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Abstract. Challenges in designing effective groupware include technical issues 
associated with concurrent and distributed work and social issues associated with 
supporting group activities. To address some of these problems, we have developed 
a quality-centered architectural design framework that links requirements analysis 
to architectural design decisions for groupware systems. The framework supports 
reasoned architectural design choices that are used to tailor software architecture to 
the unique quality and functional requirements of the software being developed. 
The framework has been applied to the development of the Software Design Board, 
a tool for collaborative software engineering.  

1 Introduction  

Groupware tools help people work and play together, providing integrated mechanisms 
for communication, collaboration and coordination [7]. Common examples of groupware 
include Lotus Notes’ document respositories, the MSN Messenger instant messaging 
tool, the WebArrow/Conference online meeting tool, and the World of Warcraft 
massively multiplayer online game.  

Groupware applications are difficult to construct, involving the difficult technological 
problems of supporting real-time interaction over a distributed system. A wide range of 
quality attributes affect the user’s collaboration experience. Tools with poor availability 
may be unreliable and lead to inconvenience or loss of work. High security is required to 
ensure that the user’s privacy is respected. Synchronous groupware requires high 
performance to support fluid interaction with other participants.  

When translated into architectural choices, these requirements often conflict. For 
example, a requirement for high security might imply that all shared data should be 
stored at a single site, reducing the risk of unwanted data access. On the other hand, a 
requirement for high availability might imply that shared data should be replicated at 
multiple, redundant sites. Since there is no single groupware architecture that provides all 
of these qualities, architects of groupware systems must therefore carefully analyze their 
requirements to determine how to resolve these conflicts. Architectural tradeoff analysis 
involves the methodical comparison of architectural choices in order to determine what 
architecture best fits a system’s requirements. Such analysis allows designers to reason 
about the  



 

Fig. 1. How an architect applies quality-centered architectural design  

properties of a system’s implementation before it is developed, and as such is one of the 
fundamentals motivating architectural design.  

To perform such analysis, designers require a set of alternative architectures from 
which their system may be composed, and a reasoning framework allowing them to 
assess the properties of each architectural choice. Such architectural “tool boxes” have 
not been widely developed.  

In this paper, we present a quality-centered design framework for the groupware 
application domain. The framework consists of a set of architectural design patterns that 
can be combined to create groupware architectures, and a set of analytical models for 
quality attributes of interest to groupware. Architects can select those design patterns 
whose qualities best match the requirements of their groupware system, and combine 
them into an architecture.  

The groupware domain provides a rich field of study for architectural tradeoff 
analysis, as there are numerous solutions to each architectural problem with no clear 
means of choosing between them. To illustrate its utility, we have applied our framework 
to the design and implementation of the Software Design Board [13], a tool supporting 
collaborative design of software systems.  

2 Quality-Centered Architectural Design  

We aim to improve users’ experience with groupware applications through a novel 
quality-centered architectural design framework. The framework assists programmers in 
identifying candidate architectural styles for their groupware application, and in 
methodically determining which architecture best meets their requirements. Our 
contributions with the framework are:  

 – a set of analytical models that help relate software quality attributes to 
user experience,  
 – a set of design patterns that capture solutions to common problems in 
architecting groupware systems,  



 – a quality impact matrix that helps link the design patterns to desired 
system qualities.  
 
Figure 1 shows how quality-centered architectural design links requirements analysis and 
architectural design, following the approach of Bass et al. [1]. Requirements are 
expressed in terms of key quality attributes such as performance, security, usability and 
availability. To help architects reason about design tradeoffs, our framework provides a 
pool of architectural design patterns, each of which embodies an architectural decision. 
In groupware, decisions might include  

 – whether to centralize or replicate shared data  
 – whether to use an optimistic or pessimistic concurrency control scheme  
 – how to reestabish service following the failure of a central 
communication hub  
 – how to distribute information required for awareness functions (such as 
telepointers.)  
 
