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Abstract. This paper develops path concepts for the execution of dif-
ferent algorithms on a reconfigurable architecture. New architecture con-
cepts demand for permanent evaluation of such extensions, also includ-
ing validating case studies. The recently patented synchronous bit-serial
pipelined architecture, which we investigate in this paper, comprises syn-
chronous and systematic bit-serial processing without a central control-
ling instance. It targets future high speed applications due to the ab-
dication of long wires. The application specificity of the basic version
of the architecture can be overcome by so called routers, achieving a
reconfigurable system. This paper focuses on the difficulty to conceptu-
alize these routers and proposes several variations for implementation.
The case study, which comprises a combined version of the FDCT/IDCT
algorithm, serves as an application example for the reconfigurability of
the architecture. The example – implementing both algorithms in one
operator network – broadens the application area of the architecture
significantly.

1 Introduction

The bit-serial architecture (referred to as MACT – Mauro, Achim, Christophe
and Tom), which we examine and extend in this paper, was invented in response
to current problems of chip design. MACT combines ideas of asynchronous design
and bit-serial processing, and represents a synchronous and pipelined architec-
ture without central controlling instance.

Implementations of the so far presented version of the MACT architecture
would be application specific [1, 2]. This limitation is only partly in line with
current market conditions of the intended application area: data-stream oriented
processing (e. g., image compression or filtering).

In this paper, we investigate how to realize multiple paths, and how to model
and implement routers and multiplexors to enable path merging and path selec-
tion. We abstract and conceptualize graph variations capable for path selection.
Strict categorization helps us to distinguish possible cases and to develop solu-
tions for the high level synthesis of such elements. Thereby, we can fall back on
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an already realized high level synthesis for the architecture [3, 4], which auto-
matically generates MACT implementations in VHDL out of data flow graphs.
In the high level synthesis, we avoid deadlocks and establish the local control
mechanism of the MACT architecture.

As an example for the effectiveness of the extended MACT architecture,
we implemented parts of the MPEG-2 algorithm with the components of our
architecture.

The rest of this paper is organized as follows. First, we resume related work.
Next, we shortly explain the MACT architecture, summarizing the main aspects
and benefits of the architecture. Then, we systematically introduce concepts for
multi paths within the MACT architecture, including detailed description of the
extension. Section 5 familiarizes the reader with the example: combining IDCT
and FDCT. Section 7 sums up with a conclusion and gives an outlook.

2 Related Work

Adding routers to the MACT architecture means extending MACT towards a
reconfigurable architecture. In the literature, we find several concepts, which
can be related to the reconfigurable MACT architecture and give some basic
information for our router conceptualization.

The concept of wormhole run time reconfiguration [7] relies on a distributed
control scheme and therefore avoids central controllers. Wormhole run time re-
configuration is based on the stream concept. The idea is implemented in the
Colt Configurable Computing Machine [8]. Our architecture relies on a similar
concept. In contrast to wormhole reconfiguration, we transport only the infor-
mation when and which path to select and not the whole reconfiguration stream.

So-called self-reconfiguration [9] can be seen as one step towards easing the
control process, as the part of the controller tracking the processing can become
obsolete. Yet, advanced concepts are needed. One idea is to locate the state
machine inside the FPGA, either in a soft- or hard-core processor. Considering
Xilinx’s Virtex FPGAs, both is possible using MicroBlaze or a PowerPC.

In [10], we find basic work for deadlock-free routing. The authors introduce
virtual channels to achieve deadlock-freeness. In principle, MACT relies on a
similar concept; yet, the deadlock-freeness is realized by the local control mech-
anism triggered by data packets traversing the architecture. Thus, the archi-
tecture itself bears the capability to avoid deadlocks. Deadlock avoidance is a
critical issue during the high level synthesis especially if routers are added to the
MACT architecture (see below).

3 MACT Architecture

MACT is an architecture, that breaks with classical design paradigms. Its devel-
opment came in combination with a design paradigm shift to adapt to market
requirements. The architecture is based on small and distributed local control



Fig. 1. Example data packet. Fig. 2. Synchronisation

units instead of a global control instance. The communication of the components
is realized by a special handshake mechanism driven by the local control units.
MACT is a synchronous, de-centralized and self-controlling architecture. Data
and control information are combined into one packet and are shifted through a
network of operators using one single wire only (refer to Figure 1).

