Timing Analysis of Distributed End-to-End Task
Graphs with Model-Checking

Zonghua Gu

Department of Computer Science
Hong Kong University of Science and Technology

Abstract. Real-time embedded systems must satisfy system-level tim-
ing constraints between external sensor inputs and actuator outputs.
Real-time scheduling theory can be used to verify that the system is
schedulable, that is, no deadlines are missed, but that alone is not enough.
Given that the system is schedulable, how to verify that it satisfies
system-level end-to-end timing constraints, such as freshness, correla-
tion and separation? To address this question, we adopt the approach
of formal modeling and model-checking. Specifically, we use Timed Au-
tomata and the model-checker UPPAAL for verification purposes. We
have developed generic modeling templates for a class of distributed task
systems that can be used as input the the model-checker in order to ver-
ify system-level end-to-end timing constraints. We use an application
example of distributed real-time control system to illustrate the utility
of our approach.

1 Introduction

Real-time embedded systems must satisfy system-level timing constraints be-
tween external sensor inputs and actuator outputs. Gerber et al [1] identified
three classes of system-level end-to-end timing constraints:

— Freshness constraints bound the maximum time it takes for the data to flow
through the system. For example, the time interval between reading input
data d from the sensor and writing output data calculated using d to the
actuator can not exceed 10ms.

— Correlation constraints bound the maximum time-skew between several in-
puts used to produce an output. For example, if input data d; and dy are
used to produce output data ds, then d; and do must be sampled within
2ms of each other. Generally it is desirable to minimize the data correlation
from distributed sensors in order for the controller to have a realistic and
consistent view of the physical environment.

— Separation constraints bound the maximum jitter between consecutive values
on a single output channel.

Given a set of such timing constraints, as well as timing attributes of the
tasks composing the system, we would like to verify that the system satisfies

these constraints. Real-time scheduling theory can be used to prove that the
system is schedulable, that is, no deadlines are missed, but that alone is not
enough. A schedulable system may still violate system-level freshness, correlation
and separation constraints. In this paper, we address this question: Given that
the system is schedulable, how to verify that it satisfies system-level end-to-end
timing constraints, such as freshness, correlation and separation?

The growing complexity of modern real-time embedded systems makes it
imperative to apply formal analysis techniques at early stages of system devel-
opment. In this paper, we adopt the approach of formal modeling and model-
checking, which is a promising technique for analysis of finite state systems by
exhaustive exploration of the system state space. Specifically, we use Timed Au-
tomata (TA) and the model-checker UPPAAL [2] for this purpose. Our main
contribution in this paper is developing modeling techniques for a class of dis-
tributed task systems that are used as input the the model-checker UPPAAL to
verify system-level end-to-end timing constraints. We make the assumption that
the system is already schedulable before applying model-checking. Without this
assumption, we would have a much larger state space due to deadline misses, an
error condition that should never arise in a production system, without gaining
any additional insight into the system’s normal operation.

Some authors have developed modeling formalisms and analysis techniques
for real-time scheduling analysis. For example, ACSR [3] is a resource-aware
real-time process algebra for specification and formal verification of distrib-
uted real-time systems. Its main features include the ability to specify resources
and their usage by system components, and prioritized execution that allows to
express different preemptive and non-preemptive scheduling policies. Similarly,
TIMES [4] is based on Timed Automata, and can be used for modelling, schedu-
lability analysis and synthesis of optimal schedules for a set of tasks that are
triggered periodically by timers, or sporadically by external interrupts. These
approaches have the benefit of being able to deal with more general task mod-
els than real-time scheduling theory, which is typically restricted to periodic
task models, and has to make pessimistic assumptions when dealing with spo-
radic or aperiodic tasks. However, modeling real-time scheduling inevitably in-
troduces a much larger state space caused by interleaving of task executions on a
shared processor, and has a negative impact on the scalability of model-checking,
which is already the most important limiting factor for its industry adoption. In
contrast, we adopt an approach of separation of concerns. We do not consider
real-time scheduling issues caused by interference among tasks sharing a proces-
sor. We either assume a distributed system, where each task has its own dedi-
cated processor, or a system with shared processors, but the timing attributes of
tasks already take into account interference caused by multiple tasks sharing one
processor, i.e., we use worst-case response time instead of worst-case execution
time as a task’s timing attribute. By using real-time scheduling theory to verify
the schedulability assumption, and model-checking to verify system-level timing
properties, we can achieve much better scalability than using model-checking to
check for both schedulability and system-level timing properties.

