

Very-High-Fidelity Prototyping for both Presentation
and Dialogue Parts of Multimodal Interactive Systems

David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

LIIHS-IRIT, Université Paul Sabatier, F-31062 Toulouse Cedex, France
{dragice, navarre, palanque, bastide, schyn}@irit.fr

http://liihs.irit.fr/{navarre, dragice, palanque, bastide, schyn}

Abstract. This paper presents a tool suite (made up of two previously unrelated
approaches) for the engineering of multimodal Post-WIMP Interactive Systems.
The first element of this integration is ICOM (a data-flow model dedicated to
low-level input modelling) and its environment ICON which allows for editing
and simulating ICOM models. The other element is ICOs (a formal description
technique mainly dedicated to dialogue modelling) and its environment
PetShop which allows for editing, simulating and verifying ICOs models. This
paper shows how these two approaches have been integrated and how they
support multimodal interactive systems engineering. We show on a classical
rubber banding case study how these tools can be used for prototyping
interactive systems. We also present in details how the changes in the
interaction techniques impact the models at various levels of the software
architecture.

Keywords. Interactive Systems Engineering, Multimodal interaction,
Prototyping, CASE tools, Formal methods, formal description techniques; Post-
WIMP.

Introduction

According to the recurring desire of increasing the bandwidth between the interactive
system and the users more sophisticated interaction techniques called Post-WIMP
have been proposed. However, the current contribution from the research community
to the construction of such interactive systems remains at the level of working
prototypes showing the feasibility and making empirical evaluation possible.

Recent contributions in the field of model-based approaches have been explicitly
addressing this issue of coping with new interaction techniques. The aim of the work
presented in this paper is to describe an approach (that is able to go beyond
prototyping post-WIMP interaction techniques) fully integrated within interactive
systems development. To this end we have integrated work done on low-level input
management [0] with work on formal description techniques of dialogue models [0,
0].

Several notations have already proposed for dealing with post WIMP interaction
techniques and for different kinds of applications. Data-flow-based notations such as
Wizz'Ed [0] or ICon [0] have been proposed for dealing with low-level flow of events

186 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

produced directly by input devices. This notion of flow has also been addressed with
other notations where classical event and status based behaviours have been enhanced
with continuous modelling such continuous Petri nets as in Marigold [0] or Hynets
[0]. Higher-level models of this kind of interaction techniques have also been
addressed using state-based notations as with basic Petri nets in [0] or with high-level
Petri nets [0]. Early work in the field of multimodal interaction techniques has also
addressed the aspects of fusion of modalities and a comparison of these work can be
found in [0].

The paper is structured as follows. Section 2 presents the Input Configuration

approach that is dedicated to low-level input handling in post-WIMP interactive
systems. Section 3 recalls the Interactive Cooperative Objects formalism and its
environment PetShop. In these sections, the two model-based approaches are
exemplified on the same simple case study of the rubber banding interaction
technique. Section 4 details a generic framework for the integration of these two
approaches. Section 5 introduces a line drawing application exploiting the rubber
banding interaction technique previously presented. The aim of this small case study
is to show that the model-based approaches that we propose can deal completely with
non standard interface components and innovative interaction techniques. This section
presents also how to modify that case study to allow for multimodal (two handed)
interaction. For space reasons, only such multimodal interaction technique is
presented here while several others (including voice and gesture) have been dealt with
in a similar way and presented at the conference.

Input-Configurations Modelling and Prototyping

ICON (Input Configurator) is a tool for designing input-adaptable interactive
applications, i.e., applications that can be controlled with a wide variety of alternative
input devices and techniques. ICON provides an interactive editor for the ICOM (Input
Configuration Model) graphical notation. In this section, we give a brief overview of
the ICOM notation and the ICON visual prototyping environment. More details on the
notation and its associated tools can be found in [0, 0, 0].

Overview of the ICOM notation

The ICOM (Input Configuration Model) notation describes low-level input handling
using interconnected modules, with reactive data-flow semantics. In this section, we
briefly describe the main features and concepts behind ICOM.

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 187

Input Configurations
Input ConfigurationDevice

Fig. 1. Elements of the ICOM notation.

Devices and slots. ICOM’s main building blocks are devices, which are a broad
generalization of input devices: ICOM devices can produce output values, but can also
receive input values. Fig. 1 shows on the left the graphical representation of a device.
A device has typed channels called input slots and output slots, each type having a
distinct graphical representation (e.g., circle for Booleans, triangle for integers). Slots
can be hierarchically grouped to form structured types, as shown on Fig. 1.

