Contextual Interfacing: A sensor and actuator framework

Kasper Hallenborg

Maersk Mc-Kinney Moller Institute
University of Southern Denmark
Odense M, 5230, Denmark
hallenborg@mip.sdu.dk

Abstract. The purpose of this article is to describe a middleware frame-
work for interfacing sensors and actuators, which provides abstract and
useful contextual information to applications. The framework is divided
into three layers with different abstraction levels, and an integration
layer. The framework is evaluated, exemplified, and further described by
practical implementations using the framework.

Keywords: Sensors, context, abstraction, framework, pervasive computing

1 Introduction

Human perception is the mental processes, which deals with gathering and in-
terpreting context information. In ubiquitous and pervasive computing, we face
a similar task, when we try to establish a realistic relation between context and
behavior of the application. Sensors are the analogy to human senses and the key
sources for providing information from the environment. Interfacing of sensors
and actuators is a common problem in application development. Each sensor
and actuator has their own protocol and connection type, which makes it hard
to implement a transparent interface from an application point of view.

For human-interactive, context-aware applications, the response time for a
sensor or actuator has lower priority, thus the number of abstraction layers could
be increased for the interface. With an increased number of layers in the interface,
it is easier to reuse and generalize specific parts of the interface scheme.

2 Related work

Dealing with sensors is not a new trend in software applications, but the number
of sensors providing information to the applications has increased rapidly over
the last years, and they are a must for creating the killer applications of perva-
sive computing, which truly will revolutionize our impressions of computers, if
they follow the spirit of Mark Weiser’s Calm Technology [19]. Thus, abstracting
and interpreting sensor information is and will be a crucial task of pervasive
applications, which means that standardizing sensor integration and context in-
terpretation will be an important part of most applications.

Anind Dey’s Context Toolkit [1] is among the most cited works in this area.
The Context Toolkit hides the details of the sensors behind context widgets,
which encapsulates the code for communicating with the hardware sensors, and
provides a standardized API for retrieving the data.

Another approach is taken by Schmidt et al [16,17], who in a layered archi-
tecture hides the context retrieval process. It consists of three elements; Sensors,
which output is regarded as a function of time, Cues, which combines and ab-
stract the current and previous data from a particular sensor, the Contezt layer
combines the input from all Cues to a current situation of the context, and fi-
nally the Application layer holds mechanisms to perform actions, when entering,
leaving, and operating in a given context state.

Other approaches with focus on contextual integration and abstration are
the CALAIS architecture [10], the Ektara [14] by MIT Media Lab, the Context
Information Service (CIS) proposed by Pascoe [12]. More recently, Hackmann et
al [13] have proposed a simple pattern-like architectural middleware (CONSUL)
for providing context-awareness to application.

3 Approach and Overview

Basically, the framework is best described as a middleware software compo-
nent with the purpose of adapting between hardware sensors and actuators, and
context-aware applications. As a consequence of the finite computing capabil-
ities, interfaces to the analog world can to some extent always be regarded as
discrete. Typically we sample the environmental variable at a random point in
time and regard the output as valid until the next sample. As the application
domain of the framework is intended for context gathering in human-like per-
ception processes, the intelligence built into the systems elsewhere should make
the systems fault-tolerant to a few missing values from the environment. Thus
synchronization must be the first aspect of dealing with sensors and actuators.
In the layered model of the framework, figure 1, the synchronization layer is il-
lustrated at the bottom, controlling the directed access with hardware interfaces
of the sensors and actuators.

Requesting a few sensors values is far from the fascinating illusion of tomor-
row’s pervasive systems, and responding to changes of a single environmental
variable is also on the edge of the definition of being context-aware. Similar to
human perception, we would require the ability to combine various stimuli from
different sources to a whole representation of a single impression. The next level
of the framework is named aggregation, and covers not only combination of data
from various sensors, but also aggregating multiple data from the same sensor
to a single value, such as averaging over the last 2-3 values from a temperature
sensor. Combined sensors do not necessarily have to provide mutual exclusive
information, for instance a device could be equipped with two or more position-
ing sensors, which could be combined and prioritised to a single position, based
on the situation of the device, such as indoor and outdoor.

