

More principled design of pervasive computing systems

Simon Dobson

Department of Computer Science, Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

Paddy Nixon

Department of Information and System Sciences, University of Strathclyde, Glasgow UK
paddy@cis.strath.ac.uk

Abstract. Pervasive computing systems are interactive systems in the large,
whose behaviour must adapt to the user's changing tasks and environment using
different interface modalities and devices. Since the system adapts to its
changing environment, it is vital that there are close links between the structure
of the environment and the corresponding structured behavioural changes. We
conjecture that predictability in pervasive computing arises from having a close,
structured and easily-grasped relationship between the context and the
behavioural change that context engenders. In current systems this relationship
is not explicitly articulated but instead exists implicitly in the system's reaction
to events. Our aim is to capture the relationship in a way that can be used to
both analyse pervasive computing systems and aid their design. Moreover,
some applications will have a wide range of behaviours; others will vary less, or
more subtly. The point is not so much what a system does as how what it does
varies with context. In this paper we address the principles and semantics that
underpin truly pervasive systems.

1 Introduction

Pervasive computing involves building interactive systems that react to a wide variety
of non-standard user cues. Unlike a traditional system whose behaviour may be
proved correct in an environmentally-neutral state space, a pervasive system's
behaviour is intended to change along with its environments. Examples include
location-based services, business workflows and healthcare support, gaming, and
composite access control policies.

Building pervasive computing systems currently revolves around one of two
paradigms: (a) event-handling systems, where behaviour is specified in terms of
reactions to events; and (b) model-based systems, in which rules are applied over a
shared context model. The former leads to fragmented application logic which is
difficult to reason about (in the formal and informal senses); the latter leaves a large
number of rules whose interactions must be analysed, a situation known to be quite
fragile. In addition, the majority of these approaches are premised on snapshot views
of the environmental state.

314 Simon Dobson

A truly pervasive system requires the ability to reason about behaviours beyond
their construction, both individually and in composition with other behaviours. This is
rendered almost impossible when a system's reaction to context is articulated only as
code, is scattered across the entire application, and presents largely arbitrary
functional changes.

From a user perspective the design of pervasive computing systems is almost
completely about interaction design. It is vitally important that users can (in the
forward direction) predict when and how pervasive systems will adapt, and (in the
reverse direction) can perceive why a particular adaptation has occurred. The
hypothesis for our current work is that predictability in pervasive computing arises
from having a close, structured and easily-grasped relationship between the
context and the behavioural change that context engenders. In current systems
this relationship is not explicitly articulated but instead exists implicitly in the
system's reaction to events. Our aim is to capture the relationship in a way that can be
used to both analyse pervasive computing systems and aid their design.

In this paper we describe our rationale for taking a more principled approach to the
design of context-aware pervasive computing systems and outline a system that
encourages such an approach, focusing on its impact on interaction. Section 2
presents a brief overview of pervasive computing, focusing on the difficulties in
composing applications predictably. Section 3 explores pervasive computing from
first principles to articulate the underlying motivations and factors influencing system
behaviour. Section 4 describes a more principled design approach base on these
factors and how they impact the interface functionality of systems, while section 5
concludes with some open questions for the future.

2 Pervasive computing

Pervasive computing can broadly be defined as calm technology that delivers the
correct service to the correct user, at the correct place and time, and in the correct
format for the environment[1]. Context, viewed alongside this definition, is all the
information necessary to make a useful decision in the face of real-world complexity.
More specifically, context is central to the development of several related trends in
computing: the increasing pervasiveness of computational devices in the environment,
the mobility of users, the connectivity of mobile users' portable devices and the
availability to applications of relevant information about the situation of use,
especially that based on data from physical sensors.

2.1 Context

Historically, the use of context grew from roots in linguistics [2]. The term was first
extended from implying inference from surrounding text to mean a framework for
communication based on shared experience [3]. The importance of a symbolic
structure for understanding was embraced in other fields such as [4,5,6] and
subsequently developed from a purely syntactic or symbolic basis to incorporate
elements of action, interaction and perception.