This paper is structured as follows. In Section 2, we present our system
modeling techniques. In Section 3, we use an application example to illustrate the
complexity involved in timing analysis of distributed end-to-end task systems,
and apply our modeling and model-checking approach to its timing analysis. In
Section 4, we discuss related work, and in Section 5, we draw some conclusions.

2 System Modeling with TA

A Timed Automaton (TA) is a standard finite-state automaton extended with
a finite collection of real-valued clocks, which proceed at the same rate and
measure the amount of time that has elapsed since they were last reset. The
model-checker UPPAAL [2] adds a few extensions to the standard definition of
TA, such as integer variables, CCS-style [5] synchronous communication, urgent
channels, etc. For space limitations, we do not provide a detailed description of
TA and UPPAAL.

We define the system under analysis with an Asynchronous Task Graph [1],
which is a Directed Acyclic Graph (DAG), where vertices denote tasks, which
have input and output data ports. Directed edges denote dataflow commu-
nication between tasks. Tasks execute asynchronously and communicate with
each other through shared buffers of size 1. Reading and writing are both non-
blocking, i.e., writing a data token to a shared buffer overwrites the previous
data token contained in it. Reading and writing are both assumed to be instan-
taneous, hence we do not require the use of mutual exclusion mechanisms such
as mutex or semaphore. Forks and joins in the task graph are of type AND. That
is, when a task executes, it reads in one data token from each of its input ports
in an instantaneous, atomic action at the start of its execution, and then writes
out one data token to each of its output ports in another instantaneous, atomic
action at the end of its execution.

From Senso To Actuator
v (et J{_resc

A A A
[[
LocO Locl Loc2

Fig. 1. An end-to-end task graph consisting of a linear chain of sub-tasks, with atomic,
non-interleaving task execution.

Consider a linear chain of sub-tasks in an end-to-end task graph from exter-
nal stimulus from the environment to eventual output to the environment, as in
Figure 1. The taskset is {Ty, T4, ..., Tn—1}, where T;_; is the immediate prede-
cessor of T;, where ¢ = 1,..., N — 1. Since tasks communicate through shared
buffers, the system events that we are concerned with are the read/write events

From Senso To Actuator
Task0 Taskl Task2

A A A A A A
[[[[[[
LocO Locl Loc2 Loc3 Loc4d Locs5

Fig. 2. An end-to-end task graph consisting of a linear chain of sub-tasks, with non-
atomic, interleaving task execution.

of the shared buffers. Suppose that we know the execution time intervals of each
task block, and we want to model this task chain with timed automata. This
is straightforward if the execution is single-rate, and there is no pipelining, i.e.,
each invocation of the task chain executes from start to finish before the next
invocation. However, the situation becomes more complicated if pipelined and
multi-rate executions are allowed. The execution is pipelined if it is possible for
new inputs to come in from the environment before the previous output has been
produced. The execution is multi-rate if it is possible for each task’s execution
rate to be different from each other. Think of each piece of data read in from
a sensor task as a data token. In the case of pipelined and multi-rate execu-
tion, multiple data tokens read in by the same sensor task in different execution
periods may coexist in the system at the same time.

For illustration purposes, imagine that we attach a real-time clock that is
reset to 0 with each data token coming in from the head of the pipeline, and
mark this particular clock as being in use. Every time a data token goes through
the entire pipeline and falls off the end of the task chain, we pick up the clock on
that token, read off the value as the end-to-end delay suffered by that token, and
mark the clock on that token as free and can be reused for a new token in the
future. When the pipeline stalls at a task i, and the data token in the location
before task ¢ gets overwritten, We can also mark the clock of that data token
as free. We can view a fresh data token read in from the environment as birth
of that token, and token falling out of the end of the pipeline, or overwritten
in the middle of the pipeline, as death of that token. A clock not currently in
use is attached to each newborn token, and is marked in use. Upon death of
a data token, either because it has gone through the entire pipeline, or it was
over-written (killed prematurely) in the middle of the pipeline, we mark its clock
as free and available for future use. It is important to note that when attaching
a clock to a newborn token t,,.,,, that clock must not be already in use by some
other token t,;4 currently in the pipeline, for otherwise we will lose track of the
time stamp of t,4.