Implicit I/O. Whereas the basic behaviour of an ICOM device is processing input
values into output values, alternative behaviour is shown on the device by the
presence of “notches” (see Fig. 1). Non-deterministic devices are described as having
implicit input, i.e.,additional source of information not fully described by its set of
input slots. Example of such devices include devices which are producing data on
their own (physical input devices), or asynchronous devices which are temporally
non-deterministic. Similarly, devices having implicit output produce alternative
effects in addition to simply putting values on the output slots. Examples are devices
that manipulate application objects, or devices producing graphical or sound
feedback.

Connections. An input slot of a device can be linked to one or several compatible
output slots of other devices by connections, which are represented by wires. ICON’s
execution model forbids multiple connections on the same input slot, as well as
connections that generate cyclic dependencies.

Types of devices. There are three main categories of devices: System devices
describe system resources such as input peripherals; Library devices are system-
independent utility devices such as processing devices and adapters; Application

devices are devices that control a specific application.
Input configurations. An input configuration is defined by a set of system and

application devices, as well as a set of library devices and connections which map the
system devices to the application devices.

188 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

ICON is modular, and subparts of an input configuration can be encapsulated into
compound devices. For example, an input device and a feedback device can be
connected then grouped to form a compound device having both external input and
external output.

ICOM’s Execution Model

Whereas the contract of a device is to update its output slots every time it is
asked to, ICoM’s execution model describes which devices must be triggered
and when, and how values are propagated to other devices. The propagation
mechanism used, described in [0], is very simple and effective.

ICoM’s execution model follows the semantics of reactive synchronous
languages such as Esterel [0] or Lustre [0], in which information propagation is
conceptually instantaneous. In reactive systems, the environment (e.g., the source of
input signals) is the master of the interaction, as opposed to conversational systems in
which clients wait to be served. As a result, the way we handle input is closer from
device drivers, which are reactive, than from event-driven mechanisms, which are
intrinsically conversational.

Describing Interaction Techniques as Input Configurations

From ICOM’s point of view, interaction techniques are transformation flows with
feedback. Fig. 2 gives an example of scrolling through a document, and shows the
feedback loop through implicit I/O. The Mouse device receives implicit input from
the user, the Cursor device produces immediate feedback towards this user, and the
Scrollbar tells the application to update its document view.

Mouse Cursor Scrollbar

Fig. 2. Feedback flow while scrolling through a document

The ICON environment

The ICON (Input Configurator) Input Toolkit contains an extensible set of system
devices and library devices for building input configurations. It provides a reactive
machine for executing them, as well as a graphical editor for rapid prototyping. ICON
is written in Java, and uses native libraries for managing input devices. In this section,
we briefly describe the main features of ICON.

ICON Devices
System devices. ICON’s system devices provide a low-level view of standard and
alternative input devices. Under Microsoft Windows operating systems, ICON
currently supports multiple mice, graphical tablets, gaming devices and 3D isometric

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 189

controllers, speech and gesture recognition, and MIDI controllers. System output
devices are also available, such as Midi devices for playing music on soundcards, or
speech synthesis devices.

Library devices. The ICON toolkit has a set of built-in utility devices including
mathematical and boolean operators, signal processing devices, type and domain
adapters, and devices for conditional control and dispatch. It also provides a set of
graphical feedback devices such as cursors and semi-transparent components, which
support overlay animation on top of Swing frames.

Toolkit devices. ICON provides a set of “Swing devices” for controlling existing
Java applications that have no knowledge of ICON. One device allows generic control
of any Swing widget by sending them mouse and keyboard events, whereas a set of
widget-specific devices allow moving scrollbars programmatically or sending strings
and caret commands to text components. Event dispatching strategies such as picking
and focus are also encapsulated into individual devices.

Application devices. Developers can enhance controllability of their application by
implementing devices that are specific to their application. Writing an application
device is quite straightforward, and mainly requires declaring a set of input slots and
implementing an “update” method which is automatically called each time an input
slot has received a signal [0].

Fig. 3. A screenshot of the Input Editor.

The Input Editor
ICON configurations can be built or modified by direct manipulation through a
graphical editor. An early prototype of this editor has been described in [0]. In this

190 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

contribution, the authors showed how the behavior of a standard mouse/keyboard
configuration could be easily changed using the editor and its dedicated interaction
techniques. In [0], we also give a subset of interaction techniques that can be
described with our graphical notation and directly built using ICON.