More principled design of pervasive computing systems 315

[7] divides context into two broad classes: primary context is derived directly from
sensors or information sources, while secondary context is inferred in some sense
from the primary context. A typical example is when GPS co-ordinates (primary
context) are converted into a named space (secondary context) through a look-up
process (inference).

More recently, in the setting of pervasive computing, context awareness was at
first defined by example, with an emphasis on location, identity and spatial
relationships [8,9]. This has since been elaborated to incorporate more general
elements of the environment or situation. Such definitions are, however, difficult to
apply operationally and modern definitions [10] generalize the term to cover “any
information that can be used to characterize situation”. Current work in the field
addresses issues including:

x developing new technologies and infrastructure elements, such as sensors,
middleware, communication infrastructures to support the capture, storage,
management and use of context.

x increasing our understanding of form, structure and representation of context;
x increasing our understanding of the societal impact of these new technologies and

approaches and directing their application;

A more detailed retrospective of the academic history of context can be found in
[10,11].

For this paper we conjecture that as we move away from the define by example
notions of context there is an increasing demand to establish the foundational models
for context. For pervasive computing systems there remains two fundamental
problems. Firstly, the centrality of context to the progress in the field of pervasive
computing demands new views on the theoretical underpinnings of context. For
example there is no widely accepted operational theory or formal definition of
context. There is also an immediate problem of providing to application developers
ways in which they can describe the context needs of their applications in manner that
is orthogonal to the application or business logic of the application. The programming
primitives, frameworks, and tools are still in their infancy.

3 The semantics of a context-aware system

3.1 What is context?

By context we mean the environment in which an application is executing. This
might include the identity of a user, their location, the locations of other users, the
device they are using, the information, task workflows they are involved in, their
goals, strategies and so forth.

The intention of making a system context-aware is to allow the detailed behaviour
of the application to adapt to context while keeping the overall behaviour constant: a
messaging application always delivers messages, but may deliver messages

316 Simon Dobson

differently in different contexts. Interface modality [12] may not be purely a device
issue: a system might adapt its mode of interaction on the same device for different
circumstances (such as going from vision to voice on a handheld), or might choose to
switch devices while maintaining the same interaction style (such as making use of a
wall screens instead of a PDA for form input).

Context is not monolithic: a given context may be composed of a number of
different facets. Moreover the facets available may change between different
executions of a context-aware application, for example when a new location system is
installed. This implies that context-aware systems have defaults for “missing”
contextual parameters, and that there is some mechanism for making new parameters
“useful” to a wide range of applications. We do not, for example, want a context-
aware system to be tied to a particular kind of location system, but want the location
systems available at run-time to be leveraged to their fullest extent. This is essential
for incremental, open deployment.

3.2 Behaviour

As stated above, the gross behaviour of an application should remain the same -
sorting algorithms remain sorting algorithms in whatever context they execute.
However, the detailed behaviour may change with context - the sorting criteria, for
example - and it is this detail, and the way behaviour varies, that we are seeking to
capture when talking about the semantics of context-aware systems.

One way to view this is as follows. Behaviour can be captured as a function from
inputs to outputs, with some of the inputs being captured during execution. Context
provides additional inputs describing the environment in which the function is being
evaluated. Two invocations of the same function with the same (external) inputs may
result in different behaviours because of changes in context.

We can therefore regard contextual variation as changing the contextual inputs to
an underlying “ordinary” function. In what follows, when we refer to “behaviour” and
“behavioural change'”we mean this change in parameterisation rather than an explicit
change in (the code of) the function being provided. (There is no loss of generality
here as the parameter might encode a function description being passed to a universal
evaluator.) From an implementation perspective this makes explicit the context on
which the function's detailed behaviour depends.

3.3 Design

While much of the research on pervasive computing has its roots in the programming
language and distributed systems communities, the chief design task is clearly one of
interfacing - creating systems that are usable as part of a larger real-world activity.
Moreover, the design task is both multimodal and dynamic.

Some pervasive computing systems will be unimodal, using a single device and
interaction structure. However it is widely accepted that many will be multimodal,
utilising a range of different devices across the lifetime of the interaction. This
includes multiple users with different constraints.