The controlling operates locally only based on arriving data. Thus, there exist
no long control wires, which would limit the operating speed due to possible wire
delays. This is similar to several approaches of asynchronous architectures and
enables high operation frequency. Yet, the architecture operates synchronous,
thus enabling accurate estimation of latency, etc. a priori.

MACT operates bit-serial. Bit-serial operators are more area efficient than
their parallel counterparts. The drawback of bit-serial processing is the increase
in latency. Therefore, MACT uses pipelining, i. e., there exist no buffers, opera-
tors are placed following each other immediately.

Thus, MACT resembles a systematic bit-serial architecture. It enables the
user to benefit from the advantages of bit-serial processing like low area con-
sumption, significant reduction of I/O pins (serial instead of parallel communi-
cation), while offering a reliable pipelined system.

Further, processing increases to be more and more bit-serial. Systems nowa-
days increasingly use serial communication, while still processing in parallel.
Using MACT enables integrated bit-serial processing, avoiding discontinuity con-
cerning the bit-width, i. e., no parallel/serial conversion is needed.

Implementations of MACT are based on data flow graphs. The nodes of
these graphs are directly connected, similar to a shift register. Synchronization
of different path lengths at nodes with multiple input ports is resolved by a stall
mechanism, i. e., the shorter paths, whose data arrives earlier, will be stalled
until all data is available (refer to Figure 2). The necessary stall signals run in



opposite to the processing direction and are locally limited, in order to avoid a
complete stall in the preceding pipeline. The limitation is realized by a so called
block stall signal, which is locally tapped in a well defined distance.

We consider the flow of data through the operator network as processing
in waves, i. e., valid data alternates with gaps. Due to a sophisticated interlock
mechanism adapted from asynchronous design, the gap will not fall below an
individual lower bound. Thus, the MACT implements a fully interlocked pipeline.
In combination with the developed high level synthesis, the MACT guarantees
deadlock free processing. The corresponding signal is the so called free previous
section signal, which is generated by small logic in each synchronizing control
block (see Figure 2). These control blocks are found at each multiple input
operator and synchronize packets arriving at different instances of time. The
architecture is described in more detail in [1, 2].

4 Router Design

Specialized routing components are further extensions of the architecture to al-
low data-driven reconfiguration. Therefore, we interweave data and configuration
information by processing packets including both. So far, the routers only have
been conceptualized in [11]. In order to efficiently use routers in the MACT
architecture, this section introduces the routing concept abstractly.

Routers are placed inside the data flow graph and allow for different process-
ing paths. Each data packet carries routing information or information for unique
identification, thus enabling path selection. The routers process the header and/or
the data section of each data packet and forward the packet to the corresponding
path. This feature allows space saving and flexible implementations of data flow
graphs, as multiple algorithms or different characteristics of algorithms may be
present in the same implementation of MACT. As example, we may select differ-
ent compression granularity or increase processing accuracy using router based
MACT. The re-use of common sections reduces the overall area requirement. In
the following, we formalize graphs containing routers abstractly.

4.1 Variants of multiple path folding into one operator network

There exist several variants how routers may be present in graphs, which we will
categorize and explain below. In addition to routers, we have to integrate the
corresponding counter part: multiplexors. Thus, the two operators, which enable
multiple paths within one processing graph are routers (R) and multiplexors (M).
Routers act like de-multiplexors.

Tree The simple tree case comprises two alternatives as displayed in Figure 3
and Figure 4. In the first, we only find routers, which distribute incoming
packets to the appropriate output, while in the latter, we combine multiple
inputs to one output via multiplexors.



Fig. 3. Tree with one input and multi-
ple output variations.

Fig. 4. Tree with variable inputs lead-
ing to one output.

Fork – Join In Figure 5 a, we display the possibility of alternative paths.
There, data packets arrive at the router and are forwarded to one path
according to their routing information. This kind of path option can be
reasonable for data stream processing, where only parts are different, e. g.,
encoding granularity varies.

Join – Fork In contrast to the latter characteristic, Figure 5 b shows how sim-
ilar sections within a processing algorithm can be utilized using MACT with
routers.

Combinations The above mentioned basic characteristics can be combined in
several ways. Apart from a random combination, there may exist an ordered
structure, e. g., mesh-based. While random based versions require extended
generation algorithms, mesh-based structures can base on principles of sys-
tolic arrays. These concepts are out of the scope of this paper.