The Fig. 3 shows a screenshot of the Input Editor window. Library devices and
available system and application devices are listed on the left pane, and organized in
folders just like a file system. Clicking on a folder (top left pane) displays the devices
it contains (bottom left pane). Those devices are dragged on the editing pane to be
used. The minimalist input configuration shown on the editing pane of the Figure 7
describes how a freehand tool from a drawing application called ICONDraw [0] is
controlled using the mouse. The “sum” devices convert relative (delta) positional
values sent by the low-level mouse into absolute values.

The toolbar on the top of the window contains two buttons for executing and
stopping the input configuration. Execution is fast and does not need compilation,
thus allowing easy testing and refinement of input configurations.

One simple example: One-Handed and Two-Handed Rubber Banding
ICON’s graphical editor allows the application designer to quickly build and test input
configurations that make use of alternative sets of physical input devices, or modify
existing configurations to adapt to enriched or impoverished input. Fig. 4 illustrates
how a conventional technique can be changed into a Post-WIMP technique when a
new input device (a graphical tablet) becomes available. The left upper part of the
Fig. 4 shows the part of ICONDraw’s default input configuration which describes the
standard rubber-banding technique for drawing lines: the user indicates the first end
of the segment by pressing the mouse button, then the other end by dragging and
releasing the button. The “firstThen” device encapsulates the simple automaton which
implements this behavior. As shown on the lower part of the Fig. 4, this configuration
has then been simplified so that each end of a segment being created is controlled by a
separate pointing device. By doing this, the designer has just described a very basic
bimanual interaction technique (Figure 8 on the right).

Fig. 4. A conventional line drawing technique, modified to make use

of a second pointing device.

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 191

Dialogue Modelling and Prototyping

This section recalls the main features of the ICO formalism, which we use to model
the case study. We encourage the interested reader should look at [0, 0] for a complete
presentation of the formal description technique.

Overview of the ICO formalism

The Interactive Cooperative Objects (ICOs) formalism is a formal description
technique dedicated to the specification of interactive systems [0]. It uses concepts
borrowed from the object-oriented approach to describe the structural or static aspects
of systems, and uses high-level Petri nets [0] to describe their dynamic or behavioural
aspects.

Petri Nets is a graphical formalism made up of four components: the state variables
(called place, depicted as ellipses), states changing operators (called transitions,
depicted as rectangles), arcs, and tokens. Tokens are hold by places; arcs link
transitions to places and places to transitions. The current state of a system is fully
defined by the marking of the net (i.e., both the distribution and the value of the
tokens in the places). For a state change to occur a transition must be fired. A
transition is fireable if and only if each of its input places holds at least one token.
When the transition is fired, one token is removed from each input place and a token
is deposited in each output place.

ICOs are dedicated to the modelling and the implementation of event-driven
interfaces, using several communicating objects to model the system, where both
behaviour of objects and communication protocol between objects are described by
Petri nets. The formalism made up with both the description technique for the
communicating objects and the communication protocol is called the Cooperative
Objects formalism (CO and its extension to CORBA COCE [0]).

In the ICO formalism, an object is an entity featuring four components:
Cooperative Object (CO): a cooperative object models the behaviour of an ICO.

It states how the object reacts to external stimuli according to its inner state. This
behaviour, called the Object Control Structure (ObCS) is described by means of high-
level Petri net. A CO offers two kinds of services to its environment. The first one,
described with CORBA-IDL [0], concerns the services (in the programming language
terminology) offered to other objects in the environment. The second one, called user

services, provides a description of the elementary actions offered to a user, but for
which availability depends on the internal state of the cooperative object (this state is
represented by the distribution and the value of the tokens (called marking) in the
places of the ObCS).

Presentation part: the Presentation of an object states its external appearance.
This Presentation is a structured set of widgets organized in a set of windows. Each
widget may be a way to interact with the interactive system (user Æ system
interaction) and/or a way to display information from this interactive system (system
Æ user interaction).

Activation function: the user Æ system interaction (inputs) only takes place
through widgets. Each user action on a widget may trigger one of the ICO's user

192 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

services. The relation between user services and widgets is fully stated by
theactivation function that associates to each couple (widget, user action) the user
service to be triggered.

Rendering function: the system Æ user interaction (outputs) aims at presenting to
the user the state changes that occurs in the system. The rendering function maintains
the consistency between the internal state of the system and its external appearance by
reflecting system states changes.

ICO are used to provide a formal description of the dynamic behaviour of an

interactive application. An ICO specification fully describes the potential interactions
that users may have with the application. The specification encompasses both the
"input" aspects of the interaction (i.e., how user actions impact on the inner state of
the application, and which actions are enabled at any given time) and its "output"
aspects (i.e., when and how the application displays information relevant to the user).
Time-out transitions are specials transitions that do not belong to the categories
above. They are associated with a timer that automatically triggers the transition when
a dedicated amount of time has elapsed. When included in a system model such
transition is considered as a system transition. They can also be included in a user
model representing spontaneous user's activity.