The pool of design patterns includes different architectural solutions for these problems, 
representing different points in the space of tradeoffs. This provides architects with 
choices of how to best meet their application’s requirements. The specification of a 
design pattern therefore includes analysis of its qualities, detailing the conditions where 
the pattern may improve (or worsen) the various quality attributes. For example, a pattern 
using an optimistic concurrency control scheme may improve feedback time while 
worsening the fidelity of different participants’ views; a pattern involving data replication 
may improve the application’s robustness to failure, while increasing its vulnerability to 
privacy violations.  

The architect evaluates which design patterns best satisfy the application’s 
requirements, and chooses a set of design patterns to be used in the architecture. These 
patterns must be combined to create an architecture for the system. This combination step 
may be straight-forward, but may involve further design work to enable the design 
patterns to work together. If combination of a set of patterns is not practical, new patterns 
may have to be chosen from the available pool.  

In the following section, we examine a representative set of quality attributes, and 
develop analytical models which we will then use in section 4 to analyze our pool of 
groupware design patterns.  

3 Qualities and Analytical Models  

As seen in figure 1, architects select design patterns from a candidate pool based on their 
architectural qualities. Analytical models support this selection process, allowing the 
architect to evaluate design patterns with respect to a particular quality attribute. For 
example, availability is used to measure the frequency at which the system fails (and is 
unavailable for use); security measures how easily private data can be accessed by 
malicious third parties; usability measures how easily users can apply the system to 
performing their tasks; functionality measures how well the system matches the users’ 
tasks; and performance measures how quickly the system responds to users’ actions.  

Analytical models serve as the basis for analyzing the qualities of design patterns. 
They provide a vocabulary for discussing quality attributes; for example, “performance” 
is computed from elements such as “local processing time”, “network time” and “remote 
processing time”, while “usability” of a groupware application comprises elements such 



as “fidelity”, “consistency” and “awareness”. Ultimately, analytical models allow us to 
determine the properties of architectural design patterns, supporting the choice of which 
design patterns best meet the requirements of a given application.  

As representative examples, we now present analytical models for the availability, 
usability and performance quality attributes. These analytical models are developed 
specifically for the groupware domain. In section 4, we will show how these models 
allow us to precisely discuss the properties of design patterns.  

In describing analytical models, we follow (but simplify) the approach of Bass et al. 
[1]. We specify an analytical model for each of a set of quality attributes as applied to the 
domain of collaborative applications. Analytical models are defined in terms of a set of 
measures, observable phenomena that influence the attribute of interest. For each 
analytical model, we then discuss what stimuli influence the measures, and give 
examples.  

3.1 Analytical Model: Availability  

Availability measures robustness of a groupware system in terms of what percentage of 
the time that the system is available for use. Poor availability leads to a negative user 
experience, as failures may lead to lost work or frustrating interruptions in collaborative 
sessions.  

Analytical Model: Availability Domain: Collaborative applications Measures: Mean 

Time to Failure, Mean Time to Repair Details:  

Mean Time to Failure  

availability = (Mean Time to Failure + Mean Time to Repair)  

Where: Mean Time to Failure is the average length of time between component failures, 
and Mean Time to Repair is the average length of time required to restore the 
functionality of a failed component.  

Discussion: In this context, Mean Time to Failure is influenced by both network and 
software component reliability. Any architectural feature than can improve the reliability 
of these components will increase the Mean Time to Failure experienced by individual 
collaborators. Architectural features that allow a component to remain functional in the 
presence of faults will increase the Mean Time to Failure. Similarly, features that 
influence the ability to reconfigure or repair the system when failures have occurred will 
affect Mean Time to Repair.  
Examples:  

1 Localizing the effects of any component failure can reduce Mean Time to 
Failure. For example, if a failure in a document sharing system can be localized, reducing 
the number of users who are unable to interact with the document, then the overall 
availability of the document to the group is increased.  
2 Mean Time to Repair can be reduced by using redundant copies of core 
components to re-establish functionality in the event of a failure. This eliminates the 
processing associated with recovering the failed component, allowing functionality to 
simply be resumed by the back-up component.  
 



3.2 Analytical Model: Usability  

Using synchronous groupware should come as close as possible to the experience of 
collaborating in the same location. Usability measures aspects of how closely the 
groupware system achieves this goal.  

