A New Buffer Planning Algorithm Based on
Room Resizing*

Hongjie Bai, Sheqin Dong, Xianlong Hong, and Song Chen

Department of Computer Science and Technology, Tsinghua University, Beijing,
China,
bhjO4@mails.tsinghua.edu.cn,dongsq@mail.tsinghua.edu.cn

Abstract. This paper studies the buffer planning problem for inter-
connect centric floorplanning. Dead-spaces not held by blocks are the
available location for buffer insertion. To make best use of these spaces
for buffer requirements, we have to move blocks so that blocks’ room size
is adjusted and dead-spaces could be redistributed. In this paper, we in-
troduce a new algorithm to move blocks not only within its room, but
also in the space currently held by other blocks by pushing away these
blocks if necessary without violating the topological and the total area.
After applying this method of redistributing dead-spaces, the number of
nets satisfying delay constraint can be optimized.

1 Introduction

As the VLSI circuits are scaled into nanometer dimensions, interconnect plays
a dominant role in the performance and cost. To ensure the timing closure of
design, interconnects must be considered as early as possible. Buffer insertion
is among most effective ways to reduce interconnect delay which breaks long
interconnects into shorter ones so that overall delay can be reduced. However,
most buffer insertion algorithms were designed for post-layout interconnect op-
timization. Obviously it is not suitable if we have no global planning for tens of
thousands of nets that need buffers to be inserted. Also, buffers take up silicon
resources, so it is necessary to plan buffer as early as possible in the design of
VLSI.

1.1 Previous Work

[3] introduced the concept of feasible region which employs Elmore delay model
to generate buffer blocks. [5] extends it by adding independence to feasible re-
gion and also tries to relieve routing congestion. [6] proposed an optimal al-
gorithm which assumes only one buffer per net. [7] use multi-commodity flow-
based approach which allocates buffers to pre-existing buffer blocks. [8] proposes

* This paper is supported by National Nature Science Foundation of China (NSFC):
60473126, NSFC 60121120706 and National Natural Science Foundation of USA
(NSF) CCR-0096383, Hi-Tech Research & Development (863) Program of China
2004AA171050

a routability driven floorplanning. Most of these methods try to allocate buffers
into dead spaces, however none of these methods take concern of using dead
spaces effectively enough so that many dead spaces are left unused while still
many buffers have no space to insert. [2] introduces a dead space redistribution-
based method to make better use of dead space for buffer insertion. However,
there exists a drawback that it can only move blocks within its room. Figure 1(a)
is an example. With the algorithm introduced in [2], block C can’t be moved
horizontally so that some buffer requirements can’t be satisfied. However, if E
could move right a little to lend some space to C, all buffers can be successfully
inserted as shown in Fig. 1(b) .

& oy

(a) (W

Fig. 1. Buffers can’t be placed in (a) if C only moves within its room, but can be
successfully placed in (b) if we enlarge C’s room

1.2 Owur Contribution

Except for moving blocks within their rooms, the rooms’ size could be adjusted
without changing the blocks’ relative positions and buffer planning could be
improved greatly. In that case, if we wish to find the optimal solution to insert
buffers, we have to try moving blocks which may even push other blocks. So
our algorithm is concentrated on moving blocks as much as possible in order to
provide dead-spaces for buffer, at the same time, the dead-spaces of the total
placement are managed systematically. This new method will be very effective
for IP based SOC planning. For instance, for design reuse where topological
relations among blocks could not be changed, this method can make blocks
move in a range as much as possible to optimize buffer planning.

The rest of the paper is organized as follows, section 2 gives a problem de-
finition and a brief overview to the background including Feasible Region and
Corner Block List. Section 3 discusses our algorithm. Section 4 and section 5
give the experimental result and conclusion.

2 Preliminary

2.1 Problem Formulation

Given an initial placement and the nets with timing constraint, for the nets that
does not satisfy timing closure, we determine the buffer number needed for each
net and the definite buffer locations. Since buffer requires silicon resources, it
can only be located in dead-spaces which are not held by blocks. To best satisfy
buffer requirements, blocks have to be moved to make more nets meet timing
closure while the total area and topology remain unchanged.