An ICO specification is fully executable, which gives the possibility to prototype
and test an application before it is fully implemented [0]. The specification can also
be validated using analysis and proof tools developed within the Petri nets community
and extended in order to take into account the specificities of the Petri net dialect used
in the ICO formal description technique.

ICO Models for a rubber banding interaction technique

The rubber banding is a very classical interaction technique used in most graphical
tools. It allows a user to draw a line (or a shape) based on the "drag and drop"
interaction technique, where, while dragging, a temporary line is drawn, called ghost.
We present here, through this classical example, the four parts of an ICO
specification: the behaviour, the presentation part and the link between them stated by
the activation and the rendering function.
1. Behaviour (ObCS). The behaviour of the rubber banding application is

represented by its ObCS shown in Fig. 5. Initially, the application is in an idle
state. When the mouse button is pressed, it starts the drawing of a ghost that is
updated while moving the mouse pointer (dragging). When the mouse button is
released, the definitive line is drawn, and the application returns in its idle state.

Fig. 5. Behaviour of the rubber banding interaction technique

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 193

2. Presentation part. The presentation part described the external presentation part
of the drawing line application. We describe hereafter (Fig. 6) a set of basic
rendering methods that characterise the DrawablePanel. This set of methods is
used to produce rendering by the rendering function (see the point 3).

Class DrawableJPanel
 Rendering methods {
 drawGhost(int x0, int y0, int x1, int y1) {
 //Draw a dashed line between point (x0, y0)
 //and point (x1, y1).
 }
 eraseGhost(int x0, int y0, int x1, int y1) {
 //Erase the dashed line drawn between
 // point (x0, y0) and point (x1, y1).
 }
 drawLine(int x0, int y0, int x1, int y1) {
 //Draw a line between point (x0, y0)
 //and point (x1, y1).
 }
 }
}

Fig. 6. Overview of the widget implied in the rubber banding application.

3. Rendering Function. The rendering function describes how state changes impact
the presentation part of the application. As state changes are linked to token
movements, rendering items may be linked to either place or transition. Figure 7
describes the rendering function for the rubber banding application. The first line,
for instance, shows that when a token enters the place Dragging, the
corresponding rendering is to draw a ghost between the coordinates brought by the
token.

ObCS element Rendering method
Name Feature

Token <x0, y0, x1, y1> Entered drawGhost(x0, y0, x1, y1) Place
Dragging Token <x0, y0, x1, y1> Removed eraseGhost(x0, y0, x1, y1)
Transition
EndDrag

Fired with <x0, y0, x1, y1> drawLine(x0, y0, x1, y1)

Fig. 7. Rendering function of the rubber banding application.

4. Activation Function. The activation function (shown by Fig. 8) relates the events
produced by a widget to the transitions of the ObCS. Thus if the transition is
fireable and the event is produced (by a corresponding user action on the widget)
then the transition is fired (and its action is executed).

Widget Event Service

194 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

Panel Move Move
Panel MouseDown <x, y> BeginDrag
Panel MouseDrag <x, y> Drag
Panel MouseReleased <x, y> EndDrag

Fig. 8. Activation function of the rubber banding application

Overview of PetShop Environment

In this section we present precisely how PetShop environment supports the design
process of interactive systems. Some screen shots are included in order to show what
is currently available.

ObCS Editor
Our approach is supported by a tool call PetShop which includes a distributed
implementation of high-level Petri net interpreter written in Java. All the components
of the ObCS can be directly built using PetShop. PetShop also automatically
generates an Object Petri net from the IDL description [0]. The edition of the Object
Petri net is done graphically using a palette of tools. The left part of the toolbar is
used for generic functions such as load, save, cut copy and paste. The right hand side
of the toolbar drives the execution of the specification.

Edition of the Presentation
Currently, PetShop is linked to JBuilder environment for the creation of the
presentation part of the ICOs. Thus creation of widgets is done by means of JBuilder
interface builder. However, we have not yet created a visual tool for editing the
rendering and the activation function that still have to be typed-in in Java.

Execution environment
A well-known advantage of Petri nets is their executability. This is highly beneficial
to our approach, since as soon as a behavioural specification is provided in term of
ObCS, this specification can be executed to provide additional insights on the possible
evolutions of the system.