Analytical Model: Usability  

Domain: Collaborative applications  

Measures: Fidelity, Consistency, Awareness  

Details: Fidelity measures the degree to which a participants view of shared artifacts 
represents their actual state. Consistency measures the degree to which different 
collaboration channels are synchronized. Awareness measures to what degree a 
participant can perceive the actions and attention of other participants.  

Discussion: A primary source of reduced Fidelity is the time that it takes for one 
participant’s actions to be transmitted to other participants over a network. When 
participants are working asynchronously, their views of the system may become 
considerably out of date. Some algorithms for presenting participants consistent views of 
a shared state involve rollbacks of committed actions; in this case, Fidelity is 
compromised because the participant has been shown a view that is incorrect.  

Groupware applications often allow people to collaborate using a variety of channels, 
such as voice, video, view of a shared artifact, and telepointers. Consistency measures 
how well these channels are synchronized. Poor consistency can lead to confusion, for 
example, a presenter talking over a slide that has not yet appeared on an audience 
member’s display.  

Groupware participants need to understand the activities and intentions of their 
collaborators. Such awareness may be improved via simple mechanisms such as 
telepointers, or advanced mechanisms such as gaze awareness.  

Examples:  

 1. The use of an optimistic concurrency control algorithm allows a participant’s 
actions to be reflected immediately in their view of a system. However, if this action 
conflicts with that of another participant, it may be rolled back. If conflicts are rare, the 
use of this optimistic concurrency control improves Fidelity by  
 reducing feedback time; if conflicts are frequent, Fidelity is compromised due to 
high numbers of roll-backs.  
2 Timestamping and buffering can be used to synchronize the data from different 
collaboration channels. This approach can improve Consistency, but at the cost of 
reducing Fidelity through increased latency.  
 
3.3 Analytical Model: Performance  

Performance affects the fluidity and naturalness of collaboration. If users find the tool to 
be unresponsive to their own actions or slow to report the actions of others, their 
experience of working together in a group will be negatively impacted.  

Analytical Model: Performance Domain: Collaborative Applications Measures: 

Feedback Time, Feedthrough Time Details:  

Feedback Time = Local Processing Time
FB 

+ Network TimeFB  

+ Remote Processing Time
FB 

Feedthrough Time = Local 



Processing Time
FT 

+ Network TimeFT  

+ Remote Processing Time
FT 

 

Where: Local Processing Time is the time taken to process events at the initiating users 
local machine; Network Time is the time taken to transmit events across the network to 
remote machines, and Remote Processing Time is the time taken to process events 
received from the network at a remote machine.  

Discussion: Feedback Time represents the time from a user performing an action to 
seeing the result of that action. Feedthrough Time represents the from a user performing 
an action to other users’ seeing the result of that action. These measures are influenced 
by two factors – the performance of the network connecting collaborators (i.e., with 
respect to bandwidth and/or latency) and the amount of time required to process events 
before results can be displayed to users.  

Examples:  

1 Feedback Time can be reduced by eliminating the need for an event to be sent 
over the network before updating the display of its initiating user. That is, if the user’s 
display can be updated without any network interchange, both the Network and Remote 
Processing times are removed from the above equation; i.e., (Feedback Time = Local 
Processing Time

FB
.)  

2 For Feedthrough Time, network traffic cannot be avoided; reducing the 
bandwidth required by events being sent across the network maximizes available 
bandwidth, thereby reducing the Network portion of the equation and therefore the 
overall time required.  
 
The performance analytical model demonstrates how analytical models are developed for 
a particular application domain. The primary performance issues for groupware have to 
do with how quickly users see the results of their own actions (Feedback Time) and how 
quickly they see the results of others’ actions (Feedthrough Time.) There are many other 
ways that performance of distributed systems can be measured (e.g., turnaround time, 
throughput, CPU load), but for groupware, Feedback and Feedthrough Time are the most 
important. By being able to concentrate on the measures that are most important for a 
particular domain, we can greatly reduce the complexity of analytical models.  

4 Design Patterns  

Following the approach of figure 1, developers of groupware applications first identify 
quality requirements, expressed in terms of the quality attributes discussed in section 3. 
The developer then selects from a pool of design patterns that best meet these 
requirements. The selected patterns are subsequently combined into a concrete 
architecture.  