2.2 Corner Block List(CBL)

Corner block list (CBL) is a topological representation introduced in [1]. CBL
uses three lists S,L,T to represent a floorplan. Each member in S represents a
block, L and T are lists of 0 and 1. While applying a CBL to a floorplan, we
assign the blocks in S one by one to the up-right corner. The corresponding
number in L denotes the direction. 0 makes the new block come from the top
direction and 1 makes the new block come from the right direction. The segments
lying on the left and bottom boundary of the corner block compose a T-junction
which defines the orientation of the corner block. The number of consecutive 1
in T means the number of T-Junctions the new block will cover. The insertion
process of a block is shown in Fig. 2. Details can be found in [1]. .

| EELCTER PR | 2
#___T Junction
= 5 = d
- 2
C C
¢ h ¢ =l S={f ceghbad}

L={ 88118 8}
T={ 8 @A 18 18 8 18}

(a) (b)

Fig. 2. From CBL to packing, insert corner block d to the corner and it covers one T
junction so that it covers g and a

3 Room Resizing

Our algorithm is composed of four steps: (1)Determine maximum move space of
each block, (2)try moving some block within its maximum move space, (3)ap-
plying traditional buffer insertion algorithm and (4) repeating 1,2,3 to search for
an optimized solution. We will explain in details in the following subsections.

3.1 Determine dead spaces and associate them with blocks

Dead space is defined to be space not held by blocks. During process of CBL
packing, after placing the corner block from the top direction(L=0), all its cov-
ered blocks’ top dead-spaces can be determined. Similarly, placing blocks from
the right direction(L=1) will determine its covered blocks’ right dead space. The
blocks on right boundary and top boundary are not covered by blocks and their
dead spaces are settled with help of top boundary and right boundary. An ex-
ample is shown in Fig. 3. In Fig. 3(a), corner block covers A so that X is A’s top
dead space. In Fig. 3(b), corner block covers D, C and A so that Y is A’s right
dead space and Z is C’s Right dead space.

D
Corner block C é Corner
//y hlock
Fd i
B B
piy &
(& Ch)

Fig. 3. While placing a corner block, its covered blocks’ dead spaces could be deter-
mined

After the process of CBL packing, we not only determine all the dead-spaces,
but also cut dead-spaces into rectangles naturally. At the same time, each dead-
space is associated with a block and none of them intersect with each other. A
block together with its dead spaces is defined to be this block’s room. Since CBL
is left-bottom packed, dead-spaces of a block are either on the top or on the right
or both initially. Only moving blocks or redistributing dead-spaces can make a
dead-space be on the left or bottom of its associated block. A more detailed
description can be found in [4].

3.2 Vertical and Horizontal Constraint Graph

Building constraint graph during CBL Packing is a necessary step for our al-
gorithm because constraint graph is a most efficient way to determine blocks’
relative position. Firstly, we build a start vertex S and an ending vertex T.
During CBL packing process, if the corner block covers from the top direction,
we draw an edge from covered blocks to the corner block in vertical constraint
graph, at the same time, we draw edges to the corner block from the blocks
which lie left to the left-most covered block. If there are no blocks that lie left
to left-most covered block which means the left-most covered block is on the left

boundary, we draw an edge from S to the corner block. New blocks coming from
right direction could be done similarly. In the end, we draw an edge from each
block on top/right border to T. Considering edge-cost, we define it to be the
dead space height/width between two neighboring blocks. An example is shown
in Fig. 4, A comes from top and covers B and C, so we draw C->A and B->A
in vertical graph in Fig. 4(a). C is the left-most covered-by-A block. E and F
are Left to C, so we draw E->A and F->A in horizontal graph in Fig. 4(b). The
only non-zero-cost edges are C->B, B->T.

AT
A ' 4 s
p £ erc| |,
I B = 4 — ,B__,J‘T
“‘\'fo n/

E'

(a))]

Fig. 4. Vertical(a) and horizontal(b) graph for a packing generated through a CBL

3.3 Maximum-Allowable Move Space (MAMS)

Since each block can be moved in four direction, up, down, left, right, so we keep
a note of how much distance a block can be moved in one direction while the
total area and topology remain unchanged.

Definition 1. A block’s maximum allowable move space on the right direction
(MAMSR) is the mazimum distance a block can be moved right, during which
the other blocks that block the way may have to be pushed, but the total area and
topology remain unchanged.

The MAMSU, MAMSD, MAMSL, MAMSR which corresponds to the maximum-
allowable move space on up/down/left/right direction can be defined similarly.
An example is shown in Fig. 5. MAMSR of B is 4 because B can be moved
right for distance 4 which pushes C, D and E, the total area and topology is
unchanged. Placement after this move is shown in Fig. 5(b). After we move
B, MAMSR of B is decreased to 0. Take D for another example, in Fig. 5(a),
MAMSR of D is 7, after pushed by B, in Fig. 5(b), MAMSR of D is decreased
to 3, but MAMSL of D is increased to 4 from 0.

Initially after CBL packing, each block’s MAMSL and MAMSD is zero since
we are packing them to left-bottom and none of them can be moved left or

C C
b E B E
Diesl |en T Dles
3 4 3

(a) (h)

Fig. 5. An example for explaining MAMSR and MAMSL

down. MAMSR and MAMSU have to be calculated through constraint graph, a
formula is shown below to determine MAMSR of block A.