Raw sensor data give little or no meaning to most users, and some information
from the sensor might be irrelevant, such handshaking and status signals. E.g.
GPS signals contains a lot of information, which is irrelevant, if only a “best
guess” of the current position is requested. Beside from a second option to filter
data, the abstraction level of the framework allow the user to convert the data
to more meaningful information.

Fig. 1. Layered model of the sensor framework, composed by the four required com-
ponents; Synchronization, Aggregation, Abstraction, and Integration

Last but not least, integrating context information into applications is per-
haps the biggest challenge towards a generic approach for using context. Several
previous attempt for unifying context integration exists, such as a generic context
server [15]. We will provide a number of standardized interfaces for integration
with existing technologies. Summarizing,

Synchronization grasp the current data from deployed sensors, or forwards
command to actuators.
— General interfaces for standard purpose 1/0 interfaces.
— Support interest from multiple clients.
Aggregation provides means for combining primitive and related sensor data
to a joint structure expressing a more cohesive stimuli.
— Unlimited and unconstrained means for combing all kinds of sensors.
— Parts of the structure could be reused for different purposes.
— Option to prioritize between overlapping sensors or sensors with common
characteristics.
Abstraction interpreting the raw sensor data to more meaningful information
for both humans and applications.
— Provide a common data structure for easing the integration of sensor
and actuator information with applications.
— Provide a set of common structures for general context information, eg.
location data.
Integration provides means for integrating the sensor framework with existing
software technologies.
— Support a number of general technologies for integration with applica-
tions and services.

4 Synchronization

As stated above the purpose of the synchronization layer is to retrieve or send
data from or to the hardware or logical devices, respectively. Retrieving data
from sensors could either be initiated by frequently polling by the client or the
interrupts from the hardware sensors sending event notifications through the
interface. As one of the design criteria is to support a broad range of client
functionality both mechanisms must be supported. Thus, besides the general
methods for requesting data from a higher level in the framework hierarchy, the
synchronization level should also be able to generate events and forward them
upwards. Monitoring the outdoor temperature is a typical example of polling the
sensors now and then, whereas triggering contacts in an alarm system justifies the
need for event generations as well. The framework must support both methods,
even it is commonly agreed that the notification model is preferable with respect
to performance, but for some applications the setup of listeners, event generators,
and event handlers requires an inappropriate amount of resources.

The other important functionality of the synchronizer is to support multiple
clients’ interest in the same data. The usual approach would be to discard the
data after they have been retrieved by a client, and let the client to decide,
which data needs to be stored. Supporting multiple clients raises the dilemma
of making the same data available to all clients or regards each invocation from
clients as a single request. As the first approach is the most general, we will go
for that solution, as the second approach easily could be implemented on top of
that by discarding all current data and request a new value.

4.1 Multiple client support

The second dimension of customizing the synchronizers is the support for mul-
tiple clients. It is not mandatory for a synchronizer to support multiple clients,
based on the arguments of constrained devices and simple applications with no
required support. Transparency should also be maintained, so a simple synchro-
nizer could be substituted with a multi-client synchronizer, without affecting the
existing code. It has one strong implication for the interface of the synchronizer,
as most object-oriented programming languages do not provide access to the
caller from the callee, without a passed reference to the caller. Identification of
the caller is required in order to select and return the right data, and to clean
up and maintain the repository of stored data.

4.2 10O and logical devices

Communicating with the real devices is one of the boundaries, where the frame-
work has to fit with existing technologies and defined standards we typically
cannot change or influence, both caused by physical limitations and the exten-
sive distribution of sensors. The interface to the devices should be kept simple for
the sake of generality; basically we are only interested in sending and receiving a
chunk of data to and from the device. Configuration of ports and other details of

the communication protocol, settings, etc. should be hidden in the implementa-
tions of the interface, and would not be under control from the synchronizers, as
transparency should secure that synchronizers would not care about the device
is connected via a serial port, USB, WLAN, or a file-object for demo purposes.

