
Toward Quality-Centered Design of Groupware
Architectures

James Wu and T.C. Nicholas Graham

School of Computing, Queen’s University, Kingston, Canada K7L 3N6
JamesWu@lincsat.com, graham@cs.queensu.ca

Abstract. Challenges in designing effective groupware include technical issues
associated with concurrent and distributed work and social issues associated with
supporting group activities. To address some of these problems, we have developed
a quality-centered architectural design framework that links requirements analysis
to architectural design decisions for groupware systems. The framework supports
reasoned architectural design choices that are used to tailor software architecture to
the unique quality and functional requirements of the software being developed.
The framework has been applied to the development of the Software Design Board,
a tool for collaborative software engineering.

1 Introduction

Groupware tools help people work and play together, providing integrated mechanisms
for communication, collaboration and coordination [7]. Common examples of groupware
include Lotus Notes’ document respositories, the MSN Messenger instant messaging
tool, the WebArrow/Conference online meeting tool, and the World of Warcraft
massively multiplayer online game.

Groupware applications are difficult to construct, involving the difficult technological
problems of supporting real-time interaction over a distributed system. A wide range of
quality attributes affect the user’s collaboration experience. Tools with poor availability
may be unreliable and lead to inconvenience or loss of work. High security is required to
ensure that the user’s privacy is respected. Synchronous groupware requires high
performance to support fluid interaction with other participants.

When translated into architectural choices, these requirements often conflict. For
example, a requirement for high security might imply that all shared data should be
stored at a single site, reducing the risk of unwanted data access. On the other hand, a
requirement for high availability might imply that shared data should be replicated at
multiple, redundant sites. Since there is no single groupware architecture that provides all
of these qualities, architects of groupware systems must therefore carefully analyze their
requirements to determine how to resolve these conflicts. Architectural tradeoff analysis
involves the methodical comparison of architectural choices in order to determine what
architecture best fits a system’s requirements. Such analysis allows designers to reason
about the

Fig. 1. How an architect applies quality-centered architectural design

properties of a system’s implementation before it is developed, and as such is one of the
fundamentals motivating architectural design.

To perform such analysis, designers require a set of alternative architectures from
which their system may be composed, and a reasoning framework allowing them to
assess the properties of each architectural choice. Such architectural “tool boxes” have
not been widely developed.

In this paper, we present a quality-centered design framework for the groupware
application domain. The framework consists of a set of architectural design patterns that
can be combined to create groupware architectures, and a set of analytical models for
quality attributes of interest to groupware. Architects can select those design patterns
whose qualities best match the requirements of their groupware system, and combine
them into an architecture.

The groupware domain provides a rich field of study for architectural tradeoff
analysis, as there are numerous solutions to each architectural problem with no clear
means of choosing between them. To illustrate its utility, we have applied our framework
to the design and implementation of the Software Design Board [13], a tool supporting
collaborative design of software systems.

2 Quality-Centered Architectural Design

We aim to improve users’ experience with groupware applications through a novel
quality-centered architectural design framework. The framework assists programmers in
identifying candidate architectural styles for their groupware application, and in
methodically determining which architecture best meets their requirements. Our
contributions with the framework are:

 – a set of analytical models that help relate software quality attributes to
user experience,
 – a set of design patterns that capture solutions to common problems in
architecting groupware systems,

 – a quality impact matrix that helps link the design patterns to desired
system qualities.

Figure 1 shows how quality-centered architectural design links requirements analysis and
architectural design, following the approach of Bass et al. [1]. Requirements are
expressed in terms of key quality attributes such as performance, security, usability and
availability. To help architects reason about design tradeoffs, our framework provides a
pool of architectural design patterns, each of which embodies an architectural decision.
In groupware, decisions might include

 – whether to centralize or replicate shared data
 – whether to use an optimistic or pessimistic concurrency control scheme
 – how to reestabish service following the failure of a central
communication hub
 – how to distribute information required for awareness functions (such as
telepointers.)

The pool of design patterns includes different architectural solutions for these problems,
representing different points in the space of tradeoffs. This provides architects with
choices of how to best meet their application’s requirements. The specification of a
design pattern therefore includes analysis of its qualities, detailing the conditions where
the pattern may improve (or worsen) the various quality attributes. For example, a pattern
using an optimistic concurrency control scheme may improve feedback time while
worsening the fidelity of different participants’ views; a pattern involving data replication
may improve the application’s robustness to failure, while increasing its vulnerability to
privacy violations.