In order to architect groupware applications, we have identified a set of 21 design 
patterns supporting a range of groupware applications, involving real-time and 
asynchronous collaboration between co-located and remote collaborators. In addition to a 
description of how it is used, each design pattern is accompanied by an analysis 
summary. This summary explains the pattern’s properties with respect to quality 
attributes, and is expressed relative to the relevant analytical models.  

The design patterns shown in this paper are not intended to be comprehensive, but 
comprise a representative sample of the strategies that could be used to support 
synchronous groupware. As summarized in figure 2, the design patterns include support 



for:  

 – Both co-located and distributed interaction styles, including transitions 
between them;  

 – Both asynchronous and real-time interaction styles, including 
transitions between them;  

 – The creation of both syntactically correct and free-form artifacts, and 
the ability to seamlessly move between interactions with one style of artifact to the other;  

 – Both free-form and moderated interaction styles, including transitions 
between them;  

 – Interaction through a variety of devices, and movement between them.  
 

To help designers navigate large numbers of design patterns, a quality impact matrix 
is provided (figure 2). This matrix shows the primary quality attributes that each pattern 
influences (either positively or negatively). Architects interested in improving a 
particular quality attribute can use the matrix to locate candidate design patterns for use 
in their architecture.  



 

Fig. 2. Extract from quality impact matrix: Summary of design patterns supporting the 
development of groupware architectures. Checkmarks indicate influence on quality attributes, 
either positive or negative.  



 

Fig. 4. Localized conflict detection design pattern  

We now briefly describe two of the 21 design patterns that comprise the candidate 
pool compiled for the design of groupware tools. For both design patterns, we provide a 
brief description and an architectural diagram. The diagrams are based on the Workspace 
Architectural Model [12] (figure 3). The two selected design patterns show architectural 
alternatives that have equivalent functionality but markedly different influences on 
quality attributes. An architect would opt for one or the other based on the non-functional 
requirements specified for his/her particular project. Both design patterns address 
concurrency control.  

4.1 Localized Conflict Detection  

The goal of localized conflict detection (figure 4) is to provide all participants in a 
groupware session with consistent views of shared state.  

In this pattern, update events are broadcast to each client. Clients are responsible for 
detecting and appropriately resolving conflicts between different users updates. An 



appropriate implementation for this pattern could be operational transform [6].  

Analysis Summary: This pattern influences both availability and usability. Under 
availability (section 3.1), Mean Time to Repair benefits from the local 

 

Fig. 5. Centralized Serialization with Migrating Serializer design pattern  

ization of the conflict recognizer. If one participant’s node fails, the other participants can 
continue without problem, as they do not rely on the failed node’s state or the state of its 
conflict recognition. Therefore, partial repair is quick.  

Under usability (section 3.2), Fidelity may be improved or worsened by the adoption 
of this design pattern. Since the conflict recognizer is local, the results of participants’ 
own actions may be shown immediately, without any need to send messages over the 
network. In the case of conflicts, however, the view may have to be rolled back. If 
conflicts between participants’ actions are rare, Fidelity will be good; if conflicts are 
frequent, rollbacks will be frequent, having a negative effect on Fidelity.  

4.2 Centralized Serialization with Migrating Serializer  

As with the last pattern, the goal of centralized serialization with migrating serializer is 
to provide all participants in a groupware session with consistent views of shared state.  

Update events are serialized before being broadcast to all clients. Since events are 
processed by each client in the same order, all users share a consistent view of the 
application’s shared state. The component responsible for this serialization may migrate 
between client locations in response to patterns of update traffic. The architecture of this 
pattern is shown in figure 5.  



Analysis Summary: This design pattern has an availability risk (section 3.1), particularly 
compared to Localized Conflict Detection. If the node hosting the serializer fails, then the 
system will be left in a bad state. A recovery algorithm would be required in order to 
choose a new node for the serializer.  

Under performance (section 3.3), this pattern can increase Feedback Time relative to 
Local Conflict Detection because of increased Network times. However, this effect can 
be mitigated by migrating the serializer, reducing the average network delays 
experienced by all clients. Similarly, Feedthrough Time may be increased by this pattern 
due to contention at the centralized serialization component, or because migration of that 
component has increased the average Transmission Time between all clients. This pattern 
is particularly applicable to applications where only one user time performs input actions 
at a time, as the serializer will migrate to that user’s computer.  