More principled design of pervasive computing systems 317

If we consider the ability to deploy context-aware applications into a shared space,
we must also deal with the interactions between these applications. This may involve
negative aspects such as sharing device capabilities between applications, prioritising
different (and possibly conflicting) decisions. However, there are also significant
potentially positive aspects including the case where one application provides context
for another that might not otherwise have been obtainable.

3.4 Behaviour variation

Some applications will have a wide range of behaviours; others will vary less, or more
subtly. The point is not so much what a system does as how what it does varies with
context.

Much of computer science has been devoted to the notion of correctness - that is,
to ensuring that a system has a single behaviour, and that this is the behaviour the user
wants. Context-aware systems attack the underlying assumption of a single behaviour
that can be articulated, replacing it with the view that behaviour should change in
different circumstances.

Arbitrary behavioural changes would be incomprehensible to users, and would
make systems completely unusable. However, single behaviour is equally unattractive
in that it prevents a system adapting to context. There is therefore a spectrum in the
behavioural variation we are willing to accept (figure 1). In building a pervasive
computing system we are looking for the “sweet spot” between adaptability and
comprehensibility. However, this still leaves the issue of deciding how behaviour
should change and when changes should occur.

Fig. 1. The spectrum of behavioural variation.

An adaptive system adapts to something, and presumably adaptation happens when
that something changes. Actually this turns out to be a little simplistic - adaptation
may happen before or after a change - but the principle is valid. Since we are

318 Simon Dobson

discussing context-aware systems, we can reasonably expect a system to adapt to
changes in its context.

However, not all changes in context are significant or simple. A location-based
service's behaviour will not typically be different at every different location, so not all
location cues cause changes. Similarly location may not in itself be enough to define
the system's behaviour without contributions from other aspects of context.

3.5 Describing the semantics

We might regard context as having a “shape” over which the system operates. The
shape is multidimensional, defined by the various contextual parameters. The shape
will also have identifiable “significant” points or areas that will have meaning to the
user of the application, being perceived either as points where behaviour could (or
should) change, or as areas in which behaviour could (or should) remain the same.

Not only do the significant points in the context define when behaviour can change,
for a given application they will in many cases essentially define what new behaviour
will be selected. To take a concrete example of a service providing tourist
information, we expect the information being served both to change as we move and
to remain relevant to the location we are in. The interface's adaptive behaviour of the
system must therefore be closely related to the external world if that adaptation is to
be intuitive.

This leads to our defining observation about developing a semantics for context-
aware pervasive computing: in order for a pervasive computing system to be
predictable to users, the relationship between context and behaviour must be two-
way and (largely) symmetric. An application's behavioural variation should emerge
“naturally” from the context that causes it to adapt, and that variation mandates that
certain structures be visible in the model of context being used. It might only adapt to
large-grained changes, placing it at the static end of figure 1; alternatively it may
adapt to fine-grained changes, placing it at the dynamic end. The point is that the
application's position in the spectrum is not selected a priori but emerges naturally
from the shape of its context. If a context has a fine-grained structure it will support a
highly adaptable application; conversely a highly adaptive application needs fine-
grained context.

An application, in this view, consists of four elements:

1. A baseline behaviour parameterised by a context
2. The context space with its significant points and shapes defined
3. The behavioural space with its own structures
4. A mapping matching changes in context to corresponding changes in behaviour

The first element is a standard program with adaptation hooks, and perhaps significant
control structures for concurrency control and consistency maintenance. The third
element describes the parameters used to control the program's adaptation. The
second element describes the context expected by the application and the points at
which this context forces or precludes adaptation. The fourth element describes the
way in which the context adapts the program, matching significant changes in context
to changes in behaviour.

More principled design of pervasive computing systems 319

The issue of correctness reappears in another guise: instead of ensuring that a
single behaviour is implemented correctly (and that the correct behaviour is
implemented), we now need also to ensure that the behaviour varies correctly. The
problem is not as bad as it might appear, however: if the underlying function is
correct then the behaviour will be correct in some sense for each possible contextual
parameter. The issue is one of the appropriateness of selecting a detailed behaviour in
particular circumstances.