5 Aggregation

Grouping information is, if not explicitly stated, a commonly accepted way to
cope and deal with excessive amounts of information, if not the only one. More
or less consciously we do it all the time, and it helps us to hide the unimportant
details for a particular matter. Instead of describing everything by their atomic
components, a cumulative identifier simplifies the model. In a normal conversa-
tion almost anybody would know, or a least have an idea of, what you mean by a
house. So instead referring to four walls of bricks and windows, and a roof, where
bricks are small boxes of burnt clay, windows are rectangular boxes of glass with
a frame, which is ... , etc. Instead we have this composite identifier of a house,
which makes conversation possible, but we have to accept that the other person
do not necessarily picturize the same house, if not described further.

From this example it is also clear that various components, which are part
of the complete composite structure, may themselves be identified entities of
importance to others or in another situation, such as the window being a window
without carrying about being part of a house. In this way we have different
component or details of the composite, which has certain interest for different
people or purposes, which again could include parts that are important to others.

So the purpose of the aggregation layer is to collect and present data from
synchronizers in a meaningful way for the abstraction layer. The intension is to
relate all data, which are required to construct a client-ready data structure in
the abstraction layer, by only referencing a single aggregator.

Data from the aggregator may still be represented in the form they are ex-
tracted from the synchronizers, but a conversion could optionally be applied,
such as error correction and filtering, corresponding to the nature of human per-
ception, where only a few out of millions stimuli reach the memory matching
processes that defines our behaviour.

Finding a data structure to hold the retrieved information in not an easy task,
as both type or name of the data, and the data itself should be accessible. The
approach taken is to compose a Map structure, where combined information from
one or more sensors could be separated to individual entities in the mapping.

An aggregator is intended to communicate with only one synchronizer, mak-
ing event propagation much easier, so aggregators must be able to combine their
data to a single entity, which can be addressed from the abstraction layer. The
Composite pattern [4] is a simple mean to combine aggregators in an unlimited
tree-structure and keep a simple interface to the abstractors, which cannot tell
if a complex structure or just a single aggregator is responding.

A CompositeAggregator provides a simple approach for combining data
from a list of children into a single mapping. Composite aggregators could com-

bine different positioning measurement into single location information. Consider
the case, where your device has two means to determine the location, such as
a GSM phone, which could the determine the position based on the cell-ID or
even a more advanced triangulation approaches. The phone could in addition be
equipped with some sort of Bluetooth means for accurate locale indoor position-
ing.

The two methods of the Aggregator interface return and set the translator of
the Aggregator, respectively. By this mean, it is extremely simple for the user to
customize the Aggregator for a Speciﬁc purpose, Only an AggregatorTranslator
has to be provided, converting data to and from the aggregation layer.

6 Abstraction

10.3 kf2 of a 20 k2 LDR or NTC resistor may give sense to some, but most
people would have no clue, and even technical skilled would have no idea of how
it relates to lightning and temperature conditions, respectively. It depends very
much on the scale and linearity of the sensors, just to convert the data into more
familiar scales, such as Lux and Celcius. Or consider the following output from
a sensor

$GPRMC, 095211.808,A,5524.2563,N,01024.0460,E,2.03,324.78,230702,,+03

$GPGGA,095212.808,5524.2568,N,01024.0448,E,1,04,4.4,45.8,M,,,,0000%3F

$SGPGSA,A,3,20,11,01,07,,,,srr0s,7.9,4.4,6.6%38

you cannot gain much information from the listing above, if you are not familiar
with the NMEA 0183 standard used by the GPS sensor.

There is no need for software designers to deal with these kind of low-level details,
every time they request interaction with the environment, and therefore have to
interface sensors. By abstracting the sensor specific information, we can bring
sensors and actuators into play, with only little knowledge of the underlying
hardware.

The purpose of the layer is to compose appropriate and client-ready data
based on the data retrieved from the aggregation layer, and send it to clients
through the integration layer. No further conversion or adaptation of the data
should be performed in the integration layer, just integration and interfacing with
various devices or protocols should be handled. Data can either be retrieved
or put through the abstraction layer by the methods getData and putData,
respectively.

Translators are used to convert data to and from the abstraction layer, in
the same manner as the aggregation layer. The AbstractorTranslator is, sim-
ilar to the AggregatorTranslator, defined as a static inner interface of the
Abstractor. As for the aggregation layer, the purpose of using translators is to
simplify the framework for the user, so just a simple translator implementing
the conversion methods have to be provided in combination with the default
Abstractor implementation.