Fig. 20 shows the execution of the specification of the line drawing application in
Petshop. The ICO specification is embedded at run time according to the interpreted
execution of the ICO. At run time user can both look at the specification and the
running application. They are in two different windows overlapping as in Fig. 20. The
window Line Drawing Application corresponds to the execution of the window with
the ICO model underneath. In this window we can see the set of transition that are
currently fireable (represented in dark grey and the other ones in light grey). This is
automatically calculated from the current marking of the Object Petri net. Each time
the user acts in the Line Drawing Application windows, the event is passed on to the
interpreter. If the corresponding transition is fireable then the interpreter fires it,
performs its action (if any), changes the marking of the input and output places and
performs the rendering associated (if any).

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 195

Coupling Input Configurations and Dialogue

This section presents how the two approaches have been effectively integrated. We
show first how this coupling takes place at the model level (ICOM and ICOs) and then
at the environment level (ICON and PetShop).

Models Coupling: ICOM and ICOs

Whereas ICO’s activation function lists the couples Widget u Event and the user
services they trigger, ICOM describes how each event is produced. For space reasons
we only present here a simplified integration between ICO and ICoM models.

In an ICO specification, the Widget x Event represents the higher level event
triggered by a widget translating the classical input events it receives. A widget thus
behaves as a transducer that converts lower level events into higher level events,
called widget events.

A simple way to couple ICoM and ICO is to extend standard widgets in order to
represent them as output devices in ICoM model. Thus the ICoM model describes the
events needed by the widgets. These ICoM output devices are then connected to
ICoM Input devices through links and via other bricks. The resulting ICoM
configuration represents how user actions on the input devices feed the widget with
the correct events.

For instance, the previous section describes the rubber-banding application,
specified with ICO. The activation function (see Figure 7) shows the events produced
by our DrawableJPanel widget (MouseMove, MouseDragged …), but does not make
explicit the input device(s) used. Even if, in this example, the use of a simple mouse
seems natural, we want to be able to deal with other input devices (such as graphical
tablet, joystick, motion capture …). The DrawableJPanel needs three information ((x,
y) coordinates and a dragging trigger) to produce the relevant higher level events. The
corresponding ICoM device is presented by Fig. 9.

Fig. 9. ICoM output device representing inputs needed by the DrawableJPanel

Fig. 10 represents an ICoM configuration providing modelling the transformation
of low level events on the mouse to transformed events in the output device.

196 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

Fig. 10. ICoM model for DrawableJPanel

Systems Coupling: ICON and PetShop

In order to implement the link presented at the level of models in previous section, we
need to make an application running within Petshop visible to ICON. This means that
the set of widgets composing the presentation part, the activation and rendering
functions and the dialogue part must register output devices as described above.

Initially, these applications are launched from the PetShop environment. While
running, an input configuration can be deactivated using the Alt-C keystroke. This is
essential as ICON allows redefining input handling at a very low-level, which can
possibly hang all the system. For similar reasons, input configurations can be edited
while paused but not while running. In contrast, the edition and simulation of the ICO
model within Petshop is fully dynamic.

Case Study of a two handed line drawing application

In order to present the tool suite that we have developed for the engineering and very-
high prototyping of multimodal interactive systems, this section presents the use of
this tool suite on a case study. We first present the case study offering standard
interaction technique and show how this case study can be easily extended in order to
be manipulated by means of various input devices and thus using multimodal
interaction techniques.

The line drawing application

This application (shown on Fig. 11) allows a user to handle a line, defined by two
points. Modification of the line uses a rubber banding-like interaction technique for
each point.

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 197

Fig. 11. The line drawing application

Application specification

Behaviour (ObCS). The ICO model in Fig. 12 describes the behaviour of the
rubber banding interaction technique. Initially, the application is in an idle state.
When the mouse button is pressed on the left point (resp. right point), it starts the
drawing of a ghost (a dashed line). While moving the mouse pointer (dragging) the
dashed-line is updated. When the mouse button is released, the definitive line is
drawn, and the application returns in its idle state. With respect to the rubber banding
interaction technique presented in Fig. 5 the model is duplicated here as two rubber
banding are available at a time (one for each end of the line).

Fig. 12. Behaviour of the line drawing application.

Presentation part. The presentation part describes the external presentation part of

the application. We describe hereafter (Fig. 13) a set of basic rendering methods that
characterise the LineDrawingJPanel. This set of methods is used to produce rendering
by the rendering function described in next section.