The architect evaluates which design patterns best satisfy the application’s
requirements, and chooses a set of design patterns to be used in the architecture. These
patterns must be combined to create an architecture for the system. This combination step
may be straight-forward, but may involve further design work to enable the design
patterns to work together. If combination of a set of patterns is not practical, new patterns
may have to be chosen from the available pool.

In the following section, we examine a representative set of quality attributes, and
develop analytical models which we will then use in section 4 to analyze our pool of
groupware design patterns.

3 Qualities and Analytical Models

As seen in figure 1, architects select design patterns from a candidate pool based on their
architectural qualities. Analytical models support this selection process, allowing the
architect to evaluate design patterns with respect to a particular quality attribute. For
example, availability is used to measure the frequency at which the system fails (and is
unavailable for use); security measures how easily private data can be accessed by
malicious third parties; usability measures how easily users can apply the system to
performing their tasks; functionality measures how well the system matches the users’
tasks; and performance measures how quickly the system responds to users’ actions.

Analytical models serve as the basis for analyzing the qualities of design patterns.
They provide a vocabulary for discussing quality attributes; for example, “performance”
is computed from elements such as “local processing time”, “network time” and “remote
processing time”, while “usability” of a groupware application comprises elements such

as “fidelity”, “consistency” and “awareness”. Ultimately, analytical models allow us to
determine the properties of architectural design patterns, supporting the choice of which
design patterns best meet the requirements of a given application.

As representative examples, we now present analytical models for the availability,
usability and performance quality attributes. These analytical models are developed
specifically for the groupware domain. In section 4, we will show how these models
allow us to precisely discuss the properties of design patterns.

In describing analytical models, we follow (but simplify) the approach of Bass et al.
[1]. We specify an analytical model for each of a set of quality attributes as applied to the
domain of collaborative applications. Analytical models are defined in terms of a set of
measures, observable phenomena that influence the attribute of interest. For each
analytical model, we then discuss what stimuli influence the measures, and give
examples.

3.1 Analytical Model: Availability

Availability measures robustness of a groupware system in terms of what percentage of
the time that the system is available for use. Poor availability leads to a negative user
experience, as failures may lead to lost work or frustrating interruptions in collaborative
sessions.

Analytical Model: Availability Domain: Collaborative applications Measures: Mean

Time to Failure, Mean Time to Repair Details:

Mean Time to Failure

availability = (Mean Time to Failure + Mean Time to Repair)

Where: Mean Time to Failure is the average length of time between component failures,
and Mean Time to Repair is the average length of time required to restore the
functionality of a failed component.

Discussion: In this context, Mean Time to Failure is influenced by both network and
software component reliability. Any architectural feature than can improve the reliability
of these components will increase the Mean Time to Failure experienced by individual
collaborators. Architectural features that allow a component to remain functional in the
presence of faults will increase the Mean Time to Failure. Similarly, features that
influence the ability to reconfigure or repair the system when failures have occurred will
affect Mean Time to Repair.
Examples:

1 Localizing the effects of any component failure can reduce Mean Time to
Failure. For example, if a failure in a document sharing system can be localized, reducing
the number of users who are unable to interact with the document, then the overall
availability of the document to the group is increased.
2 Mean Time to Repair can be reduced by using redundant copies of core
components to re-establish functionality in the event of a failure. This eliminates the
processing associated with recovering the failed component, allowing functionality to
simply be resumed by the back-up component.

3.2 Analytical Model: Usability

Using synchronous groupware should come as close as possible to the experience of
collaborating in the same location. Usability measures aspects of how closely the
groupware system achieves this goal.

Analytical Model: Usability

Domain: Collaborative applications

Measures: Fidelity, Consistency, Awareness

Details: Fidelity measures the degree to which a participants view of shared artifacts
represents their actual state. Consistency measures the degree to which different
collaboration channels are synchronized. Awareness measures to what degree a
participant can perceive the actions and attention of other participants.

Discussion: A primary source of reduced Fidelity is the time that it takes for one
participant’s actions to be transmitted to other participants over a network. When
participants are working asynchronously, their views of the system may become
considerably out of date. Some algorithms for presenting participants consistent views of
a shared state involve rollbacks of committed actions; in this case, Fidelity is
compromised because the participant has been shown a view that is incorrect.