Sticking to the focus of the framework as middleware for ubiquitous sys-
tems, one sensor (hardware or logical) would rarely be enough as the systems

evolve. The intension is to let the framework compose the full context condi-
tions the application should respond to. Instead of the application composing its
own weather condition from e.g. a temperature and rain sensor. Separating the
aggregation and abstraction allow us to have different abstractions of the same
aggregated structure. Abstractors could reference any node in the tree formed
by the aggregators, so parts of the tree could have it own interpretation for one
or more clients.

7 Integration

You can gather and interpret all the information you want, but if you do not
make them available to users and try to fit their requirements for collecting such
information, you will never reach more than your own test applications. Thus at
the integration level of the framework, we have reached the upper boundary of
the middleware, where we have to fit to existing standards in order to associate
with most users, and this is not an attempt to be just a good sales guy. We could
easily wrap the data and drop them into our own context server, but first and
foremost that have not been the focus of the work conducted on the middleware
framework. On the other hand there is a number of existing means to integrate
or provide context information to users, and as closer we approach a general
standard des easier will the integration be.

The intension of the integration layer is not further to manipulate or abstract
the data received from the sensors, just to make is easier to provide the data
in various ways, such as services in networks or integrated directly into applica-
tions. Our initial and main focus for integration have been the Jini™ Technol-
ogy, therefore the standard implementation provides default implementation of
integrators and adaptors for the Jini community, but working and experimenting
with other networking architectures or similar service systems, will constantly
extend the number of provided adaptors and supported integration methods. By
this mean integration with the Elvin Messaging system [2] has been implemented
as further described in the sections of the examples.

Integrating directly with applications would typically be in terms of binary
Java objects or standardized data structures, such as XML documents. Following
the intensions of the framework these data should be provided in abstract and
general formats from the abstraction layer, and the integrator might only have
to wrap these information and make them accessible for the applications, for
instance in terms of Java Bean objects.

8 Examples

We will look at three examples for testing different aspects of the framework,
which might look rather independent, but in the end they will be grouped to-
gether to finally test those aspects of the framework.

The first example is to integrate a GPS sensor and provide positioning in-
formation in a general format and make it accessible to interested clients. The

example is a simple test of the most basic functionality of the framework, which
will illustrate the minimal work that have to be done by the user. The next
example is controlling a RCX brick from a PDA. Abstract and human-friendly
commands should be translated and send to the RCX brick, for control of at-
tached sensors and motors. The last example is the integration of the Smart-Its,
a general sensor-board with multiple sensors, that will focus on testing the ag-
gregation layer of the framework. Finally, all three examples will be combined to
a single robot with a control part consisting of a PDA and a RCX brick, which
will serve the purpose of testing reuse and combination of several independent
setups in the framework.

9 Example: Interfacing GPS

Location is arguably the most important contextual information for most per-
vasive and ubiquitous applications, thus interfacing a positioning device is a
relevant example for testing the framework.

A number of different positioning devices exist, but besides cellular-informa-

tion of mobile phones, the GPS (Global Positioning System) is by far the most
prevalent. Most common receivers use a simple serial protocol based on the
NMEA sentences [11], so these sentences have to be parsed and combined in
order to give some useful information for the application layer.
The basic purpose of the test is to retrieve and interpret data from a GPS
receiver, which basically could be done with any GPS receiver that allow us to
access the NMEA sentences. The challenges of deploying it to a PDA and let it
control the receiver and framework components are minimal and not given any
special focus during this test, so it could be mirrored to a laptop without any
changes, except for a recompilation of the native part.

One way to provide location information in a general structure could be the
SLO Protocol [7], which is one of the implemented standards in the framework to
demonstrate the implementation of abstraction translators. It extends a standard
XML translator that sets up all the basic for producing XML documents.

10 Example: Interfacing Lego Robots

In the recent years Lego has merged computer power and the standard bricks to
enhance the intelligence of the toys. Special bricks can be programmed with some
functionality. The focus of this example is to send simple immediate commands
to the firmware in the RCX brick, such as start and stop of a motor, setting
the speed of the motor, retrieving sensor inputs, checking the battery level, or
playing a sound.