If task execution is atomic and non-interleaving, then we need to keep track
of clocks at the the inter-task buffer locations, as shown in Figure 1. Atomicity
means that no other task can perform read or write operations in between a task’s
start and end. However, if task execution is non-atomic and interleaving, which
means that it is possible for other tasks to perform read or write operations
in between a task’s start and end, then we need to keep track of clocks at

both the inter-task buffer locations and the task bodies between its start and
end, as shown in Figure 2. In other words, we can view a task that executes
non-atomically as two tasks, one read task and one write task, which execute
atomically, and view the task body between its read and write operations as
another data buffer.

Atomic execution is the case where tasks run on a single processor with
non-preemptive scheduling, which effectively serializes the task execution. Non-
atomic execution is the case where tasks run on a single processor with preemp-
tive scheduling (pseudo concurrency), or where tasks run on a multi-processor
platform (true concurrency).

clock_at_location[i] != clock_at_location[0],
i < num_locations
=i+l
clock_at_location[i] == clock_at_location[0]

i < num_locations
clock_is_inuse[clock_at_location[i]] := 1,
. . =i+l

locations i == num_|ocations

clock_to_reset := clock_at Nocation[0]

i_clock < num_clocks,

clock_is inuse[i_clock] ==1

clock_at_location[0] := clock_to_reset i dock :=i_clock +1

clock_to_reset ==0
x0:=0

clock_to_reset == 2
x2:=0

i_clock < num_clocks
clock_is inuse[i_clock] := 0,
i_clock :=i_clock + 1

Fig. 3. TA template for tracking the timestamps of locationg.

The discussion above applies to a linear chain of tasks, but it can be easily
extended to deal with a more general task graph with AND style synchronization.
When a data token flows to an AND fork in the task graph, the token and its
clock are replicated and sent along each of the forked paths. When several data
tokens converge at an AND join in the task graph, all the tokens should be
carrying the same clock that was replicated at the previous fork to ensure data
consistency. Note that this behavior is not necessarily guaranteed. A certain
branch of the AND fork may have a pipeline stall, so that the AND join point

execute?
@)@ clock_at_location[my_location] := clock_at_location[my_location-1]

Fig. 4. TA template for tracking the timestamps of locations other than locationg.

may see different clocks from different incoming paths. This should be detected

and flagged as a runtime error.

To instantiate these concepts within the modeling tool UPPAAL, Figure 3
shows a generic TA template for modeling the output buffer of the head of the
task chain (locationy), and Figure 4 shows a generic TA template for modeling of
buffers at locations other than locationg. The latter template is simple: the task
simply copies the clock value at its input port to its output port. The task at the
head of the chain needs to read in a fresh data token from the environment and
attach to it a clock that is not currently in use. With these model templates,
we can easily model larger systems by instantiating the model with different

parameters.

3 An Application Example

= Sensor A Network A

%

Y To Actuator
Controller
——=
p2

Task ID Period Offset BCET WCET

SensorA 10
SensorB 10
Controller 10
NetworkA —
NetworkB -

0

[\CRISERRN

3
4
2

g N W

Fig. 5. A system consisting of two distributed sensors and one central controller.

Consider the system in Figure 5, where two distributed sensors read data
from the external environment and feed them into the controller, which processes

the sensor data and compute signals to the actuator. The network connections
between sensors and controllers are modeled as separate tasks. We assume this is
a distributed system, where each task has its own dedicated processor, so we do
not need to address real-time scheduling issues caused by multiple tasks sharing
one processor. We can view the system as being composed of 2 linear task-chains:
Path A is from Sensor A to Network A to Controller, and Path B is from Sensor
B to Network B to Controller. Task execution is non-atomic, hence each task
chain corresponds to Figure 2. All tasks read input at startup and write output
at finish. The table in Figure 5 shows the task timing parameters.
We have two system-level end-to-end timing constraints:

— Freshness constraint: the time interval between reading input data from
either Sensor A or Sensor B to writing output data by the Controller must
be less than 10ms;

— Correlation constraint: if input data d; read by Sensor A and input data ds
read by Sensor B are used to produce output data ds, then d; and dy must
be sampled within 2ms of each other.