Groupware applications often allow people to collaborate using a variety of channels,
such as voice, video, view of a shared artifact, and telepointers. Consistency measures
how well these channels are synchronized. Poor consistency can lead to confusion, for
example, a presenter talking over a slide that has not yet appeared on an audience
member’s display.

Groupware participants need to understand the activities and intentions of their
collaborators. Such awareness may be improved via simple mechanisms such as
telepointers, or advanced mechanisms such as gaze awareness.

Examples:

 1. The use of an optimistic concurrency control algorithm allows a participant’s
actions to be reflected immediately in their view of a system. However, if this action
conflicts with that of another participant, it may be rolled back. If conflicts are rare, the
use of this optimistic concurrency control improves Fidelity by
 reducing feedback time; if conflicts are frequent, Fidelity is compromised due to
high numbers of roll-backs.
2 Timestamping and buffering can be used to synchronize the data from different
collaboration channels. This approach can improve Consistency, but at the cost of
reducing Fidelity through increased latency.

3.3 Analytical Model: Performance

Performance affects the fluidity and naturalness of collaboration. If users find the tool to
be unresponsive to their own actions or slow to report the actions of others, their
experience of working together in a group will be negatively impacted.

Analytical Model: Performance Domain: Collaborative Applications Measures:

Feedback Time, Feedthrough Time Details:

Feedback Time = Local Processing Time
FB

+ Network TimeFB

+ Remote Processing Time
FB

Feedthrough Time = Local

Processing Time
FT

+ Network TimeFT

+ Remote Processing Time
FT

Where: Local Processing Time is the time taken to process events at the initiating users
local machine; Network Time is the time taken to transmit events across the network to
remote machines, and Remote Processing Time is the time taken to process events
received from the network at a remote machine.

Discussion: Feedback Time represents the time from a user performing an action to
seeing the result of that action. Feedthrough Time represents the from a user performing
an action to other users’ seeing the result of that action. These measures are influenced
by two factors – the performance of the network connecting collaborators (i.e., with
respect to bandwidth and/or latency) and the amount of time required to process events
before results can be displayed to users.

Examples:

1 Feedback Time can be reduced by eliminating the need for an event to be sent
over the network before updating the display of its initiating user. That is, if the user’s
display can be updated without any network interchange, both the Network and Remote
Processing times are removed from the above equation; i.e., (Feedback Time = Local
Processing Time

FB
.)

2 For Feedthrough Time, network traffic cannot be avoided; reducing the
bandwidth required by events being sent across the network maximizes available
bandwidth, thereby reducing the Network portion of the equation and therefore the
overall time required.

The performance analytical model demonstrates how analytical models are developed for
a particular application domain. The primary performance issues for groupware have to
do with how quickly users see the results of their own actions (Feedback Time) and how
quickly they see the results of others’ actions (Feedthrough Time.) There are many other
ways that performance of distributed systems can be measured (e.g., turnaround time,
throughput, CPU load), but for groupware, Feedback and Feedthrough Time are the most
important. By being able to concentrate on the measures that are most important for a
particular domain, we can greatly reduce the complexity of analytical models.

4 Design Patterns

Following the approach of figure 1, developers of groupware applications first identify
quality requirements, expressed in terms of the quality attributes discussed in section 3.
The developer then selects from a pool of design patterns that best meet these
requirements. The selected patterns are subsequently combined into a concrete
architecture.

In order to architect groupware applications, we have identified a set of 21 design
patterns supporting a range of groupware applications, involving real-time and
asynchronous collaboration between co-located and remote collaborators. In addition to a
description of how it is used, each design pattern is accompanied by an analysis
summary. This summary explains the pattern’s properties with respect to quality
attributes, and is expressed relative to the relevant analytical models.

The design patterns shown in this paper are not intended to be comprehensive, but
comprise a representative sample of the strategies that could be used to support
synchronous groupware. As summarized in figure 2, the design patterns include support

for:

 – Both co-located and distributed interaction styles, including transitions
between them;

 – Both asynchronous and real-time interaction styles, including
transitions between them;

 – The creation of both syntactically correct and free-form artifacts, and
the ability to seamlessly move between interactions with one style of artifact to the other;

 – Both free-form and moderated interaction styles, including transitions
between them;

 – Interaction through a variety of devices, and movement between them.

To help designers navigate large numbers of design patterns, a quality impact matrix
is provided (figure 2). This matrix shows the primary quality attributes that each pattern
influences (either positively or negatively). Architects interested in improving a
particular quality attribute can use the matrix to locate candidate design patterns for use
in their architecture.