3.6 Towards more principled design

Making a function context-dependent essentially adds extra parameters to its
definition. However, adding extra parameters in principle allows these additional
degrees of freedom to affect the function's behaviour in arbitrary ways - a situation
that is probably more general than is consistent with predictable variation. The
challenge, then, is to provide additional parameters in such a way that their impact on
the function's behaviour is constrained to be predictable, and follows (in some sense)
the structure of the context.

(a) Location-dependent behaviour

(b) Adding role (c) Different roles in the same location

320 Simon Dobson

Fig. 2. Context dependence as parameter selection.

The essence of this problem is shown in figure 2. Figure 2(a) shows a function
whose behaviour (the lower circles) depends on the location in which it is executed
(the plane). Different regions of the plane map to the same behaviour, so the function
observed by the user will be the same as they move within this region. Change in
behaviour will only be observed when they move between regions.

Adding a extra contextual parameter, such as the person's role, adds another
dimension to the behavioural space12. The behaviour may not vary in some locations
for a change in role (figure 2(b)); alternatively there may be a change for some roles
in some locations (figure 2(c)).
We claimed above that behaviour should only change “on cue” from context. This
suggests that the change in role needs to be clear in the interface.

From a design perspective, it would also be attractive for the changed behaviour to
depend structurally on the role and location: rather than making the change arbitrary,
it should emerge naturally from the parameter space. This has three major advantages:

1. It simplifies the development of the adaptive controls by placing all adaptation
functions in a single sub-system

2. It simplifies the development of the adaptive components by making the parameter
space clearly defined and explicitly articulated

3. It provides a “closed form” of the system's context-aware behaviour for analysis

4 A mathematical model of principled design

The discussion above leads us to consider a model in which primary context
conditions and constrains secondary context and behaviour. Formalising this notion
leads to a semantics of context-aware systems.

We have adopted category theory as our semantic framework, for three reasons:

1. it is naturally extensible, so we can deal with an extensible collection of contextual
parameters;

2. many of the well-known categorical structures suggest, at least intuitively, that
they may be useful in structuring context awareness; and

3. our eventual goal is to develop programming abstractions for pervasive computing
systems, and category theory's extensive use in language semantics may make this
step easier.

However, our presentation here requires no understanding of the detailed mathematics
of category theory: we focus here on the structural features of the approach and how it
impacts the design and analysis of interface functionality. We refer the interested
reader to [13] for a fuller treatment.

12 Of course role is usually more complicated than this diagram suggests, but it will suffice for

the purposes of illustration.

More principled design of pervasive computing systems 321

4.1 Modelling primary and secondary context

A category is a generalisation of the familiar approach of sets and functions between
them. A category consists of a collection of objects and arrows between them. The
most familiar category is the category of sets whose objects are sets and whose arrows
are total functions between them. The arrows are constrained to be compositional and
associative, and each object has an identity arrow.

Fig. 3. Pointed structure within an object.

To each individual contextual parameter we assign an object in the category (e.g. a
set) denoting the values the parameter can take. In a location system based on
individual named spaces, for example, the “location” parameter would be represented
by an object N whose points (elements in the case of a set) are the space names.
In many cases the elements of a parameter are themselves structured. A typical
example (which occurs repeatedly) is a parameter structured as a partial order, pointed
set or lattice, where each element can be “included” in at most one other (figure 3).
For named spaces there is an arrow from the parameter object to itself, taking each
space to its containing space or to itself if it is a “top” space. By repeatedly applying
this operation we can navigate from a space up its container hierarchy. In figure 3 this
means that the inclusion morphism lt takes space c to space b, space b to space a, and
spaces a and d to themselves (we have omitted these arrows for clarity).

Fig. 4. Deriving secondary context.

Named spaces are probably secondary context, derived from a lower-level location
system such as GPS. GPS can be modelled as an object L of GPS co-ordinate pairs.
An obvious contextual constraint is the mapping between a GPS location and the

322 Simon Dobson

named space containing it. We can represent this as an arrow map: L o N capturing
the “map” (figure 4). It is important to realise that this is a semantic characterisation
of what would implementationally be a lookup operation, the details which can be
abstracted in the analysis.

Figure 4 makes clear the structural relationship between the two parameters; A
region of L maps to an element of N in such a way that elements of the containing
region in L must map to an element of N containing the original element. map is
constrained to reflect the structure of one object in another, and it is this
correspondence that preserves meaning in the interface.