MAMSR[A] = Min{MAMSR|B] + edge_cost(A,B)} with (A,B) € E),
(1)
(A, B) € Ej, means that edge A->B is on the horizontal graph. This is a
recursive algorithm to determine each block’s MAMSR starting from blocks on
the right border to left. Take Fig. 5(a) for example:
MAMSRI[E|= 4, MAMSR[A]=0,
MAMSR[C]=MAMSR|E|+ edge_cost(C,E)=4,
MAMSR[D]=MAMSR[E]+edge_cost(D,E)=7,
MAMSR[B]=MIN(MAMSR[C], MAMSR[D])= 4.

3.4 Room Resizing

After collecting information from the above algorithms, we have got enough
knowledge for our next step, resizing room. Of course, we move blocks to achieve
these. Before a block move, we must determine if this move is valid.

Definition 2. A block move is a valid move if that, after moving this block which
may push other blocks, the total area and topology could remain unchanged.

Theorem 1. A move is a valid move if and only if the distance is less than
MAMS of the corresponding direction of that block.

Proof. Take a right directed move for example without loss of generality, firstly,
MAMSR is the cumulative distance a block can be moved right due to the
dead spaces that lie on the right. If the distance exceeds this value, the blocks
rightmost may be pushed out of the right boundary which causes the area to
be enlarged; on the opposite, if there are enough cumulated dead spaces on the
right to handle this move, the total area could remain unchanged. After we move
the block right, MAMSR is decreased by that distance and MAMSL is increased
by that distance. For example in Fig. 5(a), move B right 3 and Move D right 6
are both valid move, however Move B right 8 or Move C right 5 are both invalid
moves. Moving any block left will be invalid because all blocks’ MAMSL is zero.

Since dead spaces are the only spaces for buffer sites, the ultimate objective of
our block moving and room resizing is to redistribute dead spaces to make it
more suitable for buffer requirements. Room resizing and dead space updating
algorithm is shown as follows which takes moving right as an example.

1. MoveRight (block A, distance i)
2 If(A’s right dead space is less than i)
3. Foreach block B that lies right to A
4. If(i >edge_cost(A,B))
5 MoveRight (B, i-edge_cost(A,B));
6 End if
7 Allocate B’s left dead-space
to its left blocks(including A);
End for.
9. End if.
10. Decrease width of A’s right dead space by i;
11. Increase width of A’s left dead space by ij;
12. Update coordinates of block A;
13. Update edge cost in horizontal graph;

(e0]

This algorithm is also recursive that if a block wishes to move right, its right
dead space width must be greater than the distance it wishes to move. If this
is the fact, then moving will be easy and algorithm starts from step 10; if not,
we have to push blocks that lie right and this will give this block larger room
and enough right dead-space. We note that in step 7, giving left dead space to
its left blocks will cause all its left blocks’ right space to be broadened including
”A” so that ” A” will have enough right dead space for move and step 10 is able
to go on.

3.5 Searching for Optimal Solution Using Simulated Annealing

Our final searching algorithm is based on Simulated Annealing (SA) to make
each move effective for satisfying timing constraint. We start with an initial
packing which is generated through simulated annealing(this is the first phase
traditional simulated annealing which specialized on minimizing area and total
wire length and it is quite different from the simulated annealing step in our
algorithm). Based on this packing, we start to try moving blocks to optimize
timing performance. We randomly find a block not on critical path, randomly
select a direction it can be moved, and move it at a random distance which
does not exceed corresponding MAMS. Then we update dead spaces and update
the nets affected by the blocks having been moved. To analyze whether this
move is an optimized move, we apply traditional buffer insertion algorithm on
this packing. [3] displays details for the buffer-insertion algorithm which firstly
calculate the number of buffers each net requires, get feasible region for each
buffer and intersect buffer’s feasible region with dead spaces. If the intersection
is empty, the buffer will fail to be inserted. Only nets with no buffer need or

with all buffers successfully placed is taken as timing-constraint-satisfied. So
the effectiveness of each move is evaluated by whether it could make more nets
meet timing constraint. With the random move of each blocks, the final result
through simulated annealing process could minimize the number of nets which
violate timing closure. The SA algorithm is shown below.