LocO A Locl A Loc2 A Loc3_ A Locd A Loc5_A

| | | | |
| y |

\
Y | [
¥ [| \
= Sensor A Network A V] :
o I
L p1, To Actuator
Controller
—=|

p2 A

o A) ‘

—= SensorB Network B : | !

A I |

‘ I [

A ! A
\ [\ ‘ [[
LocO B Locl B Loc2 B Loc3 B Loc4d B Loc5 B

Fig. 6. Each black dot denotes one data token. The figure shows that the input data
token read by Sensor A has gone through Network A and reached the input port pl
of the Controller, while the input data token read by Sensor B has not gone through
Network B yet.

Figure 6 shows a snapshot during system execution. Figure 7 shows one
possible execution trace for two consecutive execution periods. Sensor A reads
input at time 0 and writes output at time 2ms. Network A is triggered by the
completion event of Sensor A, and takes 1 time unit to deliver the message to
input port pl of the Controller. Similarly, Sensor B reads input at time 1ms and
writes output at time 4ms. Network B is triggered by the completion event of
Sensor B, and takes 2ms to deliver the message to input port p2 of the Controller.
The Controller reads its input at time 7ms, and writes its output to the actuator
at time 9ms. The next period is a repeat of the first. Therefore, the end-to-end
delay of data tokens from Sensor A to the external actuator is 9ms, and from

readA writeA readA writeA

oerl L

sendA arriveA sendA arriveA

Network A i i
readB writeB readB writeB
Sensor B ? ¢ ? ¢
sendB arrlveB sendB arrlveB
Network B T
readC writeC readC writeC

Controller ¢ ?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 7. One possible execution trace for the taskset specified in Figure 5.

readA writeA readA writeA
Sensor A
sendA ariveA sendA ariveA
Network A ¢ ¢
readB writeB readB writeB
Sensor B T T
sendB arrlveB sendB arrlveB
Network B ?
readC writeC readC writeC
Controller i T

0 1 2 3 4 5 6 7 8 9 10 11 12 183 14 15 16 17 18 19 20

Fig. 8. Another possible execution trace for the taskset specified in Figure 5.

Sensor B to the external actuator is 8ms, both within the freshness constraint
of 10ms. The correlation between data tokens at the 2 controller input ports is
lms, i.e., the data token at pl is sampled from Sensor A 1lms earlier than the
data token at p2 from Sensor B. So the correlation constraint is also satisfied.
However, if Network B causes a slightly longer time delay of 4ms instead of
2ms, but still within the specification of [2,4]ms, then we have a different data
token propagation scenario, as shown in Figure 8. Now the end-to-end delay for
Sensor B’s data token is 18ms, while the delay for Sensor A’s data token remains
at 9ms. So the freshness constraint is violated for Sensor B’s data token. At the
time of data reading of the Controller at time 17ms, the token at pl from Sensor
A is Tms old, while the token at p2 from Sensor B is 16ms old. So there is a 9ms
age difference between the two data tokens read by the Controller. This violates
the correlation constraint, which states that the two input data tokens must be
sampled within 2ms of each other. Intuitively, the data token read by Sensor
A at time 0 was consumed by the Controller at time 7ms before the arrival of
data token read by Sensor B at time 1ms, due to the long time delay caused by
Network B. Therefore, the data token read by Sensor B at time 1ms is paired up
with the data token read by Sensor A at time 10ms in the next execution cycle.

This caused the large age difference between the data tokens consumed by the
Controller at time 17ms.

As this example indicates, a small additional delay at Network B can cause a
relatively large difference for the end-to-end delay and input correlation. There-
fore, it is important to analyze the system timing behavior carefully. For realistic
systems with larger sizes, it is tedious and error-prone to perform the analysis
by hand, therefore, it is desirable to apply automated techniques such as model-
checking to discover timing anomalies by exhaustive state space exploration.

We have used UPPAAL to prove the following properties:

— The maximum end-to-end delay for sensor A data is 9ms.

— The maximum end-to-end delay for sensor B data is 18ms.

— the maximum age difference between the data tokens at the two input ports
of the Controller is 9ms.