Fig. 2. Extract from quality impact matrix: Summary of design patterns supporting the
development of groupware architectures. Checkmarks indicate influence on quality attributes,
either positive or negative.

Fig. 4. Localized conflict detection design pattern

We now briefly describe two of the 21 design patterns that comprise the candidate
pool compiled for the design of groupware tools. For both design patterns, we provide a
brief description and an architectural diagram. The diagrams are based on the Workspace
Architectural Model [12] (figure 3). The two selected design patterns show architectural
alternatives that have equivalent functionality but markedly different influences on
quality attributes. An architect would opt for one or the other based on the non-functional
requirements specified for his/her particular project. Both design patterns address
concurrency control.

4.1 Localized Conflict Detection

The goal of localized conflict detection (figure 4) is to provide all participants in a
groupware session with consistent views of shared state.

In this pattern, update events are broadcast to each client. Clients are responsible for
detecting and appropriately resolving conflicts between different users updates. An

appropriate implementation for this pattern could be operational transform [6].

Analysis Summary: This pattern influences both availability and usability. Under
availability (section 3.1), Mean Time to Repair benefits from the local

Fig. 5. Centralized Serialization with Migrating Serializer design pattern

ization of the conflict recognizer. If one participant’s node fails, the other participants can
continue without problem, as they do not rely on the failed node’s state or the state of its
conflict recognition. Therefore, partial repair is quick.

Under usability (section 3.2), Fidelity may be improved or worsened by the adoption
of this design pattern. Since the conflict recognizer is local, the results of participants’
own actions may be shown immediately, without any need to send messages over the
network. In the case of conflicts, however, the view may have to be rolled back. If
conflicts between participants’ actions are rare, Fidelity will be good; if conflicts are
frequent, rollbacks will be frequent, having a negative effect on Fidelity.

4.2 Centralized Serialization with Migrating Serializer

As with the last pattern, the goal of centralized serialization with migrating serializer is
to provide all participants in a groupware session with consistent views of shared state.

Update events are serialized before being broadcast to all clients. Since events are
processed by each client in the same order, all users share a consistent view of the
application’s shared state. The component responsible for this serialization may migrate
between client locations in response to patterns of update traffic. The architecture of this
pattern is shown in figure 5.

Analysis Summary: This design pattern has an availability risk (section 3.1), particularly
compared to Localized Conflict Detection. If the node hosting the serializer fails, then the
system will be left in a bad state. A recovery algorithm would be required in order to
choose a new node for the serializer.

Under performance (section 3.3), this pattern can increase Feedback Time relative to
Local Conflict Detection because of increased Network times. However, this effect can
be mitigated by migrating the serializer, reducing the average network delays
experienced by all clients. Similarly, Feedthrough Time may be increased by this pattern
due to contention at the centralized serialization component, or because migration of that
component has increased the average Transmission Time between all clients. This pattern
is particularly applicable to applications where only one user time performs input actions
at a time, as the serializer will migrate to that user’s computer.

Under usability (section 3.2), this approach has both negative and positive effects on
Fidelity. Users on nodes with proxy serializers do not see the effects of their own actions
until the action has been routed through a serializer on a different node, negatively
impacting Fidelity. Conversely, the approach leads to no conflicts or rollbacks, positively
affecting Fidelity.

4.3 Tradeoffs

The examples of the localized conflict detection and the centralized serialization with
migrating serializer design patterns help illustrate the tradeoffs that developers must
make when designing the architectures of groupware systems.

Localized conflict detection has excellent availability, and so is the better choice if
good handling of partial failure is desired. Localized conflict detection provides good
fidelity if conflicts are rare, but may be a poor choice if conflicts are frequent, leading to
frequent undoing of users’ actions. Centralized serialization is a good choice if conflicts
are more frequent. However, centralized serialization may give poor feedback time; if
NetworkT imeFB is high (over a wide area network), this may be a poor choice. If most
interaction is in the form of turntaking, then the migrating serializer will mitigate this
problem.

In summary, therefore, localized conflict detection is a good choice when availability
is important and conflicts are rare. Centralized serialization is superior if availability is
less of a concern and if feedback time is unimportant (or clients are connected by a
low-latency network.)

These examples illustrate the detailed analysis of architectural tradeoffs that is
possible when design patterns are based on analytical models such as those of section 3.