The simple approach is to control the RCX computer via the IR-tower, which
is part of the Lego Mindstorm set. Our main objective is to control the RCX
through an IR port of a PDA, therefore additional T0Device implementations
have to be provided for the PDAs. We agreed on a setup, where a PDA with a
built-in IR-port is mounted on the robot and the IR ports of the PDA and the

RCX are aligned. The PDA would be wireless connected to the main computer
using wireless LAN. The protocol for communicating with the brick is somewhat
challenging to the framework, because RCX opcodes and messages are wrapped
into packets with headers and checksums. To complicate it even more, after each
byte send (beside the header) the same byte must be resend negated.

Using the IR port of a PDA is a lot more complicated than using a serial
connection, as we have to take control of the hardware pins on the controller
boards using special registers of the PDA. We have successfully implemented
communication with Cassiopeia E-200 and IPAQ H5550 PDAs.

10.1 Aggregation and abstraction

In the aggregation layer we handle the translation of RCX requests and com-
mands into real RCX messages with header and checksum, and responses from
the RCX are unwrapped, and the information is provided in a mapping structure
to the abstraction layer. It is also the task of the aggregator to check messages
and responses from the RCX, that they fulfil the required and expected format.

For the example we have implemented two abstractors, one which represent
a Jini service object holding the full state of the RCX. The other abstractor
generates Tickertape [3] messages for the Elvin messaging system, which are
presented in a Tickertape application, where only the responses are translated
into messages and commands.

11 Example: Interfacing Smart-Its

The Smart-Its from Lancaster University consist of a core board, which contain
power sources, a programmable microcontroller, memory, and a wireless com-
munication chip. The core board has a socket for add-on boards, which in our
case is used for the general sensor add-on board containing 5 different sensors;
Light sensor, motion detector, touch sensor, temperature sensor, and dual axis
accelerometer.

Tailoring the layers Retrieving the information from the Smart-It base-station
is extremely easy, as the standard code sets up the Smart-Its to put the sensor
data over the serial port line by line. Thus, the code up to the aggregation level
would be identical to that of the GPS receiver, except for the com port settings
of the T0Device; 115,200 bps, 1 stopbit, 8 databits, and no parity.

Beside the important task of retrieving the data for the sensors through the
synchronizers, the aggregator has to compute these changes based on the history
of sensor data.

Aggregation layer The Smart-It sensors provide two types of values, either
booleans from touch and motion sensors or integer values from the other sen-
sors. The integer values can be considered as a discrete function of e.g. time

or number of measurements, thus we can apply numerical methods to compute
properties for a similar or fitting continuous function, which is much easier to
handle computationally and relate to, and predictions of future values could also
be possible. In this example we will only focus on a number of simple properties
for the function that can be useful to determine how extensive a change in the
measured value is.

Abstraction layer Abstracting data from a general sensor board as the Smart-
It to a united context descriptor is almost impossible for a general purpose, as the
domain of context-aware application is so broad. We could tailor the abstraction
of the Smart-It’s data, to collect environmental context information for the robot
only. Similar to the data abstracted from the GPS sensor to an XML document
of the SLO protocol, we have defined an XML scheme with generalized Smart-Its
data, holding the current values of the sensors and optionally the changes to the
state of each sensor.

12 Example: Putting it all together

It may look like a weird artefact with superfluous technologies attached, but
the challenge was to compose an artefact with various capabilities from existing
technologies.

(a) Front (b) Rear

Fig. 2. The SmartRobot with the RCX computer, a IPAQ H5550, GPS receiver, and
a Smart-It attached.

To give a brief overview of the application of the combined technologies in this
example, a Lego robot will drive around and report various information about
the environment, it is passing through, and it can be controlled by the user
via simple commands. We will use the TickerTape messaging board of the Elvin
message system to present these reports to the user, and allow the user to control
the RCX robot via simple commands. The Smart-It sensor-node is also attached
to the robot and a base-station is attached to a host computer, which runs the

example of the Smart-It and produces a XML document that is made available
in a repository accessible by the IPAQ via WLAN. By this means the XML
document becomes a source of input to the robot, which could be sensed by an
XML parser.