Under usability (section 3.2), this approach has both negative and positive effects on 
Fidelity. Users on nodes with proxy serializers do not see the effects of their own actions 
until the action has been routed through a serializer on a different node, negatively 
impacting Fidelity. Conversely, the approach leads to no conflicts or rollbacks, positively 
affecting Fidelity.  

4.3 Tradeoffs  

The examples of the localized conflict detection and the centralized serialization with 
migrating serializer design patterns help illustrate the tradeoffs that developers must 
make when designing the architectures of groupware systems.  

Localized conflict detection has excellent availability, and so is the better choice if 
good handling of partial failure is desired. Localized conflict detection provides good 
fidelity if conflicts are rare, but may be a poor choice if conflicts are frequent, leading to 
frequent undoing of users’ actions. Centralized serialization is a good choice if conflicts 
are more frequent. However, centralized serialization may give poor feedback time; if 
NetworkT imeFB is high (over a wide area network), this may be a poor choice. If most 
interaction is in the form of turntaking, then the migrating serializer will mitigate this 
problem.  

In summary, therefore, localized conflict detection is a good choice when availability 
is important and conflicts are rare. Centralized serialization is superior if availability is 
less of a concern and if feedback time is unimportant (or clients are connected by a 
low-latency network.)  

These examples illustrate the detailed analysis of architectural tradeoffs that is 
possible when design patterns are based on analytical models such as those of section 3.  

5 Application: The Software Design Board  

To gain experience with our quality-centered architectural design framework, we applied 
it to the development of Software Design Board, a tool supporting collaborative software 
design [13]. In section 5.1, we will show how our qualitycentered design framework was 
used to develop the Software Design Board and discuss its success.  



 

Fig. 6. The Software Design Board [13] permits free-hand drawing, automatic recognition of those 
drawings as structured diagrams, and supports collaborative use via electronic whiteboard or PC 
clients.  

The Software Design Board is a whiteboard-based, prototype tool intended to support 
collaboration in the early stages of software design. The tool supports a variety of styles 
of work helping in software design, and facilitates transitions between them. This is 
achieved be integrating informal media and flexible collaboration mechanisms, as well as 
supporting the migration between different software tools, devices and collaborative 
contexts. These facilities are intended to support fluid transitions between the some of the 
different styles of work in which we have observed software designers to engage [14].  

As can be seen in figure 6, the core of the Software Design Board is its support for 
free-hand drawing and sketching, appropriate for brainstorming activities. Any number 
of people can participate in a brainstorming session from different locations, using either 
an electronic whiteboard or a traditional PC. Each participant sees the drawings of other 
participants in real-time. Telepointers allow participants to see where other participants 
are pointing. Gesture-based zooming and panning allows easy management of large 
drawing areas. Documents created with traditional programs such as Word or PowerPoint 
can also be embedded in the drawing area.  



Free-hand drawings can be automatically converted to structure-drawings via a 
diagram recognition function, helping with the transition from rough sketches to formal 
documentation.  

 

Fig. 7. Architecture of the Software Design Board  

A participant can disconnect from the collaborative session (e.g., while traveling with 
a laptop), continue work, and merge his/her changes back when next reconnecting. If all 
participants disconnect, the state of the session is saved, allowing the next person to pick 
up where the session left off, using any device from any location.  

The Software Design Board motivates quality requirements typical of groupware 
applications. It is important for partial failure to be handled effectively; if a participant’s 
computer or network connection fails, the other participants should be able to continue 
uninterrupted. Security may be a significant issue, as design discussions may include 
sensitive data that should not be intercepted by malicious parties. Performance is 
important, as significant latency may inhibit the natural flow of discussion. And perhaps 
most importantly, the tool must enable natural collaboration, ensuring that participants 
easily understand the actions of other participants.  

5.1 Architecture of the Software Design Board  

In this section, we show which of the design patterns outlined in section 4 were selected 
and combined into the architecture of the Software Design Board.  