4.2 Context as behaviour

Current context-aware systems are not uniform, in the sense that much of a system's
behaviour is conditioned by information not held in a single context model. For the
purposes of analysis it is simpler to regard context in the wider sense as the sole
arbiter of behaviour: the system is functional with respect to its context. (We regard
this as a sound implementation strategy too.)

The easiest way to accomplish this to include the “real” parameters to the external
behaviour in the context. For a simple example, consider a wireless document system
which delivers a set of documents depending on the user's location. The corpus of
documents being managed can be represented as a contextual parameter (object) D
whose elements are possible sub-sets of documents being served related by set
inclusion.

We may now define an arrow serve: N o D which selects the set of documents to
be served by the document system in each location. Although this arrow does not
define behaviour in the normal sense of describing exactly what will happen, it does
describe how the parameter passed to that behaviour will vary. We may therefore to
some extent treat D as a proxy for the behaviour of the system and study how this
“behaviour” changes with context.

4.3 Analysing the structure of behaviour

Even in this simple model there are a number of questions we may ask of the system.
Key to these is an understanding of the way in which different contexts select the
same behaviour. Using figure 4 as an example, there are a number of points in L that
map to the same element of N. This is captured by the categorical notion of a fibre:
given an element a of N the fibre of map lying over a is the sub-object of L that maps
to a under map. Similarly the fibres of serve above represent the spaces in which the
system will serve the same set of documents.

The significance of fibres is that they capture both those contexts in which the
system will behave the same and the points at which that behaviour changes.

More principled design of pervasive computing systems 323

4.4 Compound context and behaviour

One of the advantages of category theory is that it has several strong notions of
composition that can be used to create complex concepts by construction. A good
example of this is the use of products of context and behaviour.

If C and D are contexts (objects) we can create a product context C u D whose
elements are ordered pairs of elements from C and D respectively. Moreover there is
an arrow between an element (i, x) and (j, y) if there is an arrow on C from i to j and
an arrow on D from x to y.

Such products represent the compound state of the system: If we take N and
another context P of people's identities, the compound context P u N represents a
person in a named space. We can use this product contexts to contextualise behaviour
in the normal way, by specifying an arrow serve’: P u N o D defining how the
documents available vary with identity and place. The risk here is that such behaviour
will be arbitrary, in that there is no necessary relationship between the way behaviour
changes with identity and the way behaviour changes with identity and location. In
many cases we may wish to ensure that such a relationship is preserved.

If we have arrows serveto: P o D and servein: N o D we can model this by
constructing the arrow serve’ from the two more elementary arrows, in such a way
that serve’ preserves some of their features. For example, we might constrain serve’
so that it always serves a set of documents that includes the set identified by serveto –
location context may broaden the behaviour but always maintains the behaviour of
serveto as a “core”. Conversely we might force serve’ to never serve a larger set of
documents than permitted by serveto – the underlying arrow specifies the “extent” of
the behaviour. A third possibility is that location “adds nothing” to the behaviour,
when serve defines the same behaviour as serveto. Similar arguments apply to
servein.

These constructions allow us to potentially specify the constraints on complex
behaviours in terms of simpler behaviours. This is important both for tackling the
complexity of the system and ensuring its consistency. A user of serve’ that preserves
serveto as a core, for example, will be able to form a mental model in which (a) they
can rely on a certain minimum behaviour everywhere, and (b) their location may add
significant new documents. This consistency is vital to the usability of the system, and
can be made a direct consequence of its categorical model.

Similar techniques can be used when contextualising a product context, where (for
example) two behaviours B1 and B2 are combined to form a compound behaviour B1 u
B2 that specifies two aspects of the system independently. Again, composition of
underlying arrows can be used to constrain the way in which behaviour varies.

4.5 Composition and conflict analysis

Pervasive computing almost implies dynamic composition, in that we expect mobile
systems to be carried around by users and to “discover” resources as they move. This
brings positive and negative possibilities: new capabilities may become available very
easily, but systems may interact in undesired ways. A major challenge for analysis is
to detect such conflicts.