198 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

Class LineDrawingJPanel
 Rendering methods {
 drawGhost1(int x, int y) {
 //Draw a dashed line between point (x, y)
 //and the second point of the line.
 }
 eraseGhost1(int x, int y) {
 //erase the dashed line between point (x, y)
 //and the second point of the line.
 }
 drawLine1(int x, int y) {
 //Draw a line between point (x, y)
 //and the second point of the line.
 }
 drawGhost2(int x, int y) {
 //Draw a dashed line between point (x, y)
 //and the first point of the line.
 }
 eraseGhost2(int x, int y) {
 //erase the dashed line between point (x, y)
 //and the first point of the line.
 }
 drawLine2(int x, int y) {
 //Draw a line between point (x, y)
 //and the first point of the line.
 }
 }
}

Fig. 13. Overview of the widgets employed in the line drawing application.

Rendering Function. The rendering function describes how state changes in the

Petri net describing the behaviour of the application impact the presentation part of
the application. As state changes are linked to token moving from places to places,
rendering items may be linked to either place or transition. Fig. 14 describes the
rendering function for the drawing line application. The first line, for instance, shows
that when a token enters the place Dragging, the corresponding rendering is to draw a
ghost between the coordinates brought by the token.

ObCS element Rendering method
Name Feature

Token <x, y> Entered drawGhost1(x, y) Place Dragging_1
Token <x, y> Removed eraseGhost1(x, y)

Transition Up_1 Fired with <x, y> drawLine1(x, y)

Token <x, y> Entered drawGhost2(x, y) Place Dragging_2
Token <x, y> Removed eraseGhost2(x, y)

Transition Up_2 Fired with <x, y> drawLine2(x, y)

Fig. 14. Rendering function of the line drawing application.

Activation Function. The activation function (shown by Fig. 15) relates the events

produced by a widget to the transitions of the ObCS. Thus if the transition is fireable
and the event is produced (by a corresponding user action on the widget) then the
transition is fired (and its action is executed). The events produced are linked to one

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 199

of the two points of the line. MouseDown1, MouseDrag1 and MouseReleased1
represents classical drag’n’drop events that occurs related to the first point. The three
others events are linked to the second point.

Widget Event Service

LineDrawingJPanel MouseDown1 <x, y> Down_1
LineDrawingJPanel MouseDrag1 <x, y> Drag_1
LineDrawingJPanel MouseReleased1 <x, y> Up_1
LineDrawingJPanel MouseDown2 <x, y> Down_2
LineDrawingJPanel MouseDrag2 <x, y> Drag_2
LineDrawingJPanel MouseReleased2 <x, y> Up_2

Fig. 15. Activation function of the line drawing application

Interface between the ICO specification and ICOM

As stated in section 4, the widget part is extended into an ICoM output device. Fig. 16
shows the ICoM model that represents the inputs needed by the line drawing
application.

Fig. 16. ICoM device representing inputs needed by the LineDrawingJPanel of the ICO

specification

Input configuration of the conventional line drawing application

The input configuration of the line drawing application describes how it is
manipulated with a mouse. Fig. 17 shows this configuration: Mouse moves are
transformed to coordinates (sum components) then used to animate a mouse cursor on
top of the application frame (cursor component). In addition to the coordinates, the

200 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

cursor propagates also the state of the left mouse button to the rest of the
configuration. Shortcuts, represented by grey vertical lines, are used to display the
same cursor device at different places of the configuration (this means that the same
cursor can manipulate both ends of the line).

Fig. 17. Input configuration of the conventional (i.e. monomodal) line drawing application

The two copies of the cursor device thus provide the LineDrawingJPanel (of the ICO
specification) with the correct parameters (i.e. x and y coordinates and the dragging
state).

Two handed line drawing application

This section presents a modification of the case study in order to allow for two handed
interaction on the line drawing application. The point is not here to discuss about the
usability of such interaction technique but to show the impact of changing the
behaviour of the application from monomodal interaction technique to a multimodal
one and how the integrated approach proposed in this paper can deal with it.

Fig. 18. A screenshot of ICON’s editor with all available (connected) mice showing on the

left pane (2 USB mice and a PS2 Mouse)

We describe a scenario in which the default input configuration is modified to
handle two mice. In this scenario, each mouse moves a dedicated pointer but both
pointers are used in the same way to control each extremity of the line. This allows
both symmetric bimanual interaction and two-user collaborative interaction with the
line.

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 201

Fig. 19. Input configuration of the two-handed line drawing application

When launched, ICON’s editor also shows on the left pane all currently connected
mice as individual devices, including PS/2, serial and USB mice (see Fig. 18). The
user just has to identify the mice he wants to use (USB mice are sorted according to
the HUB port they are connected to) and drag them in the edition pane. Note that
other pointing devices such as graphical tablets can also be used, or even emulated
with devices such as keyboard or voice recognition.