The high-level architecture of the Software Design Board is described in figure 7. 
Each client application (SDB Client Application) maintains a local copy of all data 
(SDB-Content), as well as a directory of contact information (Local Directory) of people 



with ongoing collaborations. Each client application also interacts with a central server 
(SDB-Server), which maintains a global copy of all data. Additionally, the server 
maintains a global directory containing contact information for all clients in the system.  

The SDB Client Application is expanded into four subsystems – Collaboration 
Management, SDB Application, Plug-ins and Device UI. The Collaboration Management 
Subsystem is responsible for managing shared data. The SDB Application Subsystem is 
responsible for the applications themselves, i.e., the native drawing application, control 
of external OLE applications and general functionality of the SDB itself (e.g. gesture 
interpretation.) The Plug-ins Subsystem maintains plug-in components, such as the 
free-hand drawing syntax recognizer. Finally, the Device UI Subsystem encapsulates the 
device-dependent user interfaces.  

This architecture represents the composition of several of the design patterns 
summarized in figure 2:  

 – Document Replication: Each node maintains a local copy of its data 
(SDB-Content). The client applications (SDB Client Application) broadcast update events 
to each other in order to synchronize the distributed copies. This pattern was chosen over 
Centralized Document Processing for performance reasons.  

 – Star Topology: This is used to broadcast changes in the free-hand 
drawings to all session participants. The Native Collaboration Manager sends/receives 
events to/from a Hub component, which broadcasts those events to interested application 
components (other Native Collaboration Managers) in other nodes. Although this pattern 
has worse availability than the Mesh Topology, it was chosen to reduce the required 
number of network connections. The availability issue was addressed by the use of 
Dynamic Hub Migration, as described below.  

 – Dynamic Hub Migration: Within the star topology, a Hub is present on 
every node, facilitating migration of the broadcasting functionality between nodes. This 
pattern is effective when combined with the Star Topology pattern.  

 – Distributed Directories: Each node maintains a local directory of 
relevant peers (Local Directory). This directory is initially obtained from the server 
(Global Directory). Subsequently, clients directly broadcast relevant directory updates to 
each other in order to maintain current distributed directories without constantly 
checking the server for updates. A distributed directory has superior performance and 
availability to a centralized directory service.  
 – Online Recognition: The SDB performs structural recognition of 
hand-drawn diagrams. The application component (SDB Core) invokes the structure 
recognizer (Syntax Recognizer) before updating the local data (SDB Content). This is 
performed for every update event received from the user interface.  
 Online recognition was superior to Batch Recognition since it supports realtime 
feedback to the user.  

 – Interface Awareness Cues: A variety of interface awareness cues are 
implemented as part of the SDB Core, including telepointers and zooming/scrolling 
functionality.  
 

The central question in evaluating our experience with quality-centered architectural 
design is whether the requirements of the Software Design Board were met. The 
approach helped us to methodically assess which of a set of design patterns best 
addressed the application’s requirements. The quality impact matrix helped in identifying 
the design patterns of interest. The analysis frameworks effectively provided a 
vocabulary for discussing the tradeoffs between patterns, allowing the choices 
summarized above. Once the application was built, its performance, usability and 
availability requirements were met as far as possible within a prototype tool.  



The framework is a work in progress, and should be extended both to provide 
additional design patterns and additional quality attributes. Two new quality attributes of 
particular interest are security and development time. Security heavily influences how 
well an application respects the user’s privacy, a question of enormous importance to 
groupware users. Estimates of development time place a significant reality check on 
architectural design, as the desired architecture may simply not be realizable within the 
available time or budget.  

6 Analysis and Related Work  

The work described in this paper builds extensively on earlier work in taxonomies of 
quality attributes [4, 8] and catalogues of the relationship between software architecture 
and quality attributes [1, 3]. These lines of research have attempted to identify 
architectural styles that achieve particular quality attributes. Additionally, there have 
been other systematic attempts to document the relationship between software 
architecture and quality attributes, including the Non-Functional Requirement 
Framework [5] and Attribute Driven Design [2].  

Our experience with developing the Software Design Board leads us to a number of 
conclusions about Quality-Centered Design of software architectures.  