324 Simon Dobson

In certain simple cases we can both detect conflicts and identify “safe” zones when
two systems are composed. Suppose we have two systems with the same context and
behaviour, described by two arrows f,g : C o D: for the wireless document server
these might be the public and private document servers. If we run both systems
together, we may ask whether they will both serve the same document set for a given
user and location. A categorical construction called an equaliser captures the sub-
object C’ of C in which f and g behave the same. If we can ensure that the system will
remain in this region C’, the systems may be composed safely; if it strays outside then
the two systems diverge. Another possibility is to force g (for example) to serve as a
core or extent of f.

In both cases the composition of systems is captured cleanly within the categorical
model, and can be analysed using standard techniques. This may in turn lead to
improved implementation techniques.

4.6 Designing “graspable” systems

Systems analysis, while important, is in many ways less interesting than systems
design: we want to develop pervasive computing systems that are usable and
predictable by design, using a model that both aids in this process and in the analysis
of the results.

The fibre structure of arrows provides a powerful technique for designing systems
as well as analysing them. Suppose we want to design our wireless document server
so that it serves a set d1 of documents in those places in the vicinity of a place n1, and
another set d2 in the vicinity of n2. If we constructed this system from scratch we
would need to ensure that it responded to location events in the correct manner - an
arduous testing process.

However, we can observe that the system behaves the same within a fibre -
changes in context that remain within a fibre do not affect the behaviour. We need
only ensure that all the places around n1 lie in the fibre of d1 to be convinced that the
system will behave as required.

From a user perspective, in order to be predictable a change in behaviour must be
accompanied by a perceptible change in the context that “makes sense” for the
application at hand. Changes in behaviour occur when context moves between fibres.
If we ensure that these changes correspond to external contextual cues that will
convey the need for behavioural change to the user, then the user will be able to
develop an appropriate mental model of the way in which the behaviour changes in
response to context. The cues in the outside world are reflected exactly in the fibre
structure of the model.

We claimed in section 4 that, in order for a pervasive computing system to be
comprehensible, the relationship between context and behaviour needed to be largely
symmetrical. It is this matching of fibre structure to external cues that captures this
symmetry, either constructively (for design) or analytically (for analysis).

Although the matching of cues to fibre transitions is application-dependent and
generally external to the model, it is sometimes possible to capture the cues within the
structure of the category. If, for example, we can identify the context points at which
behaviour should change, we can often identify the “internal” points where it should

More principled design of pervasive computing systems 325

remain the same, corresponding to the fibre over the desired behaviour. These regions
- sub-objects of the overall context - can have their behaviour described individually,
with the “full” behaviour coming by composition in a way that will detect many
conflicts automatically. This means that a user-centred design that identifies the
adaptation points in the environment can be used directly to construct a mathematical
description of the system being constructed, carrying usability concerns directly into
the system model.

5 Conclusion

We have motivated using a more principled approach to the design and development
of context-aware pervasive computing systems, and presented a formal approach that
captures some of the essential driving forces in a natural and compositional way. We
have shown how certain aspects of usability and predictability in the requirements for
a pervasive computing system can be given a formal realisation within a system
model suitable for use as a basis for analysis and design.

Perhaps more than any other potentially mainstream technology, pervasive
computing requires that we take an automated approach to system composition and
variation - the alternative would constrain deployment to constellations of devices and
information sources that could be described a priori. This in turn means that we need
to be able to state very precisely the way in which system behaviour varies. This is the
point at which our work diverges from that in the ambient calculus[14] or
bigraphs[15] - two very prominent and influential formal treatments of mobile
systems - in that we sacrifice the precise characterisation of system behaviour in
favour of broad-brush analysis. We also do not privilege location, regarding it as just
one of the possible contextual parameters to be studied.

The obvious counter in this formulation is that the baseline behaviour needs to
encapsulate all possible adaptations, which are then selected by context. While this is
correct to an extent, we should differentiate between the abstract semantic model of a
context-aware application and its concrete realisation. One would not necessarily pass
context as a parameter to a function: it might be preferable to allow the function to
access a shared context model, and provide some templated mechanism for this model
to affect its behaviour. There are, however, serious engineering problems to be
overcome in developing a programming model under this model.