12.1 Compose the primitive aggregators

We have chosen the easy approach of combining primitive aggregators that
each represent a channel of context information from lower layers. The stan-
dard CompositeAggregator simply merge the mappings of child aggregators to
a single mapping forwarded to the abstractors, ignoring overlaps in keys (last
child overwrites first). Extending this algorithm prioritizing between identical
or similar context information could be introduced, e.g. for the robot we could
exclude the light sensors of the Smart-It, if light sensors were attached directly
to the RCX or reverse.

12.2 Chatting with Elvin™

The objective of the SmartRobot is not to do any fancy tool work in the field, but
just wandering about and report experiences from and about the environment
it is passing through. The application can be seen as an extension of the RCX
example, where commands are sent back and fourth between the RCX robot and
the TickerTape message-board of the Elvin messaging system. Instead of simple
and informative command-like messages, we have extended the abstractor to
compose a number of more descriptive messages, that can report about changes
in the environment, e.g. the temperature decreases/increases, and GPS informa-
tion can, when available, be used to set a picture in memory of the current state,
so messages could sound like:

... last time I was near this location, it was warmer and lighter, but my
accelerometers tells me that I'm still not shaking ...

13 Conclusion

We have designed and implemented a general framework for interacting with
sensors and actuators. The default implementation and the core framework,
provides a number of way to setup the communication with the hardware, and
retrieval of data in particular. We support asynchronous multiple-client interests
of the retrieved information. Customization of the hot spots of the framework
in easily customizable through simple translators, which translate up and down
between the data structures of the different levels in the framework. We have
implemented a couple of examples to test and validate various aspects of the
framework with great success and only minor changes to the core framework. We
hope the supported technologies constantly will grow through different examples
with the framework. We will continue working on the framework structure and
enhance some of the provided tools for better and easier integration with various
applications.

References

1.
2.

3.
4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. K. Dey. Providing Architectual Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology, November 2000.

DSTC. Elvin - content based messaging. http://elvin.dstc.edu.au/.

DSTC. Tickertape. http://elvin.dstc.edu.au/projects/tickertape/.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

H. Gellersen. The smart-its project. http://www.smart-its.org/, 2001.

J. Hightower, B. Brumitt, and G. Borriello. The location stack: A layered model
for location in ubiquitous computing. In In Proceedings of the 4th IEEE Work-
shop on mobile Computing Systems & Applications (WMCSA 2002), pages 22-28,
Callicoon, NY, USA, June 2002. IEEE Computer Society Press.

M. Korkea-aho. Location Information in the Internet. PhD thesis, Helsinki Uni-
versity of Technology, October 2001.

Lego ™. The offical lego mindstorms website. http://mindstorms.lego.com/.

L. Merk, M. S. Nicklous, and T. Stober. Pervasive Computing Handbook. Springer
Verlag, January 2001.

G. J. Nelson. Contert-Aware and Location Systems. PhD thesis, Clare College,
University of Cambridge, United Kingdom, January 1998.

The national marine electronics association (nmea). http://www.nmea.org. NMEA
0183 standard.

J. Pascoe. Context-Aware Software. PhD thesis, Computing Laboratory, University
of Kent at Canterbury, August 2001.

G. H. C. J. J. Payton and G.-C. Roman. Supporting generalized context interac-
tions. In Proceedings of the 4th International Workshop on Software Engineering
and Middleware, Linz, Austria, September 2004.

A. S. P. Richard W. DeVaul. The ektara architecture: The right framework for
context-aware wearable and ubiquitous computing applications. Technical report,
The Media Laboratory, MIT, February 2000.

D. Salber and G. D. Abowd. The design and use of a generic context server.
Technical Report GIT-GVU-98-32, Georgia Institute of Technology, GVU Center,
College of Computing, 801 Atlantic Drive, Atlanta, 1998.

A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, and W. V.
de Velde. Advanced interaction in context. In Proceedings of the first International
Symposium on Handheld and Ubiquitous Computing (HUC99), volume 1707, pages
89-101, Karlsruhe, Germany, 1999. Springer.

A. Schmidt and K. V. Laerhoven. How to build smart appliances. Personal Com-
munications, Special Issue on Pervasive Computing, 8(4):66—71, August 2001.

A. M. R. Ward. Sensor-driven Computing. PhD thesis, University of Cambridge,
August 1998.

M. Weiser and J. S. Brown. The coming age of calm technology. Technical report,
Xerox PARC, October 1996.