First, we emphasize the importance of QCAD frameworks being domainspecific. If 
the domain is too broad, the framework developer will have an unreasonable number of 
design patterns to specify and analyze. Similarly, the complexity of the analytical models 
will grow, as a wide range of quality concerns need to be taken into account. It is 
practical to apply this approach if the domain is sufficiently narrow to keep the 
development of the framework tractible. Others have had success with domain-specific 
frameworks, most notably in the area of human-computer interaction [9] and IT systems 
[11].  

The choice of design patterns to populate the framework is itself challenging. There 
is a constant tension between specifying many orthogonal design patterns with limited 
functionality versus fewer design patterns with more functionality. The former approach 
is more general, allowing design patterns to be more easily combined, possibly even in 
ways that the framework developer did not foresee. The latter approach makes it easier 
for users of the framework to pick patterns of interest and combine them into 
architectures. Over all, making design patterns too fine-grained can lead to an explosion 
of patterns, while too coarse a granularity may make then hard to combine and may lead 
to important cases being missed.  

Our experience shows that analytical models may be quantitative or qualitative. For 
example, our Availability and Performance models are based on measurable phenomena, 
while our Usability model is more subjective. Even with quantitative models, our 
reasoning is ultimately qualitative: it is difficult to provide a numeric value capturing the 
effect of a design pattern. There has been some progress in creating and validating 
analytical models in the groupware area [10] and in performance in general [11], but 
substantially more work is required. Of these approaches, we favour work that validates 
analytical models over approaches that require architects to do extensive mathematical 
analysis of their designs, simply in order to obtain results in a timely fashion. 
Particularly, as the required analysis becomes more complex, there is likely diminishing 
return on investment.  

Nevertheless, the approach is useful now, as QCAD frameworks support methodical 
reasoning about the properties of software architectures. For groupware developers, even 
the experience of thinking about how quality attributes such as availability and security 



affect the user experience is highly beneficial. The framework as it stands already 
represents a significant advance over ad-hoc design.  

Throughout our work, we gained experience in the development of QCAD 
frameworks, of which our groupware framework is one example. Figure 8 summarizes 
the steps required to create a new framework for a new domain. Our approach is similar 
to Bass et al.’s Attribute-Driven Design method, differing primarily in our use of design 
patterns as the unit of design, rather than ADD’s more abstract tactics.  

A framework developer must first mine a set of existing applications to isolate useful 
design patterns, resulting in a pool of domain-specific design patterns. It is important to 
emphasize that each QCAD framework is specific to a relatively narrow domain, such as 
the development of groupware.  

In order to help designers evaluate the tradeoffs between design patterns, analytical 
frameworks must be developed. The analytical frameworks are used to develop analytical 
advice associated with each design pattern, as well as a quality impact matrix used to 
help navigate the pool of patterns.  

7 Conclusion  

In this paper, we have presented a quality-centered design framework for groupware 
applications. This framework is an example of a more general approach in which 
domain-specific frameworks can be developed to help architectural design. We have 
illustrated the framework through its application to a significant  

 

Fig. 8. How a framework developer populates a quality-centered design framework  

groupware application, the Software Design Board. We have shown how the Software 
Design Board is constructed by combining design patterns suggested by our QCAD 
framework.  
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Questions 

 

Prasun Dewan: 
Question: Does your work allow for optimization of combinations of parameters/ 
Foe example, high awareness compensates for low consistency management. 
This is an apparent trade-off, but not a real one, as the usability does not 
degrade because of low consistency. 
Answer: The user will simply pick an architecture with high awareness and low 
consistency management. 
 
Laurence Nigay: 
Question: Would it be possible that design patterns re not compatible? 
Answer: It is a loop mechanism, back to the quality factor. 
 
Phil Gray: 
Question: This approach is based on the identification of requirements which 
drives the analysis and assessment. However, requirements are subject to 
change. How would/could you handle this fact? 
Answer: Requirements always subject to change. Basically, we should always do 
the best we can to anticipate potential change and design with that in mind. 
 
Question: What about “malleability” or “support for change” as a quality 
attribute for an architecture? 
Answer: Yes. We don’t have that, but it would be a great idea. 


