 Pedro F. Campos and Nuno J. Nunes

7 Conclusions and Future Work

To offer software engineers a usable, efficient and effective set of tools and methods
is an important step towards building valuable, easy to use software. The same
concepts that apply to the production of usable software also apply to the production
of modeling tools. Our remit with CanonSketch is to achieve a modeling tool for MB-
UID that is as easy to use as a drawing application. In this paper we presented the
CanonSketch tool that supports the design of Canonical Abstract Prototypes as well as
Wisdom Presentation Models. The CanonSketch project described here attempts to
change the way modeling tools are built and envisioned. Existing tools are built using
a formalism-centric approach, driven by the underlying semantics required by
automatic generation techniques and not by the real needs of developers. Instead of
focusing on the mechanisms required for automatic generation techniques, we focus
on the successful features of usable software and on interaction idioms more closely
related to Office-like applications.

One of the limitations of our approach is the fact that there is not a simple and
clearly defined process of using the Canonical notation to specify interfaces for
multiple devices. Although CanonSketch can clearly allow multi-platform
development (Win, Mac, Palm, Web…) multimodal interfaces are not supported by
this tool.

Nevertheless, even in the absence of model semantics, a tool like CanonSketch has
significant value in specifying the architecture of complex interactive systems. Being
able to generate HTML also means the notation is expressive enough to support
automatic generation techniques and that it is possible to generate UI’s for any
platform based on GUI’s and Forms like JavaSwing, Palm, Windows or MacOS.
After this initial proof of feasibility, we presented a first specification for a UML
extension based on the Wisdom notation that is a step towards a full support of
Canonical Prototypes in a language that had a major impact on Software Engineering
but still remains far from achieving the industrial maturity augured in the 90’s,
regarding UI modeling. We also showed how useful the tool can be in expressing UI
patterns, and compared Wisdom UML representations of some patterns to the
Canonical representations using the proposed correspondence between the two
notations. We showed that patterns dealing with spatial or layout aspects could be
adequately expressed in a Canonical representation, while Wisdom UML is better at
modeling navigation relationships. We are currently finishing the integration of the
semantic model of the UML into the tool. This will allow, among other possibilities,
to export the abstract UI specification in XMI format, thus promoting artifact
exchange between UML-based tools.

As for future work, it would be interesting to identify which notation designers
prefer according to the development stage and the type of prototype they are busy
with (low, mid or high fidelity). We also expect to refine the Wisdom notation taking
advantage of the enhanced extensibility mechanism provided by UML 2.0, and add
other features such as knowledge management (capturing hidden information, like the
most edited classes or interaction contexts, etc.), support for changing requirements
and integration with application development in order to bridge the gap between
industry and academy.

CanonSketch: a User-Centered Tool for Canonical Abstract Prototyping 167

References

1. Constantine, L. and Lockwood, L. A. D.: Software for use : a practical guide to the models
and methods of usage-centered design, Addison Wesley, Reading, Mass, 1999.

2. Constantine, L.: Canonical Abstract Prototypes for abstract visual and interaction design. In:
Jorge, J., Nunes, N. and Falcão e Cunha, J. (eds.): Proceedings of DSV-IS’2003, 10th
International Conference on Design, Specification and Verification of Interactive Systems.
Lecture Notes in Computer Science, Vol. 2844. Springer-Verlag, Berlin Heidelberg New
York, 2003.

3. Landay, J. and Myers, B.: Sketching Interfaces: Toward More Human Interface Design.
IEEE Computer, pages 56-64, March 2001.

4. Myers, B., Hudson, S. and Pausch, R.: Past, Present and Future of User Interface Software
Tools. ACM Transactions on Computer Human Interaction, 7(1):3-28, March 2000.

5. Newman, M., Lin, J., Hong, J. I. and Landay, J. A.: DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Computer Interaction, 18(3):259-324,
2003.

6. Nunes, N. J.: Wisdom - A UML based architecture for interactive systems. In Proceedings of
the DSV-IS’2000, Limerick, Ireland. Springer-Verlag.