5 Application: The Software Design Board

To gain experience with our quality-centered architectural design framework, we applied
it to the development of Software Design Board, a tool supporting collaborative software
design [13]. In section 5.1, we will show how our qualitycentered design framework was
used to develop the Software Design Board and discuss its success.

Fig. 6. The Software Design Board [13] permits free-hand drawing, automatic recognition of those
drawings as structured diagrams, and supports collaborative use via electronic whiteboard or PC
clients.

The Software Design Board is a whiteboard-based, prototype tool intended to support
collaboration in the early stages of software design. The tool supports a variety of styles
of work helping in software design, and facilitates transitions between them. This is
achieved be integrating informal media and flexible collaboration mechanisms, as well as
supporting the migration between different software tools, devices and collaborative
contexts. These facilities are intended to support fluid transitions between the some of the
different styles of work in which we have observed software designers to engage [14].

As can be seen in figure 6, the core of the Software Design Board is its support for
free-hand drawing and sketching, appropriate for brainstorming activities. Any number
of people can participate in a brainstorming session from different locations, using either
an electronic whiteboard or a traditional PC. Each participant sees the drawings of other
participants in real-time. Telepointers allow participants to see where other participants
are pointing. Gesture-based zooming and panning allows easy management of large
drawing areas. Documents created with traditional programs such as Word or PowerPoint
can also be embedded in the drawing area.

Free-hand drawings can be automatically converted to structure-drawings via a
diagram recognition function, helping with the transition from rough sketches to formal
documentation.

Fig. 7. Architecture of the Software Design Board

A participant can disconnect from the collaborative session (e.g., while traveling with
a laptop), continue work, and merge his/her changes back when next reconnecting. If all
participants disconnect, the state of the session is saved, allowing the next person to pick
up where the session left off, using any device from any location.

The Software Design Board motivates quality requirements typical of groupware
applications. It is important for partial failure to be handled effectively; if a participant’s
computer or network connection fails, the other participants should be able to continue
uninterrupted. Security may be a significant issue, as design discussions may include
sensitive data that should not be intercepted by malicious parties. Performance is
important, as significant latency may inhibit the natural flow of discussion. And perhaps
most importantly, the tool must enable natural collaboration, ensuring that participants
easily understand the actions of other participants.

5.1 Architecture of the Software Design Board

In this section, we show which of the design patterns outlined in section 4 were selected
and combined into the architecture of the Software Design Board.

The high-level architecture of the Software Design Board is described in figure 7.
Each client application (SDB Client Application) maintains a local copy of all data
(SDB-Content), as well as a directory of contact information (Local Directory) of people

with ongoing collaborations. Each client application also interacts with a central server
(SDB-Server), which maintains a global copy of all data. Additionally, the server
maintains a global directory containing contact information for all clients in the system.

The SDB Client Application is expanded into four subsystems – Collaboration
Management, SDB Application, Plug-ins and Device UI. The Collaboration Management
Subsystem is responsible for managing shared data. The SDB Application Subsystem is
responsible for the applications themselves, i.e., the native drawing application, control
of external OLE applications and general functionality of the SDB itself (e.g. gesture
interpretation.) The Plug-ins Subsystem maintains plug-in components, such as the
free-hand drawing syntax recognizer. Finally, the Device UI Subsystem encapsulates the
device-dependent user interfaces.

This architecture represents the composition of several of the design patterns
summarized in figure 2:

 – Document Replication: Each node maintains a local copy of its data
(SDB-Content). The client applications (SDB Client Application) broadcast update events
to each other in order to synchronize the distributed copies. This pattern was chosen over
Centralized Document Processing for performance reasons.

 – Star Topology: This is used to broadcast changes in the free-hand
drawings to all session participants. The Native Collaboration Manager sends/receives
events to/from a Hub component, which broadcasts those events to interested application
components (other Native Collaboration Managers) in other nodes. Although this pattern
has worse availability than the Mesh Topology, it was chosen to reduce the required
number of network connections. The availability issue was addressed by the use of
Dynamic Hub Migration, as described below.

 – Dynamic Hub Migration: Within the star topology, a Hub is present on
every node, facilitating migration of the broadcasting functionality between nodes. This
pattern is effective when combined with the Star Topology pattern.