4.2 Path Encoding

We can encode the information for path selection into several parts of the data
packet (refer to Figure 1). Thereby, we can indicate different paths using only a
few bits due to logarithmic dependency.

Header We can use the header to hold the routing information, i. e., the infor-
mation for the path selection. This localization is the most appropriate, as
headers precede in the data packet and their content is more easily accessible.

Data If we make a path decision based on the content of the data, we introduce
if-then-else to the MACT architecture. We can use this style, when specific
paths are only needed, after the data has passed a threshold, etc.

Header + Data When we use both section of a data packet, we can process
both by the routers. Thus, we can base the path selection not only on the

Fig. 5. a) Fork and Join, b) Join and
Fork.

Fig. 6. Router implementation.



header information, but also on the data content itself. Thus, individual
routers forward packets depending on either the control information present
in the header, the data content present in the data section, or on both.

4.3 Router Implementation

Figure 6 shows an exemplary implementation of a router. Routers tap the in-
formation of approaching data packets, when the preceding ’1’ of every packet
arrives at the router. Within one step (clock cycle), the router processes the infor-
mation and subsequently forwards the data packet to the appropriate path based
on predefined table entries. Yet, the paradigms, which lie behind the routers, can
follow different principles.

Basic In the basic version, the router only reads the information, selects the
appropriate path for the packet and forwards the packet without modifica-
tions.

Consuming In a more advanced concept, the router can consume parts of the
information of the header, i. e., the corresponding section in the header is
removed. Thus, we can decrease the packet length, which can lead into less
area needed and shorter wire lengths.

Additive Further, routers may extend packets by additional information. This
possibility makes sense, e. g., when there exists a short common section, and
packets must be distinguished directly after this section.

4.4 High Level Synthesis and Extensions

Both routers and multiplexors represent new parts of the MACT architecture
and therefore must be considered by the high level synthesis. Thereby, we can
mainly rely on our already developed high level synthesis.

Router: As routers distribute packets to different paths only, and therefore
do not affect preceding paths, they can be treated as normal operator elements
by the high level synthesis. In detail, they accept new packets, when all possible
succeeding paths are empty, i. e., no packet is present within the tapping range
of the control signals.

Multiplexer: In contrast, multiplexer re-unit data paths, i. e., they combine
more than one line. The arrival of two packets at the same or nearly same time
can cause problems due to false free path information.

The deadlock free processing of the MACT architecture relies on gap and
data periods (processing in waves). In order to guarantee a minimal lower bound
between two data packets, we enhance multiplexors by block stall signals (refer
to Figure 7). These signals are activated as soon as one data packet reaches the
area between the last synchronizer and the multiplexer of the current path. All
other similar areas of the other paths preceding the multiplexer receive a block
stall signal, and thus deny arriving packets to enter this section. The packet of
the one valid path can be processed without interferences.



Fig. 7. Multiplexer realization

Yet, all sections must be freed again, which is done by the free previous
section signal, which is generated by local logic when the data packet has exited
the critical section. It is received by all synchronizers preceding the multiplexer
and frees all corresponding paths.

Up-to-date technologies of chip design enable to increase the router con-
cept further. So far, all possible paths must be known at implementation time.
Routers enable dynamic path selection between predefined processing paths. Re-
configurable devices (e. g. Xillinx Virtex FPGAs) possess the capability of par-
tial run time reconfiguration. Thus, we can add additional paths of the MACT
architecture including routers to our system during run-time (using partial re-
configuration), i. e., new path alternatives can be realized.

We thus achieve a specific self-controlled run time reconfiguration. Generally
speaking, during run time reconfiguration, tasks are dynamically loaded into the
reconfigurable processing unit on demand. The area currently reconfigured does
not influence other regions in operation at the same time. In the MACT version,
we additionally avoid a usually large and complex central control entity. There
is no need to track the data in the operator network by a central control unit,
in order to activate reconfiguration. The request for reconfiguration is generated
locally.