7. Nunes, N. J.: Object Modeling for User-Centered Development and User Interface Design:
the Wisdom Approach. PhD Thesis, University of Madeira, Funchal, Portugal, April 2001.

8. Nunes, N. J.: Representing User-Interface Patterns in UML. In Proceedings of OOIS'03 - 9th
European Conference on Object-Oriented Information Systems, pages 142-163, Geneva,
Switzerland, 2003.

9. Nunes, N. J. and Campos, P.: Towards Usable Analysis, Design and Modeling Tools. In
Proceedings of the IUI/CADUI'04 Workshop on Making model-based UI design practical:
usable and open methods and tools, Funchal, Portugal, January 2004.

10. Trætteberg, H. Dialog modelling with interactors and UML Statecharts - A hybrid
approach. In Proceedings of DSV-IS'2003, 10th International Workshop on Design,
Specification and Verification of Interactive Systems. Springer-Verlag, 2003.

11. Trætteberg, H., Molina, P. J. and Nunes, N. J. (eds.): Proceedings of the IUI/CADUI'04
Workshop on Making model-based user interface design practical: usable and open
methods and tools, Funchal, Portugal, 2004.

12. M. van Welie and Trætteberg, H.: Interaction Patterns in User Interface. In PLoP 2000.
2000.

13. Koch, N. and Wirsing, M.: Software Engineering for Adaptive Hypermedia Systems. In
Paul de Bra, editor, Third Workshop on Adaptive Hypertext and Hypermedia, 8th
International Conference on User Modelling, July 2001.

14. Schwabe, D. and Rossi, G.: An Object-Oriented Approach to Web-Based Application
Design, Theory and Practice of Object Systems 4 (4), 1998. Wiley & Sons, New York.

15. Garrido, J. L. and Gea, M.: A Coloured Petri Net Formalisation for a UML-Based Notation
Applied to Cooperative System Modelling. In Proceedings of DSV-IS'2003, 10th
International Workshop on Design, Specification and Verification of Interactive Systems.
Springer-Verlag, 2003.

16. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces, Interacting with
Computers, Vol. 15, No. 3, June 2003, pp. 289-308.

17. Nilsson, E. Combining compound conceptual user interface components with modeling
patterns: a promising direction for model-based cross-platform user interface development.
In Proceedings of DSV-IS'2003, 10th International Workshop on Design, Specification and
Verification of Interactive Systems. Springer-Verlag, 2002.

168 Pedro F. Campos and Nuno J. Nunes

Discussion

[Morten Harning] How does your approach cope with the Wizard pattern with respect
to enabling/diabling availability of "next" and "previous" buttons, e.g. showing that
"previous" should not be part of the first step and "next" should not be part of the last?

[Pedro Campos] We can not show that kind of information in a formal way,
but we can add informal notes as used in the previous examples where a note
describes that the preview is synchronized with the selected item.

[Morton Harning] Does that not mean that <<navigates>> is just a high-level note?

[Pedro Campos] Yes, there is no free lunch!

[Greg Phillips] In Constantine`s method, the development of Canonical Abstract
Prototypes is typically done in parallel with context maps. Does your tool support
context maps?

[Pedro Campos] Yes, in the sense that the Wisdom "navigates" relation
represents navigation. This is shown in the prototype side by separate slides.

[Greg Phillips] A component then; maybe part of an answer to Morten's question is
that the wizard pattern isn't a single interaction context, as you've shown, but rather a
collection of related concepts. My other question is that in showing the
correspondence between Wisdom and C.A.P. you only shared a single "action" type
where Constantine provides a rich set of actions.

[Pedro Campos] Yes, that's on purpose. We find that in UML/Wisdom it
only makes sense to show general "actions". Then, when the user moves to
the C.A.P. view they specialize the actions into selection, cancellation, or
whatever. This is part of the general theme of moving from abstract to
concrete.

[Michael Harrison] How are you evaluating the tool?

[Pedro Campos] Currently informal but there is a plan to evaluate in more
detail.

[Bonnie John] Are you using your tool to design your tool?

[Pedro Campos] Yes to some extent - I used it to design the tool's website.