 – Distributed Directories: Each node maintains a local directory of
relevant peers (Local Directory). This directory is initially obtained from the server
(Global Directory). Subsequently, clients directly broadcast relevant directory updates to
each other in order to maintain current distributed directories without constantly
checking the server for updates. A distributed directory has superior performance and
availability to a centralized directory service.
 – Online Recognition: The SDB performs structural recognition of
hand-drawn diagrams. The application component (SDB Core) invokes the structure
recognizer (Syntax Recognizer) before updating the local data (SDB Content). This is
performed for every update event received from the user interface.
 Online recognition was superior to Batch Recognition since it supports realtime
feedback to the user.

 – Interface Awareness Cues: A variety of interface awareness cues are
implemented as part of the SDB Core, including telepointers and zooming/scrolling
functionality.

The central question in evaluating our experience with quality-centered architectural
design is whether the requirements of the Software Design Board were met. The
approach helped us to methodically assess which of a set of design patterns best
addressed the application’s requirements. The quality impact matrix helped in identifying
the design patterns of interest. The analysis frameworks effectively provided a
vocabulary for discussing the tradeoffs between patterns, allowing the choices
summarized above. Once the application was built, its performance, usability and
availability requirements were met as far as possible within a prototype tool.

The framework is a work in progress, and should be extended both to provide
additional design patterns and additional quality attributes. Two new quality attributes of
particular interest are security and development time. Security heavily influences how
well an application respects the user’s privacy, a question of enormous importance to
groupware users. Estimates of development time place a significant reality check on
architectural design, as the desired architecture may simply not be realizable within the
available time or budget.

6 Analysis and Related Work

The work described in this paper builds extensively on earlier work in taxonomies of
quality attributes [4, 8] and catalogues of the relationship between software architecture
and quality attributes [1, 3]. These lines of research have attempted to identify
architectural styles that achieve particular quality attributes. Additionally, there have
been other systematic attempts to document the relationship between software
architecture and quality attributes, including the Non-Functional Requirement
Framework [5] and Attribute Driven Design [2].

Our experience with developing the Software Design Board leads us to a number of
conclusions about Quality-Centered Design of software architectures.

First, we emphasize the importance of QCAD frameworks being domainspecific. If
the domain is too broad, the framework developer will have an unreasonable number of
design patterns to specify and analyze. Similarly, the complexity of the analytical models
will grow, as a wide range of quality concerns need to be taken into account. It is
practical to apply this approach if the domain is sufficiently narrow to keep the
development of the framework tractible. Others have had success with domain-specific
frameworks, most notably in the area of human-computer interaction [9] and IT systems
[11].

The choice of design patterns to populate the framework is itself challenging. There
is a constant tension between specifying many orthogonal design patterns with limited
functionality versus fewer design patterns with more functionality. The former approach
is more general, allowing design patterns to be more easily combined, possibly even in
ways that the framework developer did not foresee. The latter approach makes it easier
for users of the framework to pick patterns of interest and combine them into
architectures. Over all, making design patterns too fine-grained can lead to an explosion
of patterns, while too coarse a granularity may make then hard to combine and may lead
to important cases being missed.

Our experience shows that analytical models may be quantitative or qualitative. For
example, our Availability and Performance models are based on measurable phenomena,
while our Usability model is more subjective. Even with quantitative models, our
reasoning is ultimately qualitative: it is difficult to provide a numeric value capturing the
effect of a design pattern. There has been some progress in creating and validating
analytical models in the groupware area [10] and in performance in general [11], but
substantially more work is required. Of these approaches, we favour work that validates
analytical models over approaches that require architects to do extensive mathematical
analysis of their designs, simply in order to obtain results in a timely fashion.
Particularly, as the required analysis becomes more complex, there is likely diminishing
return on investment.

Nevertheless, the approach is useful now, as QCAD frameworks support methodical
reasoning about the properties of software architectures. For groupware developers, even
the experience of thinking about how quality attributes such as availability and security

affect the user experience is highly beneficial. The framework as it stands already
represents a significant advance over ad-hoc design.

Throughout our work, we gained experience in the development of QCAD
frameworks, of which our groupware framework is one example. Figure 8 summarizes
the steps required to create a new framework for a new domain. Our approach is similar
to Bass et al.’s Attribute-Driven Design method, differing primarily in our use of design
patterns as the unit of design, rather than ADD’s more abstract tactics.

A framework developer must first mine a set of existing applications to isolate useful
design patterns, resulting in a pool of domain-specific design patterns. It is important to
emphasize that each QCAD framework is specific to a relatively narrow domain, such as
the development of groupware.