Although we have not investigated it in this paper, a design approach such as we
propose needs to be backed by an engineering methodology. In particular we have
largely elided the way in which a designer would decide on the correct formulation
for context and behaviour, or check that his choices relate correctly to the users'
perceptions of the system. While traditional analysis and design methods can help
address these problems, there is also a need to deploy detailed usability evaluations -
possibly modified for pervasive computing - to inform the feedback loop. This is a
subject that is outside our expertise but that we would be keen to explore further.

It seems unlikely that the techniques described are sufficient to address the full
range of context-aware behaviours, so there is a major open question in the
applicability of the techniques to real-world applications - something we are

326 Simon Dobson

investigating at present. We are also addressing the limitation of the model to
“immediate” context, where only the current situation (and not the past or possible
future) affect behaviour. However, we believe that “closed form” expressions of
context awareness are a key enabler for building the next generation of complex
pervasive computing systems.

References

1. Weiser, M..The computer for the 21st century. Scientific American (1991)
2. Winograd, T. Architecture for context. Human Computer Interaction 16 (1994) 85-90
3. Minsky, M. A Framework for Representing Knowledge. In The Psychology of Computer

Vision. McGraw Hill (1975)
4. Brooks, R. A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation 2 (1986)
5. A.Draper, B., Collins, R.T., Brolio, J., Hansen, A.R., Riseman, E.M. The schema system.

International Journal of Computer Vision 2 (1989)
6. Bajcsy, R. Active perception. Proceedings of the IEEE 1 (1988) 996-1006
7. Salber, D., Dey, A., Abowd, G. The Context Toolkit: aiding the development of context-

enabled applications. In Proceedings of the ACM Conference on Computer-Human
Interaction, CHI'99. (1999) 434-441

8. Ward, A., Jones, A., Hopper, A. A new location technique for the active office. IEEE
Personal Comunications 4 (1997) 42-27

9. Rodden, T., K.Cheverest, Davies, K., Dix, A. Exploiting context in HCI design for mobile
systems. In Workshop on Human Computer Interaction with Mobile Devices. (1998)

10. Dey, A. Understanding and using context. Personal and Ubiquitous Computing 5 (2001) 4-7
11. Crowley, L., Coutaz, J., Rey, G., Reignier, P. Perceptual components for context aware

computing. In Proceedings of Ubicomp 2002. (2002)
12. Calvary, G., Coutaz, J., Thevenin, D. A unifying reference framework for the development

of plastic user interfaces. In Proceedings of EHCI'01. Volume 2254 of Lecture Notes in
Computer Science., Springer Verlag (2001)

13. Dobson, S., Nixon, P. Towards a semantics of pervasive computing (just the category
theory). Technical report, Department of Computer Science, Trinity College Dublin (To
appear)

14. Cardelli, L., Gordon, A. Mobile ambients. In Nivat, M., ed. Foundations of software science
and computational structures. Volume 1378 of LNCS.
Springer Verlag (1998)

15. Jensen, O.H., Milner, R. Bigraphs and mobile processes. Technical Report UCAM-CL-TR-
570, University of Cambridge Computer Laboratory (2003)

Discussion

[Nick Graham] This is a semantic framework that is instantiated over a specific
application. This seems to require the modeller to anticipate the possible contexts or
compositions that may arise.

[Simon Dobson] This is less a problem than with other approaches. In effect,
we can define compositions without having to specify what kinds of things
are being composed. This is sufficiently rich to allow interesting analyses.

More principled design of pervasive computing systems 327

There are a small set of composition operators that seem to recur frequently:
although we have to select which operator to use when we encounter a new
contextual parameter, we often don’t need to know its details to do
something meaningful.

[Helmut Stiegler] Category theory is all about commutative diagrams. You did not
show any such examples, in which you can apply such diagrams. Do you have some ?

[Simon Dobson] Yes, we have them used. I suppressed them here on
purpose. You will be able to find them in a technical report.

[Gerrit van Der Veer] How do the notions of “conflict” and “problem” relate to the
framework ?

[Simon Dobson] These notions are not automatically specified, but have to be
stated explicitly in order to reason about them.