If we change the task parameters, so that Network B task causes a deter-
ministic delay of 2ms instead of an interval of [2,4]ms, we can verify that the
maximum age difference reduces to 1ms, and the maximum end-to-end delay
of Sensor B data reduces to 8ms. This corresponds to avoiding the execution
scenario in Figure 8.

4 Related Work

Wall et al [6] designed a TA model for end-to-end task graphs. However, the size
of their model grows exponentially with the number of tasks, while the size of our
model grows only linearly. We can model larger systems easily by instantiating
the proposed modeling templates with different parameters. In general, to keep
track of clocks at N buffer locations, the automaton in their approach consists
of N % N locations and N x N x N edges. Furthermore, they only considered
atomic task executions (non-preemptive scheduling on a single processor), and
they used a task execution trace to drive the Time Stamp Tracker automaton.
We take into account non-atomic task executions, and accurately model task
execution dynamics, which enables exploration of the full system state space
with model-checking.

Haveman et al [7] manually analyzed a task model that consists of 2 sensors
and 1 monitor that merges the 2 sensor readings. They considered a general
multi-rate execution scenario, where each task may execute at arbitrary periods
that are not necessarily harmonically related, and derived equations for calculat-
ing various end-to-end timing properties. We can map their task model into the
TA modeling framework discussed in this paper, and analyze it through model-
checking, thus obviating the need for tedious and error-prone manual analysis.

There are other techniques and tools for model-checking for timed automata,
e.g., Kronos [8], which provides slightly different definitions of timed automata.
For example, UPPAAL’s definition of TA adopts CCS-style [5] pair-wise synchro-
nization between two automata, while Kronos’ definition uses globally-shared

synchronization among all automata in the system. Our choice of the model-
checker UPPAAL was motivated by several factors, including modeling conve-
nience (pair-wise synchronization turns out to be convenient for our particular
problem) and ease of use (UPPAAL provides a graphical user interface, while the
other tools only provide textual interfaces). However, the main concepts of our
approach are not restricted to any particular tool, but are generally applicable
to other formalisms and model-checkers.

5 Conclusions

In this paper, we have explored application of model-checking to timing analy-
sis of distributed end-to-end task graphs. We have developed generic modeling
templates for a class of distributed task systems that can be used as input to
the the model-checker UPPAAL in order to verify system-level end-to-end tim-
ing constraints. We have used a two-sensor-one-controller system to illustrate
the complexity involved in end-to-end timing analysis, and applied our tech-
niques to modeling and analysis of this system. Our approach is applicable to
any real-time system that satisfies the assumptions stated in Section 2, i.e., tasks
executing asynchronously and communicating through shared buffers.

References

1. R. Gerber, S. Hong, and M. Saksena, “Guaranteeing end-to-end timing constraints
by calibrating intermediate processes,” in Proc. IEEE Real-Time Systems Sympo-
sium, December 1994, pp. 209-213.

2. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL - a
tool suite for automatic verification of real-time systems,” in Proc. Workshop on
Verification and Control of Hybrid Systems, October 1995, pp. 232—243.

3. H. Ben-Abdallah, D. Clarke, I. Lee, and O. Sokolsky, “Paragon: A paradigm for
the specification, verification, and testing of real-time systems,” in Proc. IEEE
Aerospace Conference, Feb 1997, pp. 469-488.

4. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times: a tool
for schedulability analysis and code generation of real-time systems,” in Proc. In-
ternational Workshop on Formal Modeling and Analysis of Timed Systems, Sept.
2003.

5. R. Milner, A Calculus of Communicating Systems, LNCS 92. Springer-Verlag,
1980.

6. A. Wall, K. Sandstrom, J. Maki-Turja, C. Norstrom, and W. Yi, “Verifying tempo-
ral constraints on data in multi-rate transactions using timed automata,” in Proc.
IEEE International Conference on Real-Time Computing Systems and Applications,
December 2000, pp. 263-270.

7. J. Haveman, “Transaction decomposition: refinement of timing constraints,” in Proc.
South Pacific Conference on Formal Methods, 1997.

8. S. Yovine, “Kronos: A verification tool for real-time systems,” Software Tools for
Technology Transfer, vol. 1, pp. 123-133, 1997.