In order to help designers evaluate the tradeoffs between design patterns, analytical
frameworks must be developed. The analytical frameworks are used to develop analytical
advice associated with each design pattern, as well as a quality impact matrix used to
help navigate the pool of patterns.

7 Conclusion

In this paper, we have presented a quality-centered design framework for groupware
applications. This framework is an example of a more general approach in which
domain-specific frameworks can be developed to help architectural design. We have
illustrated the framework through its application to a significant

Fig. 8. How a framework developer populates a quality-centered design framework

groupware application, the Software Design Board. We have shown how the Software
Design Board is constructed by combining design patterns suggested by our QCAD
framework.

Acknowledgements

This work benefitted from the generous support of the Natural Science and Engineering
Research Council of Canada, the Ontario Centres of Excellence, and the Network for
Effective Collaboration Technologies through Advanced Research.

References

1 L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI Series in
Software Engineering. Addison-Wesley, second edition, 2003.

2 L. Bass, M. Klein, and F. Bachmann. Quality attribute design primitives and the attribute
driven design method. In Software Product-Family Engineering, pages 169–186. LNCS, 2001.

3 J. Bergey, M. Barbacci, and W. Wood. Using quality attribute workshops to evaluate
architectural design approaches in a major system acquisition: A case study. Technical Report
CMU/SEI-2000-TN-010, Software Engineering Institute, 2001.

4 B. Boehm, J. Brown, H. Kaspar, M. Lipow, G. McLeod, and M. Merrit. Characteristics of
Software Quality. North Holland, 1978.

5 L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

6 C. Ellis and S. Gibbs. Concurrency control in groupware systems. In Proceedings of the ACM
Conference on the Management of Data (SIGMOD ’89, Seattle, WA, USA, May 2–4), pages
399–407. ACM Press, 1989.

7 C. Ellis, S. Gibbs, and G. Rein. Groupware: Some issues and experiences. Communications of
the ACM, 34(1):38–58, January 1991.

8 International Organization for Standardization, International Electrotechnical Organization.
International Standard ISO/IEC 9126. Information technology – Software product evaluation –
Quality characteristics and guidelines for their use.

9 B. John, L. Bass, M. Segura, and R. Adams. Bringing usability concerns to the design of
software architecture. In Proc. Engineering Human-Computer Interaction/ Design,
Specification and Verification of Interactive Systems, pages 1–19. LNCS, 2004.

10 S. Junuzovic, G. Chung, and P. Dewan. Formally analyzing two-user centralized and replicated
architectures. In Proc. ECSCW ’05, pages 83–102. Springer-Verlag, 2005.

11 H. Koziolek and V. Firus. Empirical evaluation of model-based performance prediction
methods in software development. In Quality of Software Architectures, pages 188–205.
LNCS, 2005.

 12. W.G. Phillips, T.C.N. Graham, and C. Wolfe. A calculus for the refinement and
evolution of multi-user mobile applications. In Proceedings of the Twelfth International
Workshop on Design, Specification and Verification of Interactive Systems

 (DSV-IS ’05), LNCS, pages 137–148. Springer-Verlag, 2005.
12 J. Wu and T.C.N. Graham. The Software Design Board: A tool supporting workstyle

transitions in collaborative software design. In Proc. Engineering Human-Computer
Interaction/ Design, Specification and Verification of Interactive Systems, pages 363–382.
LNCS, 2004.

13 J. Wu, T.C.N. Graham, and P. Smith. A study of collaboration in software design. In 2003
International Symposium on Empirical Software Engineering (ISESE 2003) Rome, Italy. IEEE
Computer Society, 2003.

Questions

Prasun Dewan:
Question: Does your work allow for optimization of combinations of parameters/
Foe example, high awareness compensates for low consistency management.
This is an apparent trade-off, but not a real one, as the usability does not
degrade because of low consistency.
Answer: The user will simply pick an architecture with high awareness and low
consistency management.

Laurence Nigay:
Question: Would it be possible that design patterns re not compatible?
Answer: It is a loop mechanism, back to the quality factor.

Phil Gray:
Question: This approach is based on the identification of requirements which
drives the analysis and assessment. However, requirements are subject to
change. How would/could you handle this fact?
Answer: Requirements always subject to change. Basically, we should always do
the best we can to anticipate potential change and design with that in mind.

Question: What about “malleability” or “support for change” as a quality
attribute for an architecture?
Answer: Yes. We don’t have that, but it would be a great idea.