Therefore, we modify the routers of MACT. Upon arrival of a new packet,
the modified router detects the information needed (header and/or data section)
and checks for the availability of the required data path. If the needed path is
not resident, the router activates the run time reconfiguration.
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Fig. 11. Mapped Network

5 Case Study

We use as a case study some tasks of MPEG-2. These are the FDCT/IDCT and
some video conversion formats. The FDCT/IDCT algorithm is implemented ac-
cording to the Chen/Wang [5,6] approach. The task of the FDCT is to transform
the luminance and chrominance data in a block-wise manner. The task of the
IDCT is to re-transform the inverse quantized luminance and chrominance co-
efficients block-wise into the spatial domain. The input coefficients are provided
as 12bit values by the control processor.

Obviously the IDCT depicted in Figure 8 is the reversed graph of the FDCT.
Both consist of the same amount of operators, and both implementations use
a similar operator network. Therefore, we map both graphs onto one common
operator network. As a result, we get a re-configurable operator network. That
means, we can use the operator network for encoding (FDCT) and decoding
(IDCT) of a video image.

Lee [12] introduces an algorithm to split the N point FDCT/IDCT into two
(N/2) point FDCTs/IDCTs. Therefore, to realize a 2D-FDCT/2D-IDCT we
need eight instances of the FDCT/IDCT operator network. The throughput
remains unchanged for the 2D-FDCT/2D-IDCT implementation.

Another algorithm is the video conversion CIF 4:2:2 to 4:2:0 (refer to Fig-
ure 9). The conversion CIF 4:2:2 to 4:2:0 is calculated by using the average value
of the chrominance values. That means, previously, there are eight and after the
conversion there are four values.



If we investigate the FDCT/IDCT network, part of the structure is similar to
the CIF algorithm. We can use the second row to calculate the CIF conversion.
Figure 10 shows the FDCT/IDCT network with the wires for the CIF algorithm.
We place multiplexors before the operators, and routers at the output of the
four relevant lines after the operators. Thus, we fold the CIF algorithm into the
FDCT/IDCT network and receive the complete mapped network as depicted in
Figure 11.

6 Results

Current implementations of the MACT architecture run on Xilinx’s Virtex 400E
FPGA. We have implemented all necessary basic components of the architecture
to realize the described example.

Logic Utilization used total perc.

No. of Slice FF 1897 9600 19%

Total no. 4-inp LUTS 1865 9600 19%

No. used as logic 1865 2393 78%

No. used as route-thru 528 2393 22%

Number of bonded IOBs 69 158 43%

IOB Flip Flops 21 69 30%

Number of GCLKs 1 4 25%

Number of GCLKIOBs 1 4 25%
Table 1. Logic utilization of the exam-
ple for a Virtex 400E

Logic Distribution used total perc.

No. of occupied 1999 4800 41%
Slices

No. of Slices
containing only 1999 1999 100%
related logic

No. of Slices
containing unrelated 0 2166 0%
logic
Table 2. Logic distribution of the ex-
ample for a Virtex 400E

We are analyzing the behavior of the system based on our own library. Addi-
tionally, we simulate the system. The high level synthesis produces appropriate
code. The critical path of our example design needs 87 clock cycles. One cycle
is 40 ns long. Therefore, the clock frequency is 25 MHz.

As MACT is a deeply pipelined design, the latency can be understood as
setup time, which delays the system start only once. The latency of the example
is 3480 ns (87 cycles multiplied with 40 ns). Further, we measure the throughput
as average time between two output signals to determine the system speed. In
the example, the throughput is equal to the clock frequency 40 ns. Taking into
account that we run with 25 MHz we can achieve 25 MBit/s per wire.

The logic utilization and distribution are depicted in Tables 1 and 2. We can
see that only 41 % of slices are used on the Virtex 400E.

7 Conclusion and Outlook

In this paper, we have presented concepts to realize routers for the MACT archi-
tecture. The concepts include variants of data encoding and router characteris-



tics. We have extended the existing high level synthesis for the MACT architec-
ture to be able to cope with routers and multiplexors. Routers within the MACT
architecture enable reconfiguration. They facilitate to use one implementation
of MACT for different application areas. Thereby, the bit-serial MACT archi-
tecture provides configurable functionality on the level of arithmetic operations,
high throughput rates, cost effective bit-serial operator design and short configu-
ration cycles. The example of the IDCT/FDCT algorithm from Chen/Wang [5,6]
demonstrates this effectiveness.

Further, we have propose an approach for reconfiguration, which decentralizes
the control mechanism and thus results in short wire length. Thus, we will focus
on future high-speed applications, where wire delay times affect the maximum
processing clock.
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