Fig. 20. Executing the two-handed drawing line application within PetShop

As both pointers share the same behaviour, the configuration described in Fig. 17
only has to be duplicated and mouse devices replaced. Lastly, two instances of this
compound device are instantiated and connected to two separate USB mice, as shown
on Fig. 19.

202 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

Fig. 21. Executing the two-handed drawing line application within ICON

When the configuration is edited, it may be executed. Fig. 20 shows the execution
of the two-handed line drawing application within PetShop. Due to the locality
principle of Petri nets (the firing of a transition only has impact on its input and output
places) there is no change to make from the model in Fig. 12 to make the application
usable in a multimodal way.

Fig. 21 shows ICoN environment. It is important to understand that both
environments are use at the same time. This makes it possible to modify the input
configuration (for instance changing the button used for selecting the end of the line)
by changing the lines in the configuration. Behavioral description of the application
can also be changed using PetShop.

Conclusion

This paper has presented a tool suite dedicated to the engineering of multimodal
interactive systems. The ICOs formalism deals with the functional core and the
dialogue part of multimodal interactive systems. The ICON notation deals explicitly
with input devices and input configurations. As these two models are supported by
dedicated edition, simulation and execution environments, we have shown how very
high fidelity prototyping can be performed and its related impact at various levels of
the Arch architectural model.

The application of the notations and tools has been shown on a simple case study
i.e. a bimanual drawing interactive system. This simple case study has shown a
precise example of each model as well as how there edition and simulation.

This work belongs to a more ambitious projects (see acknowledgement section)
dedicated to the engineering of multimodal interactive systems for safety critical
applications including military aircraft cockpits and satellite ground stations. The aim
of this work is not only to provide notations and tools for building multimodal
interactive systems but also to support verification and validation in order to support
certifications activities that are a critical phase in the development process of
interactive safety critical applications.

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 203

Acknowledgements

The work presented here is partly funded by French defence agency (Direction
Générale pour l’Armement) under contract n° 00.70.624.00.470.75.96 and by the
French Space Agency CNES (Centre National d'Etudes Spatiales) under the R&T
action n°CC201*02. Special thanks are due to Didier Bazalgette for precise
information about the field of command and control systems in military applications.

References

1. L. Bass, R. Little, R. Pellegrino, S. Reed, R. Seacord, S. Sheppard & M. R. Szezur.
(1991) The Arch Model: Seeheim Revisited. User Interface Developpers' Workshop.
Version 1.0.

2. R. Bastide & P. Palanque. (1995) A Petri-Net Based Environment for the Design of
Event-Driven Interfaces . 16th International Conference on Applications and Theory

of Petri Nets, ICATPN'95, Torino, Italy, 66-83. Giorgio De Michelis, and Michel
Diaz, Volume editors. Lecture Notes in Computer Science, no. 935. Springer.

3. R. Bastide, P. Palanque, Le Duc H., and MuĔoz J. Integrating Rendering
Specifications into a Formalism for the Design of Interactive Systems. Proceedings of
the 5th Eurographics workshop on Design, Specification and Verification of
Interactive systems DSV-IS'98 . 1998. Springer Verlag

4. R. Bastide, O. Sy, P. Palanque, and D. Navarre. Formal specification of CORBA
services: experience and lessons learned. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA'2000); Minneapolis,
Minnesota USA. ACM Press; 2000: 105-117. ACM SIGPLAN Notices. v. 35 (10)).

5. G. Berry. (1999) The Esterel v5 language primer. Technical report, april 1999.
http://www-sop.inria.fr/meije/esterel/doc/main-papers.html.

6. J. Coutaz, Paterno F. , Faconti G. , and Nigay L. A Comparison of Approaches for
Specifying MultiModal Interactive Systems. Proceedings of the ERCIM Workshop
on Multimodal Human-Computer Interaction. 165-174. 1993.

7. P. Dragicevic & J-D. Fekete. (2001) Input Device Selection and Interaction
Configuration with ICON. Proceedings of IHM-HCI 2001, Blandford, A.;
Vanderdonckt, J.; Gray, P., (Eds.): People and Computers XV - Interaction without
Frontiers, Lille, France, Springer Verlag, pp. 543-448.

8. P. Dragicevic & J-D. Fekete. (2002) ICON: Input Device Selection and Interaction
Configuration. Companion proceedings of UIST'02, 15th Annual Symposium on
User Interface Software and Technology, Paris, October 2002.

9. P. Dragicevic & J-D. Fekete. (2004) ICON: Towards High Input Adaptability of
Interactive Applications. Internal Report 04/01/INFO, Ecole des Mines de Nantes.
Nantes, France.