1. Find an initial packing which satisfies basic requirement
such as area and wire length;
2. Draw constraint graph and determine each blocks MAMS

and dead-spaces;

3. While(Temperature>min_temperature)

4. Randomly select a block not on critical path and a
direction whose corresponding MAMS is greater than zero;

5. Move that block on that direction at a random distance
less than MAMS;

6. Update MAMS, dead-spaces and nets information;

7. Apply buffer allocation algorithm;

8. If optimized accept it; else accept with a probability;

9. Decrease temperature;

10. End while

4 Experimental Result

The buffer planning and optimization algorithm have been implemented on SUN
Ultra-SPARC and benchmarks are MCNC and CSTC(generated by duplicating
ami33 and ami49 blocks and nets) benchmarks. The values for parameters are
based on a 0.18m technology in the NTRS97 roadmap[11]. Since we are concen-
trating on two-pin nets, we decompose each net to two-pin nets using minimum-
spanning tree. Because these benchmarks have no timing information and are
not fit for direct buffer evaluation, we compute optimal delay Topt under op-
timal buffer insertion [10] (the minimized delay if we insert enough buffers on
optimized locations) and assign a constraint delay 1.05 and 1.20 times Topt to
the net. We choose this delay assign method so that each net’s timing is possible
to be satisfied and some buffers are often necessary to achieve this . Since the
timing closures are randomly generated, it is not easy to compare it directly
with result shown in [2]. However, we have implemented all these algorithms to
make comparison in Table 1. The first column ”No blocks moved” displays re-
sults after applying buffer allocation algorithm on the initial packing after CBL
without optimization. The second column ”DS redis. within room” displays re-
sults on packing generated by algorithm introduced in [2] which moves block
within its room. The third column displays results on packing generated by our
algorithm which redistributes dead-space based on room resizing. ”Met/Total”
is the number of nets satisfying timing constraint compared to the total number
of nets, ”Time” is the time consumed by each algorithm and ”Improved” is the
improving percent of our algorithm compared to the other algorithms. From the
table below, we could see that our algorithm has an average improvement of

3.3% compared to algorithm without optimization and has an improvement of
1.58% compared to algorithm introduced in [2].

Table 1. Experimental Results

No blocks moved|DS redis. within room| Our algorithm | Improved
Met/Total| Time [Met/Total| Time |Met/Total|Time| Perc%
AMI33 | 340/363 | <1s | 348/363 6s 353/363 | 19s | 3.8%/1.4%
AMI49 | 443/545 | <1s | 454/545 15s 463/545 | 72s | 4.5%/2%
CSTC132(1313/1434| 1s [1329/1434 52s 1351/1434|120s | 2.9%/1.6%
CSTC199(1898/2111| 1s [1913/2111 64s 1938/2111| 160s | 2%/1.3%
Average 3.3%/1.58%

5 Conclusion

In this paper, on the base of dead space redistribution buffer-insertion algorithm
introduced in [2], we extend it by resizing rooms to improve number of nets that
satisfy timing closure without violating topology and total area. Our algorithm
provides steps for determining a block’s maximum allowable move space and
organize the dead spaces systematically so that buffer planning could be im-
proved gradually with simulated annealing. Experimental results show that our
algorithm is efficient for resolving the problem of buffer planning. Additionally,
our algorithm is fit for IP based SOC planning since it often requires improving
timing performance without violating topology. However, because a move may
cause many blocks to move and room resizing and dead space update is more
complicate, a faster moving solution and faster buffer evaluation method is in
great need, which will be our future work.

References

1. X.L. Hong, S. Dong, G. Huang, et al: Corner block list representation and its appli-
cation to floorplan optimization. IEEE Trans. on Circuits and Systems II: Express
Briefs, Vol. 51, No. 5, 2004, pp.228 - 233.

2. S. Chen, X.L. Hong, S.Q. Dong, Y.C. Ma: A buffer planning algorithm based on
dead space redistributio. ASP-DAC, 2003.

3. J. Cong, T. Kong, and D. Z. Pan: Buffer block planning for interconnect-driven
floorplanning. IEEE/ACM ICCAD, 1999.

4. Y.C. Ma, X.L.Hong, S.Q. Dong, S. Chen, Y.C. Cai: An Integrated Floorplanning
with an Efficient Buffer Planning Algorithm. ISPD, 2003.

5. P. Sarkar, C. K. Koh: Routability-driven repeater block planning for interconnect-
centric floorplanning. ISPD, 2000.

6. X. Tang and D.F. Wong: Planning buffer locations by network flows. Intl. Symp.
Physical Design, 2000, pp. 180-185.

7. F. F. Dragan, A. B. Kahng, et al: Provably good global buffering by multiterminal
multicommodity flow approximation. ASP-DAC, 2001.

8. C. W. Sham, F. Y. Young: Routability driven floorplanner with buffer block plan-
ning. ISPD, 2002.

9. F. Ragiq, M. C. Jeske, H. H. Yang, N. Sherwani: Integrated floorplanning with
buffer/channel insertion for bus-based microprocessor designs. ISPD, 2002.

10. C. J. Alpert and A. Devgan: Wire segmenting for improved buffer insertion. Proc.
Design Automation Conf, pp. 588C593, June 1997.

11. Semiconductor Industry Association, National Technology Roadmap for Semicon-
ductors, 1997.