10. O. Esteban, S. Chatty, and P. Palanque. Whizz’Ed: a visual environment for building
highly interactive interfaces. Proceedings of the Interact’95 conference, 121-126.
1995.

11. H. J. Genrich. Predicate/Transition Nets, in K. Jensen and G. Rozenberg (Eds.),
High-Level Petri Nets: Theory and Application. Springer Verlag, Berlin, pp. 3-43.

12. N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud. (1991) The synchronous data-flow
programming language LUSTRE. In Proceedings of the IEEE, volume 79, September
1991.

204 David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

13. Hinckley, K., Czerwinski, M., Sinclair, M., Interaction and Modeling Techniques for
Desktop Two-Handed Input, ACM UIST'98 Symposium on User Interface Software
& Technology, pp. 49-58.

14. D. Navarre, P. Palanque, R. Bastide & O. Sy. Structuring Interactive Systems
Specifications for Executability and Prototypability. 7th Eurographics Workshop on
Design, Specification and Verification of Interactive Systems, DSV-IS'2000,
Limerick, Ireland, 2000, Lecture notes in Computer Science n° 1946.

15. OMG. The Common Object Request Broker: Architecture and Specification.
CORBA IIOP 2.2 /98-02-01, Framingham, MA (1998).

16. P. Palanque & A. Schyn. A Model-Based Approach for Engineering Multimodal
Interactive Systems in INTERACT 2003, IFIP TC 13 conference on Human
Computer Interaction.

17. R. Wieting 1996. Hybrid High-Level Nets . Page 848 855Proceedings of the 1996
Winter Simulation Conference. ACM Press.

18. J.S. Willans & Harrison M. D. Prototyping pre-implementation designs of virtual
environment behaviour. 8th IFIP Working conference on engineering for human-
computer interaction (EHCI'01) 2001. LNCS, Springer Verlag.

Discussion

[Rick Kazman] The context of this is safety critical systems. Two properties to
address are reliability and performance. How do you guarantee that in the model you
are presenting that these properties are there and, given that the model is
compositional, that the properties are preserved?

[Philippe Palanque] The intention is not to embed PetShop in an aircraft. The
model is intended to be a specification and a high-fidelity prototype. So we
produce a specification and a running example. On the aeroplane, for
example, it was necessary to have response within 20ms. This is met with
our system. We hope to provide a set of tests as well to allow the developers
to be sure that they have met the requirements. We are working on this now.

[Bonnie John] In the spirit of the grand challenge of the "UI crash test dummy", have
you thought of attaching this to a cognitive modeling architecture such as ACT-R
(which has its own model of human-like concurrency and human-scale timing?)

[Philippe Palanque] We work at a low level. So we use Fitts' Law for
example, to tell us that the average time for a user to respond will be some
value. Petri Nets allow time to be attributed to arcs and specification of the
size of buttons, which allow this kind of analysis.

[Michael Harrison] Petri nets have a lot of "good" baggage allowing you to prove
many properties of systems. You presented this tool primarily as a rapid prototyping
environment. Have you taken advantage of the properties of Petri nets for analysis?

[Philippe Palanque] There is a tradeoff in designing Petri nets for evaluation
vs prototyping. In the past we've worked on the modelling approach, but now
we're looking at expressiveness. We have performed analyses such as
invariant checking.

Very-High-Fidelity Prototyping for Multimodal Interactive Systems 205

[Michael Harrison] Do you feel this is a good way of specifying this kind of system?
[Philippe Palanque] We have a contract with the French certification
authority. They have no idea of how to certify a cockpit. Now several people
at Thalès are using our tools to work on this.

[Willem-Paul Brinkman] Synchronization over feedback is also important as well as
synchronization of inputs. Do you handle this?

[Philippe Palanque] Our approach can handle the specification of the entire
system. We have seen this in practice. For example, in the A380, they have a
server (X Windows). There is feedback indicating that the server has not yet
received feedback from the application, during which the pilot must wait.

[Grigori Evreinov] There was no clear definition of multi-modal. What is the
difference between multi-modal and multi-channel interaction? E.g., if you can
manipulate with two mice, it's two channel manipulation. If you have speech fused
with mouse motion, it's multi-modal. Content should not be fused in head of the user.

[Philippe Palanque] You are right. The example was multi-channel interaction. The
point was to show the integration of multiple devices. For multi-modal, we can
have models of two mice, which are fused via a single model at the logical
interaction level. This is perfectly possible with PetShop. For example, using two
fingers on a touch-sensitive display.

